Hotel Fort Canning, Singapore October 7 – 8, 2015 Mission Design and Operation for a Micro-Deep-Space Explore: PROCYON Yoshihide Sugimoto LSAS Tec Co., Ltd Acknowledgement Asso. Prof. Dr. Ryu Funase Project manager Department of Aeronautics and Astronautics Engineering, The University of Tokyo Asso. Prof. Dr. Yasuhiro Kawakatsu Coordinator in JAXA (Development) Institute of Space and Astroautical Science (ISAS)/ Japan Aerospace Exploration Agency (JAXA) Assistant Prof. Dr. Atsushi Tomiki Coordinator in JAXA (Operation) ISAS/ JAXA Oct. 7-8, 2015 AGI International User's Conference 2 INTRODUCTION Art by Sean McNaughton, National Geographic Staff; Samuel Velasco, 5W Infographics Oct. 7-8, 2015 AGI International User's Conference 3 INTRODUCTION Q: How many people want to have their “own” spacecraft? Many ! Q: How many of them do have it? Very little… Q: Why ?? Not enough time… Not enough people (talent)… Not enough money… Oct. 7-8, 2015 AGI International User's Conference 4 INTRODUCTION Cost of Deep-Space Missions Total cost ($) 10 ? 5 Oct. 7-8, 2015 PROCYON AGI International User's Conference 5 INTRODUCTION What’s PROCYON <Main mission> Demonstrate 50 kg class micro-spacecraft bus system for deep-space missions • • Power, thermal, deep-space communication, and attitude and orbit control Orbital maneuvering by a miniature ion engine propulsion system <Advanced mission> • • • • X-band communication using GaN power amplifier Deep-space navigation by relative VLBI technique Optical navigation combined with classical RF navigation Proximate flyby to an asteroid <Science payload> • • Rotatable optical telescope for proximate asteroid flyby Lyman Alpha Imaging Camera Oct. 7-8, 2015 AGI International User's Conference 6 INTRODUCTION The Journey to Asteroid < High-velocity Proximate Asteroid Flyby > Asteroid arrival (2016-05) control sight direction Sun order of dozens km Earth gravity assist (2015-12-3) Launch (2014-12-3) Oct. 7-8, 2015 Flyby in a very close distance and take proximate image of the objective asteroid using 1-axis rotatable telescope AGI International User's Conference 7 INTRODUCTION The Journey to Asteroid Movie ! Oct. 7-8, 2015 AGI International User's Conference 8 INTRODUCTION Spacecraft Specification Structure Power AOCS Size 0.55m x 0.55m x 0.67m + 4 SAPs (Solar Array Panels) Weight <70kg (wet) SAP Triple Junction GaAs, >240W(1AU,qs=0,BOL) BAT Li-ion, 5.3Ahr Actuator 4 Reaction Wheels (RW), 3-axis Fiber Optic Gyro (FOG) Sensor Star Tracker (STT), Non-spin Sun Aspect Sensor (NSAS) Telescope (for optical navigation relative to the asteroid) Propulsion Performance <0.002[deg/s], ~0.01[deg] (pointing stability) RCS Xenon cold gas jet thrusters x8, ~22mN thrust, 24s Isp Ion propulsion Xenon microwave discharge ion propulsion system 0.3 mN thrust, 1000s Isp, ~400m/s DV capability (for 65kg s/c) Propellant Communication Frequency Antenna 2.5 kg Xenon (shared by RCS and ion propulsion) X-band (for deep space mission) HGA x1, MGA x1, LGA x2 (for uplink), LGA x2 (for downlink) Output power >15 W (RF output), >30% (GaN XSSPA) Payload Oct. 7-8, 2015 Weight ~10kg (asteroid observation camera + Lyman alpha imager) AGI International User's Conference 9 INTRODUCTION Development Year Month 9 ▲ 2013 10 11 2014 12 1 2 3 4 5 6 7 9 10 11 12 ▲ Launch approval Start of S/C Development Conceptual study & System design (05/2013~) 8 S/C Delivery ▲ Launch (Dec. 3) EM/STM test FM (component)fabrication FM integration & test Schedule • • • Thermal Vacuum test Vibration/Shock test “Table sat” test EM: Engineering Model STM: Structure and Thermal Model FM: Flight Model • • • • • I/F test Ion thruster test Thermal Vacuum test Vibration test Separation shock test Very small team (20~30 staffs and students at one place) enabled quick decision making for quick development Oct. 7-8, 2015 AGI International User's Conference 10 INTRODUCTION Development – How’s this mission possible!? Minimizing newly development elements and maximizing current existing technology and equipment Inherit the “HODOYOSHI” project’s*1 technical know-how that enables realistic performance and reliability Aggressively utilize the software and hardware from commercial companies Conduct small parts integration test in prior to total integration test in order to make schedule compact and safe Oct. 7-8, 2015 AGI International User's Conference 11 MISSION DESIGN Oct. 7-8, 2015 AGI International User's Conference 12 MISSION DESIGN Design Flow 1. Initial condition Launch condition (separation epoch and state vector) are given for each launch window of the main mission 2. Asteroid selection Location and epoch are evaluated for entire asteroid catalogue (more than 600,000) and ranked based on the mission requirements 3. Low-thrust trajectory design Design mission trajectory and maneuver planning using low-thrust optimization technique 4. Mission analysis Evaluate mission requirements and constraints for each potential trajectory Nominal trajectory Oct. 7-8, 2015 AGI International User's Conference 13 MISSION DESIGN Initial condition and Asteroid search Launch hyperbola 1-yr after launch • There are two cases for the Earth gravity assist (EGA), 1-year or 2-year • Depending on the EGA case, the mission has two different set of asteroid candidates • In both cases, we have only 1-3 target asteroids which satisfies the mission requirements Oct. 7-8, 2015 AGI International User's Conference 14 MISSION DESIGN Initial condition and Asteroid search Oct. 7-8, 2015 AGI International User's Conference 15 MISSION DESIGN Low-Thrust Trajectory Design • Developed two identical trajectory optimizer • GALLOP (Gravity Assist Low-thrust Local Optimization Program) Simple model Preliminary mission design • jTOP Full-model Precise nominal trajectory design Equation of motion is simple but to prove the accuracy of the solution is difficult Use STK Astrogator to check our final state and initial state (from the final state backward) Oct. 7-8, 2015 AGI International User's Conference 16 MISSION DESIGN Mission Trajectory Sun-Earth fixed rotating reference frame Heliocentric J2000 ecliptic coordinate frame Oct. 7-8, 2015 AGI International User's Conference 17 MISSION DESIGN Mission Trajectory Summary of trajectory design Launch Earth gravity assist Asteroid arrival 2014/12/3 06:24:21.561 UTC 2015/12/3 20:55:30.474 UTC 2016/5/12 18:35:13.199 UTC Start IES maneuvering Finish IES maneuvering (Total maneuver duration) 2015/1/25 16:35:20.771 UTC 2015/6/15 11:21:54.243 UTC (3400-hour) Sun distance 0.911 - 1.118 AU Maximum Earth distance 0.451 AU The nominal trajectory is an Earth gravity assisted trajectory Use STK CAT to evaluate the flyby hyperbola Oct. 7-8, 2015 AGI International User's Conference 18 MISSION OPERATION Oct. 7-8, 2015 AGI International User's Conference 19 MISSION OPERATION Nominal operation strategy S/C Communication S/C Health check Command & Telemetry Command planning Navigation Short/ long term operation planning Simulation and evaluation Command build Operation assignment Time shift of ground station assignment Oct. 7-8, 2015 Orbit determination Orbit prediction Antenna tracking plan Orbit analysis Maneuver assessment Access calculation AGI International User's Conference 20 MISSION OPERATION Structure Ground station USC34 (UDSC6) Operation Center @ISAS/JAXA Propulsion Commander Oct. 7-8, 2015 Power Thermal Attitude AGI International User's Conference etc… GNC 21 MISSION OPERATION Launch – Critical Operation Launch at 2014-12-3 4:23 UTC from Tanegashima Space enter Obtain 1st voice at 6:30 UTC Friendly support of signal acquisition by Warkworth (NZ) ground facility! The tracking antenna prediction was generated by STK access calculation Obtain first telemetry at 10:12 UTC Start checking-out each devices Oct. 7-8, 2015 AGI International User's Conference 22 MISSION OPERATION Current Status Main bus system is working good! Attitude is three-axis stabilized! Success continuous IES maneuvering! Obtained image by mission and science payload! Relative navigation by using VLBI technique is on going! Every mounted devices are confirmed their designed performance! Due to unexpected engine malfunction, we had to gave up asteroid flyby… Small-force analysis Telescope operation Science payload operation Guidance by RCS Oct. 7-8, 2015 AGI International User's Conference 23 MISSION OPERATION Current Status 0.01 Launch 2014-12-3 6:24:21 UTC to the Sun Launch 2014-12-3 6:24:21 UTC 0.005 0 0 Planned trajectory Y-axis (AU) -0.005 Y-axis (AU) -0.1 -0.01 Achieved orbit @2015-3-8 -0.015 -0.02 Achieved orbit @2014-12-3 -0.025 -0.2 -0.03 -0.035 -0.04 -0.03 -0.3 -0.02 -0.01 0 0.01 0.02 0.03 X-axis (AU) We are here! Magnified view of a black dash rectangle -0.4 Asteroid arrival 2016-5-12 -0.5 -0.3 -0.2 -0.1 Asteroid DP107 orbit 0 0.1 0.2 0.3 X-axis (AU) Oct. 7-8, 2015 AGI International User's Conference 24 Summary • PROCYON is a joint mission between The University of Tokyo and JAXA • The micro-deep-space system is proved in real space • The low-cost development has been done by inheriting past Earth satellite know-how and using as much as current existing commercial devices and software • Priceless students’ effort! Oct. 7-8, 2015 AGI International User's Conference 25 Summary of STK Contributions 1. Evaluation tool to verify the in-house developed trajectory designer: Astrogator 2. Conjunction analysis at the Earth gravity assist: CAT 3. Tracking antenna prediction for the first acquisition: STK 4. Long term and daily operation planning: STK Oct. 7-8, 2015 AGI International User's Conference 26 Artwork of PROCYON Earth Gravity Assist ©JAXA Oct. 7-8, 2015 AGI International User's Conference 27 ミッションの意義 • 50kg級超小型深宇宙探査機バスの実証 • 地上局との通信、軌道決定、軌道制御まで行える深宇宙探査機を50kg級という非常に小さ い規模で実現すること(世界初の試み)により、将来的にさまざまな深宇宙ミッション機会 (※1)の高頻度な利用と柔軟な探査ミッション構成が可能になる。 • 将来の活用例 • • ①将来の中・大型探査機に向けて、開発リスクの高い技術の研究を超小型探査機を用いて実施する。(超近 接・高速フライバイ観測技術の実験は、この役割を想定したもの) ②大型の深宇宙輸送機に搭載されて現地(小惑星等)で活動するような、ミッションに特化した超小型機 ※1 このクラスの重量であれば、イプシロン単独打ち上げ、 クラスタ打ち上げ、キックステージを利用したGTOミッションへの相乗り、 など多様な打ち上げ機会が今後期待できる • 深宇宙探査技術の実証 • GaN高効率X帯アンプの実証…探査機の小型・軽量化に資する省電力化技術 • 高精度VLBI航法の実証 …深宇宙での編隊飛行ミッション等の実現に資する高精度軌道決定技術 • 小惑星の超近接・高速フライバイ観測…フライバイ(マルチフライバイ)探査における訪問天 体数と観測の質(分解能)の両立を可能とする技術 • サイエンス観測 • ジオコロナ(地球コロナ)観測…アポロ16号以来42年ぶりとなるジオコロナの全球撮像を実施。 地球周回衛星からは観測できない高高度の水素大気分布と磁気嵐の関係を明らかにする。 28 PROCYON at a glance Solar Array Paddle (SAP) X-band High gain antenna 1.5 m Cold Gas Jet Thruster (CGJ) X-band Low gain antenna (LGA) for uplink 1.5 m +Z X-band LGA for downlink CGJ +Y CGJ Telescope +X X-band middle gain antenna 0.55 (MGA) CGJ m Miniature ion engine Science payload (LAICA) Star tracker Sun censor X-band LGA for downlink Wight ~65 kg +Y +Z X-band LGA for uplink +X CGJ 29 System block diagram and development team (System:UT, ISAS) AOCS: UT, ISAS (Thermal design:UT, ISAS, Hokkaido Univ.) Propulsion: UT, ISAS (Ground station:ISAS) AOCS Thermal control HTR(xN) FOG STT SS(x5) Mission: UT, Meisei Univ. MIPS +XeCGJ RW(x4) PDU TELE CAM HRM(x4) MIR EPS SAP(x4) OBC (Data Handling) PCU BAT XSW3 LGA XSW1 XDIP XSW2 XTRP XTX BPF XSSPA Communication: ISAS XSW4 Power I/F Data I/F XRX BPF LGA XSW5 LAICA SAP deployment mechanism: Nihon Univ. DHS: Tokyo Science Univ. IMG PROC MGA Mission LGA LGA HGA Science Instr.: Rikkyo Univ. Communication 30 Organization The University of Tokyo Collaboration Project manager:Associate professor Ryu Funase • Manage spacecraft development ISAS ISAS PIC:Associate professor Yasuhiro Kawakatsu • Communication subsystem • Support spacecraft development • Support mechanical tests Component developper ・ The University of Tokyo ・ Hokkaido University ・ Tokyo University of Science ・ Meisei University ・ Rikkyo University 31 Micro-communication unit for deep-space communication はやぶさ等の深宇宙探査機と互換性のある深宇宙用の超小型X帯通信系を開発. 世界初のGaNを用いた高効率アンプの実証,VLBI軌道決定のさらなる高精度化を目指 したチャープDOR方式の実験等の最先端技術の実証を狙う. X帯低利得アンテナ (アップリンク用) PROCYON搭載通信系の仕様 項目 通信周波数帯 アップリンク周波数 ダウンリンク周波数 送信出力 コマンドビットレート テレメトリビットレート 軌道決定 地上局 仕様 Xバンド 7.1 [GHz] 8.4 [GHz] 最大15 W以上 15.625, 125, 1000bps 8 bps 〜32 kbps R&RR DDOR(Delta VLBI) 臼田局,内之浦局, その他海外協力局 X帯高利得アンテナ X帯低利得アンテナ (ダウンリンク用) X帯中利得アンテナ X帯低利得アンテナ (アップリンク用) X帯低利得アンテナ (ダウンリンク用) 32 イオンスラスタ・コールドガスジェット統合推進系 姿勢制御用(リアクションホイールアンローディング)+軌道制御用(高加速度)のコールドガスジェット系と 軌道制御用(低加速度,高比推力)の電気推進を統合した,キセノンベースの統合推進系 項目 値 探査機総重量[kg] 約65kg キセノン搭載燃料重量[kg] 2.5 MIPS(小型イオン推進システム)比推力[s] 1000 MIPS(小型イオン推進システム)推力[N] 300×10-6 コールドガスジェット比推力[s] 24.5 コールドガスジェット推力[N] 22×10-3 コールドガスジェット イオンスラスタ ほどよし衛星搭載の小型イオン推進システム ”MIPS” 作動中のイオンスラスタ 33 ミッション系(小惑星撮像ミッション) • 超近接・高速フライバイ撮影を実現するための撮像システム – 小型衛星に搭載可能な小さな口径の望遠鏡でも 小惑星接近時の光学航法に必要とされる角度分解能を実現 – 望遠鏡の一部(駆動部)の回転角を画像フィードバックに基づいて オンボードで制御することにより,高速視線変更を実現 口径50mm,焦点距離150mmと小型ながら, 12等級まで観測可能な光学系 光学系 駆動鏡の回転による高速視線変更 →最接近前後も小惑星を追尾観測可能 望遠鏡光軸周りの回転角を制御可能な駆動部 34 ジオコロナ観測装置 LAICA (Lyman Alpha Imaging CAmera) ジオコロナ(地球コロナ) 地球周辺13万kmまで広がる水素大気発 光。アポロ16号(1972年4月)が初めて撮像し たが感度不足のため3万km程度まで。以降、 全球分布の撮像は行われていない。 近年になって注目されている ・高高度分布の非対称性(大気散逸過程を反映) ・高高度分布変動と磁気嵐の関係 を、42年ぶりのジオコロナ全球撮像によって明らかにする。 [Carruthers et al., 1976] ・真空紫外線領域にある水素ライマンα線(121.6nm)用の特殊 な望遠鏡と検出器で構成 ・立教大学内で望遠鏡部の設計・組立・性能試験を実施 ・超小型衛星に搭載可能な大きさ・質量で要求感度を達成 LAICA FM 35
© Copyright 2024 ExpyDoc