電波望遠鏡 広視野化の夢

Junji Inatani (NAOJ)
電波望遠鏡 広視野化の夢
2015-09-28
NRO談話会
1
電波天⽂学50年
• “新興勢⼒”電波天⽂の弱点
•
•
•
•
空間分解能
線スペクトル(分光学)
検出感度
⼤気吸収(ミリ波サブミリ波)
• “弱点”から”得意芸”へ(転化の契機)
•
•
•
•
•
•
アンテナ⼤型化(重⼒、熱、⾵効果の制御)
電波の位相制御(電波⼲渉計)
⾼速デジタル信号処理(専⽤計算機、IT⾰命)
星間分⼦、ミリ波サブミリ波への着⽬(科学発展の⾒通し)
低温物性、化合物半導体、超伝導デバイス(先端技術の活⽤)
新しいサイトの開拓(ALMA, Herschel/Planck, etc.)
• 最後(?)の弱点  観測視野(FOV)
2015-09-28
NRO談話会
2
私の問題意識
• 電波天⽂は⻑らくシングルビームでやってきた
• シングルビームの制約があるからこそ、究極の感度競争で⽣きてきた
• 光⾚外天⽂では、”視野のある観測”が当たり前
• シングルビームは電波の宿命か︖
• 近年、電波天⽂でもDirect Detectionのセンサ集積が発展
• ミリ波サブミリ波カメラ(TES、MKID)
• 原始銀河探査、CMB観測、等で活躍
• 他⽅、”THzブーム”の中、半導体集積デバイスの進捗が著しい
• 化合物半導体のみならず、シリコン・デバイスもTHz応⽤へ
• Heterodyneも含めて、集積化の展望が⾒えてきたのではないか︖
• 電波分光でも”視野のある観測”は可能なはず
• たとえば、NRO45m鏡に1万画素(100x100)のヘテロダインカメラがのるか︖
• 新規に広視野アンテナを最適設計すれば、どこまで広視野にできるか︖
• 研究開発の⾒通しを描きたい
2015-09-28
NRO談話会
3
SPIE Conference 9153 (June 2014)
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII
Session-1 (Current/Near-Term Cameras and Arrays)
• The NIKA 2013-2014 observation campaigns: control of systematic effects and results,
• SCUBA-2: an update on the performance of the 10,000 pixel bolometer camera after 2
years of science operation at the JCMT,
• The status of MUSIC: the multiwavelength sub/millimeter inductance camera,
• The ArTeMiS wide-field submillimeter camera : on-sky performance at 350 microns,
• The current status of MAKO,
• ZEUS-2: on-sky performance, integration of 215/645 micron TES bolometer arrays,
and an optimized diffraction grating,
Session-2 (Transition-Edge Sensors: Theory and Design)
• Focal plane arrays for BETTII: the Balloon experimental twin telescope for infrared
interferometry,
• Scalable background-limited polarization-sensitive detectors for mm-wave applications,
Session-3 (Transition-Edge Sensors: Performance and Developments)
• Development of TES arrays using DRIE for the short wavelength band of the SAFARI
Instrument on SPICA,
• TES-microstrip spectrometers for the tomographic ionized carbon mapping experiment
(TIME): a new probe of reionization,
2015-09-28
NRO談話会
4
SPIE Conference 9153 (June 2014)
Session-4 (Future Cameras and Arrays)
• The next-generation BLASTPol experiment (MKID),
• GISMO-2: a two color millimeter camera for the IRAM 30-m telescope (TES),
• MUSTANG2: millimeter astronomy on large single dish telescopes (TES),
• The kilopixel array pathfinder project (KAPPA): a 16-pixel
integrated heterodyne focal plane array: characterization of
the single pixel prototype,
• SWCam: the short wavelength camera for the CCAT observatory,
• SuperSpec: a broadband on-chip millimeter-wave spectrometer for high
redshift galaxy surveys (MKID),
2015-09-28
NRO談話会
5
SPIE Conference 9153 (June 2014)
Session-5 (Coherent Detector Technology)
• Argus: a 16-pixel millimeter-wave spectrometer for the
Green Bank telescope,
Session-7 (CMB Instruments: Current and Near-Term)
• Design, deployment, and operation of ACTPol, a millimeter wavelength,
polarization sensitive receiver for the Atacama Cosmology telescope,
• The performance of the bolometer array and readout system during the
recent flight of the E and B experiment (EBEX),
• BICEP2 and Keck array: upgrades and improved beam characterization,
• Pre-flight integration and characterization of the SPIDER balloon-borne
telescope,
Session-8 (Optics and Components)
• Optical design for the 450 μm, 350 μm, and 200 μm ArTeMiS camera,
2015-09-28
NRO談話会
6
SPIE Conference 9153 (June 2014)
Session-10 (CMB Instruments: New Developments I)
• The Simons array: expanding POLARBEAR to three multi-chroic telescopes,
• POLARBEAR-2: a new instrument for CMB polarization measurements with
Simons Array,
• PILOT: a balloon-borne experiment to measure the polarized FIR emission of
dust grains in the interstellar medium,
• The cosmology large angular scale surveyor (CLASS): 40-GHz detector array
of bolometric polarimeters,
Session-11 (CMB Instruments: New Developments II)
• Advanced ACTPol,
• The primordial inflation polarization explorer (PIPER),
• GroundBIRD: CMB polarization measurements at large angular scale by
using MKIDs,
• BICEP3: a next-generation refractor for inflationary CMB polarization,
• SPT-3G: a next-generation cosmic microwave background polarization
experiment on the South Pole telescope,
2015-09-28
NRO談話会
7
野辺⼭でもいろいろやってきたが・・・
SIS115Q (4 beams)
BEARS (25 beams)
FOREST (4 beams, 2SB)
 (4 beams, 2SB, 2pols)
“Argus”
(NRAO, GBT, 2014)
16 beams, HEMT
The latest state-of-the-art module
tested at Caltech has a minimum
receiver noise temperature of 27 K, and
with less than 40 K noise in the range
of 75-107 GHz.
The projected band averaged receiver
noise temperature is 50 K in the 75115.3 GHz range.
Argus is scheduled to be deployed at
the GBT by November 2014
K. Devaraj et al.
The Interstellar Medium in High Redshift
Galaxies Comes of Age
NRAO Conference Series, Vol. 28
2015-09-28
NRO談話会
8
KAPPa
(Kilopixel Array Pathfinder Project)
Arizona State University, California Institute of Technology,
University of Virginia,
University of Arizona
Proc. of SPIE Vol. 8452 (2012)
SiGe HBT LNA
G=16dB, Tn=10K,
P=2mW
2015-09-28
NRO談話会
9
ISSCC
IEEE International Solid-State Circuits Conference:
2012
2013
2014
2015
2015-09-28
NRO談話会
10
CMOS THz Camera
The University of Wuppertal,
STMicroelectronics, and ISEN/IEMN
presented the worldʼs first Terahertz
video camera fully integrated in a
commercially available CMOS 65nm
process technology from
STMicroelectronics at the ISSCC 2012
in San Francisco.
2015-09-28
NRO談話会
11
mm-Wave Silicon ICs (Ali Hajimiri, Caltech)
A fully integrated 4-element phased array transceiver with onchip antennas has
been designed and fabricated in a 130nm SiGe BiCMOS process.
The receiver consists of the complete down-conversion path with low-noise amplifier (LNA),
frequency synthesizer, phase rotators, combining amplifiers, and onchip dipole antennas.
A distributed active combining amplifier at an IF of 26 GHz is used to perform the signal
combining. A 52-GHz first LO is generated on chip and is routed to different elements,
where it is phase shifted locally by the phase rotators. The local LO-path phase-shifting
scheme enables a robust distribution network that scales well with increasing frequency and
number of elements while providing high-resolution phase shifts.
Measurements indicate a single-element LNA gain of 23 dB and a noise figure of
6.0 dB. Each of the four receive paths has a gain of 37 dB and a single-path overall noise figure
of 8.0 dB. Each on-chip antenna has a gain of +8 dBi.
Each element of the 2-step upconversion transmitter generates +12.5 dBm of
output power at 77 GHz with a bandwidth of 2.5 GHz leading to a 4-element effective
isotropic radiated power (EIRP) of +24.5 dBm.
Each on-chip PA has a maximum saturated power of +17.5dBm at 77 GHz. The entire phased
array transceiver occupies an area of 3.8mm x 6.8mm, as shown in the die photo of Fig. 1.
2015-09-28
NRO談話会
12
mm-Wave Silicon ICs (Ali Hajimiri, Caltech)
130nm SiGe BiCMOS
2015-09-28
NRO談話会
13
ISSCC 2012
• A 1kpixel CMOS camera chip for 25fps real-time terahertz
imaging applications.
• 280GHz and 860GHz image sensors using Schottky-barrier
diodes in 0.13μm digital CMOS.
• A 0.28THz 4×4 power-generation and beam-steering array.
• A 283-to-296GHz VCO with 0.76mW peak output power in 65nm
CMOS.
2015-09-28
NRO談話会
14
ISSCC 2013
• A 260GHz amplifier with 9.2dB gain and -3.9dBm saturated
power in 65nm CMOS.
• A 93-to-113GHz BiCMOS 9-element imaging array receiver
utilizing spatial-overlapping pixels with wideband phase and
amplitude control.
• A 94GHz 3D-image radar engine with 4TX/4RX beamforming scan
technique in 65nm CMOS
(BiCMOS: Bipolar + CMOS)
2015-09-28
NRO談話会
15
ISSCC 2014
• A 0.53THz Reconfigurable Source Array with up to 1mW Radiated
Power for Terahertz Imaging Applications in 0.13μm SiGe BiCMOS
• A Scalable Terahertz 2D Phased Array with +17dBm of EIRP at
338GHz in 65nm Bulk CMOS
• A 300GHz Frequency Synthesizer with 7.9% Locking Range in
90nm SiGe BiCMOS
• A 247-to-263.5GHz VCO with 2.6mW Peak Output Power and
1.14% DC-to-RF Efficiency in 65nm Bulk CMOS
• A Fully Integrated Single-Chip 60GHz CMOS Transceiver with
Scalable Power Consumption for Proximity Wireless
Communication (by Toshiba)
2015-09-28
NRO談話会
16
ISSCC 2015
• A 79GHz Binary Phase-Modulated Continuous-Wave Radar
Transceiver with TX-to-RX Spillover Cancellation in 28nm CMOS
(Panasonic included in the collaborators)
• A 320GHz Phase-Locked Transmitter with 3.3mW Radiated Power
and 22.5dBm EIRP for Heterodyne THz Imaging Systems
• A 70.5-to-85.5GHz 65nm Phase-Locked Loop with Passive
Scaling of Loop Filter
2015-09-28
NRO談話会
17
SiGe HBT
(Heterojunction Bipolar Transistor)
HBT:
SiGe系ではIBMによる研究が20年以上前か
ら⾏われているが、Bi-CMOSプロセスに組み込
まれるようになってからは集積化と⾼速化が進
み、 2005年の時点で0.13μmプロセス世
代において遮断周波数210GHzが達成され
ている。
他の最⾼速動作事例として、InP系で、
2007年時点でイリノイ⼤にて
Fmax=710GHz、UCSBから780GHzの
などが報告されている。
(http://ja.wikipedia.org/wiki/HBT)
The HEMT noise at low microwave
frequencies depends upon
the gate leakage current ranging
from 0.1 μA (denoted as 0 uA) for
selected transistors to 1 μA for a
mediocre transistor.
S.Weinreb et al.
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 11, NOVEMBER 2007
These measurements are reported for SiGe transistors from the IBM SiGe BiCMOS-8HP 0.12-μm process.
The measured noise temperature in the 0.7–3 GHz range and the modeled noise temperature to 20 GHz are
comparable to that measured with the best 0.1-μm InP HEMT transistors, yet SiGe has advantages of onchip integration with CMOS, very high yield, a rich stable of accurate passive components, and a
more rapid development pace.
2015-09-28
NRO談話会
18
DOTSEVEN
Towards 0.7 Terahertz Silicon Germanium Heterojunction Bipolar Technology
http://www.dotseven.eu/
DOTSEVEN is a very ambitious 3.5 year R&D project targeting the development of
silicon germanium (SiGe) heterojunction bipolar transistor (HBT) technologies with
cut-off frequencies (fmax) up to 700 GHz.
Special attention will be paid to clearly demonstrate the manufacturability and
integration with CMOS as well as the capabilities and benefits of 0.7 THz SiGe
HBT technology by benchmark circuits and system applications in the 0.1 to 1
THz range.
2015-09-28
NRO談話会
19
Low Power Consumption
“Ultra-Low Power InAs/AlSb HEMTs for Cryogenic Low-Noise Applications”
by Giuseppe Moschetti (Chalmers University of Technology), 2012
A three-stage low noise amplifier operating in the 4-8GHz frequency range.
At 13K, a minimum noise temperature of 19K and a gain above 24 dB were
measured at a total DC power consumption of only 6mW.
This corresponds to an ultra-low power consumption of only 600μW in the HEMT
device.
2015-09-28
NRO談話会
20
課題1 (広視野のアンテナ)
光⾚外ではレンズによる補正光学系を多⽤
電波では反射鏡による補正光学系が基本
複数ミラーを含む⾮対称光学系の取り扱い
C.Dragone (Bell Lab., ATT) の先駆的仕事がある:
“Conformal Mapping and Complex Coordinates in Cassegrainian and Gregorian Reflector Antennas,”
BSTJ (1981)
“A First-order Treatment of Aberrations in Cassegrainian and Gregorian Antennas,” IEEE AP (1982)
“First-order Correction of Aberrations in Cassegrainian and Gregorian Antennas,” IEEE AP (1983)
マルチビーム設計法
光線追跡法 vs. 物理光学
前者では Diffraction (回折) の効果は計算されない
複数Feedによるアンテナ主鏡⾯の電磁界分布をどのように計算するか︖
“Multibeam Image Horn” の提案
2015-09-28
NRO談話会
21
課題2 (ヘテロダイン・カメラ)
• 何を集積するか?
(狭義)Feed, RF-AMP, LO, CPL, MIX, ISO, IF-AMP, BPF, etc.
(広義)D/C, A/D, E/O, etc.
• 低雑⾳性能の維持  冷却、低損失、低雑⾳デバイス
• Feedの選択
導波管ホーン(by “3D Printer” ?) vs. 薄膜アンテナ
• 能動デバイスの選択
(1)
(2)
SIS + HEMT + SiGe/CMOS (> 300 GHz ?)
HEMT + SiGe/CMOS (< 300 GHz ?)
• ハイブリッド集積技術が不可避
- 空間的格差(センサ⾯サイズ vs MMICサイズ)
- デバイス材料の違い、発熱量の違い、動作温度の違い
- 異種MMIC間の結合技術(広帯域、低損失、断熱性)
2015-09-28
NRO談話会
22
課題2 (ヘテロダイン・カメラ)
• 熱設計は?
• ex. GaAs-HEMT:
1V*5mA*2stage*100*100 = 100W @20K
• LNAの消費電⼒低下が必要  1/10 以下へ
• CMOSのアナログ・デバイスに期待
• 超広帯域信号処理をどうするか?
• ex. 4GHz*100*100 = 40THz
• ex. ALMA: 4GHz*2sb*2pol*66antenna = 1056GHz = 1THz
• CMOSデジタル技術の発展に期待(基盤技術)
• 情報圧縮︓サイエンスの判断に基づき効率化
2015-09-28
NRO談話会
23
Hybrid Integration
Core Sensors for mmw/smw/thz Heterodyne
Mixer
Associated
Devices
RF
Merit/Demerit
range
Power
Dissi.
Cooler
Req.
Large
Integ.
Signal
Transfer
mmw
/smw
/thz
<1K
4K
20K
-
SIS mix
InP-HEMT(IF)
△
△
△
△
smw
-
SIS mix
SiGe-HBT(IF)
〇
△
〇
△
smw
-
SIS mix
+ SCTW-paramp (IF)
-
〇
△
△
〇
smw
-
InP-HEMT(IF)
△
×
△
△
thz
HEB mix
LO/PLL:
RTD or CMOS
Downn Converter:
CMOS
HEB mix
-
SiGe-HBT(IF)
〇
×
〇
△
thz
-
-
InP-HEMT(RF)
△
〇
△
〇
mmw
-
SCTW-paramp (RF)
-
〇
△
△
〇
smw
RF Amp
2015-09-28
NRO談話会
??
24
Wide Field-of-View (FOV) Radio Optics
• Radio optics is a strongly frequency-dependent system:
• How to match such freq-dependent beam propagation with a
physically fixed (i.e., freq-independent) antenna mirrors?
• “Image Horn” is a useful method to design a broad-band radio
optics (often called as “frequency-independent” design).
• But its use has been limited to a single beam optics.
• Is “Image Horn” approach also possible for multi-beam
optics?
• My answer is Yes, and itʼs useful.
• By means of the “Multi-beam Image Horn” concept, we can
discuss the relations among:
- Electric field distribution at the main reflector,
- Horn size and separation of the focal plane array, and
- The frequency dependency.
2015-09-28
NRO談話会
25
Back to my talk in 2005 (SMILES)
2015-09-28
NRO談話会
26
Optical Image and “Image Horn”
Application to Gaussian Beam
W: beam size
R: phase curvature
(W1, R1) at L1
(W2, R2) at L2
These 6 parameters are
frequency-independent.
 W2
∗
∗
 R2
Frequency-independent Design for SMILES
Optical Images of
SMX Horn Aperure
BBH
Phase
Curvature
(1/R)
CM2
RM5
300 GHz
400 GHz
500 GHz
600 GHz
RM6
Beam Size
(1/e Radius)
700 GHz
SMX Horn
800 GHz
Distance from
SMX Horn
Aperture [mm]
“Multi-beam Image Horns”: case-1
Arrayed beams go through
the same physical location,
but the phase distribution
is spherical there.
 This does not make a
Telescope Aperture.
Telescope Aperture:
Plane waves in various
directions need to share
the same location.
Feed Horns
2015-09-28
Image Horns
NRO談話会
29
“Multi-beam Image Horns”: case-2
If HPC and HA make mutually inverted images, then
Telescope BW can share the same location, which will work
as the Telescope Aperture.
Note that the Telescope BW is not the image of Horn BW.
Also note that BW is frequency dependent.
2015-09-28
NRO談話会
HPC: Horn Phase Center
HA: Horn Aperture
BW: Beam Waist
30
Multi-beam Image Horns (Concept)
IPC: Image of Horn Phase Center
IHA: Image of Horn Aperture
Image Horn Array-1
IPC-1
IHA-1
PM Focus
SM
Image Horn Array-2
IPC-2
PM
Beam Waist
SM Focus
IHA-2
Feed Horn Array
2015-09-28
NRO談話会
31
NRO 45m Multi-beam Image Horn (1)
F1: Primary Focus, F2: Secondary Focus,
Cp: Primary Mirror (PM) Center, Cs: Secondary Mirror (SM) Center,
HA: Horn Aperture, HPC: Horn Phase Center,
FL: Focal Length, OP: Optical Power (=1/FL)
W: Gaussian Beam (1/e)-radius, R: Gaussin Phase Curvature,
Zp: Axis originating at Cp toward F1,
Zs: Axis originating at Cs toward F2
PM
(45m)
PM+SM
FOV Limit Angle (FOV/2): 0.2 deg
Pupil Location wrt Cp: 32 m
IHA2 Location wrt Cp: -300 km
RF to design the Image Horn: 110 GHz
NRO45m Original
Values
a, c:
reduced by 3m
NRO45m Original
Values
a, c:
reduced by 3m
a
(hyperboloid)
[mm]
9598.65
6598.65
9598.65
6598.65
c
(hyperboloid)
[mm]
10890.45
7890.45
10890.45
7890.45
[mm]
1291.8
1291.8
1291.8
1291.8
1.134581426
1.195767316
1.134581426
1.195767316
3750
3750
3750
3750
c-a
SM
FOV Limit Angle (FOV/2): 0.2 deg
Pupil Location wrt Cp: 32 m
IHA2 Location wrt Cp: -1000 km
RF to design the Image Horn: 110 GHz
ecc
eccentricity
Ds
SM physical diameter
[mm]
F2Cs
a+c
[mm]
2.04891E+04
1.44891E+04
2.04891E+04
1.44891E+04
F1Cs
a-c
[mm]
-1.29180E+03
-1.29180E+03
-1.29180E+03
-1.29180E+03
Ms
abs(F2Cs/F1Cs)
1.58609E+01
1.12162E+01
1.58609E+01
1.12162E+01
OPs
(1/F2Cs)+(1/F1Cs)
[/mm]
-7.25307E-04
-7.05096E-04
-7.25307E-04
-7.05096E-04
FLs
1/OPs
[mm]
-1.37873E+03
-1.41825E+03
-1.37873E+03
-1.41825E+03
F1Cp (=FLp)
Zp(F1)
[mm]
1.60000E+04
1.60000E+04
1.60000E+04
1.60000E+04
CsCp
F1Cp-abs(F1Cs)
[mm]
1.47082E+04
1.47082E+04
1.47082E+04
1.47082E+04
OPp
1/F1Cp
[/mm]
6.25000E-05
6.25000E-05
6.25000E-05
6.25000E-05
Dp
PM physical diameter
[mm]
4.50000E+04
4.50000E+04
4.50000E+04
4.50000E+04
F2Cp
F1Cp-F1F2
[mm]
-5.78090E+03
2.19100E+02
-5.78090E+03
2.19100E+02
FLcas
FLp*Ms
[mm]
2.53774E+05
1.79459E+05
2.53774E+05
1.79459E+05
2015-09-28
NRO談話会
32
NRO 45m Multi-beam Image Horn (2)
FOV/2
Angfv
FOV limit angle
[deg]
2.00000E-01
2.00000E-01
2.00000E-01
2.00000E-01
FPA
Dfpa
Focal-Plane-Array diameter
[mm]
1.77079E+03
1.25223E+03
1.77079E+03
1.25223E+03
ApCp
Zp(Ap)
[mm]
3.20000E+04
3.20000E+04
3.20000E+04
3.20000E+04
Dap
Aperture diameter
[mm]
4.47766E+04
4.47766E+04
4.47766E+04
4.47766E+04
Illumination Edge Level
[dB]
-1.20000E+01
-1.20000E+01
-1.20000E+01
-1.20000E+01
1.17539E+00
1.17539E+00
1.17539E+00
1.17539E+00
Pupil (Ap) ELdB
Freq.
IHA2
Location
b/w
sqrt{abs(ELdB/20)*ln(10)}
Wo=Dap/(2*b/w)
Waist radius (Gaussian)
[mm]
1.90475E+04
1.90475E+04
1.90475E+04
1.90475E+04
ν
Frequency
[GHz]
1.10000E+02
1.10000E+02
1.10000E+02
1.10000E+02
λ
Wavelength
[mm]
2.72538E+00
2.72538E+00
2.72538E+00
2.72538E+00
(IHA2-Cp)onaxis
Zp(IHA2)on
[mm]
-1.00000E+09
-1.00000E+09
-3.00000E+08
-3.00000E+08
Lateral
Yp(IHA2)
[mm]
3.49076E+06
3.49076E+06
1.04731E+06
1.04731E+06
Zo
abs(Zp(IHA2)-Zp(Ap))
[mm]
1.00003E+09
1.00003E+09
3.00032E+08
3.00032E+08
2.39120E+00
2.39120E+00
7.17414E-01
7.17414E-01
Gaussian γ(Zo,Wo)
Beam: Ap
to IHA2 W(Zo)
Wo*SQRT(1+γ^2)
[mm]
4.93688E+04
4.93688E+04
2.34422E+04
2.34422E+04
Zo*(1+(1/γ)^2)
[mm]
1.17493E+09
1.17493E+09
8.82977E+08
8.82977E+08
DH2=W(Zo)*2*(b/w) IHA2 diameter
[mm]
1.16056E+05
1.16056E+05
5.51077E+04
5.51077E+04
LH2=R(Zo)
IHA2 horn length
[mm]
1.17493E+09
1.17493E+09
8.82977E+08
8.82977E+08
del(IHA2-Cp)
Zp(IHA2)off-Zp(IHA2)on
[mm]
6.09234E+03
6.09234E+03
1.82770E+03
1.82770E+03
IHPC2-Cp
Zp(IHPC2)
[mm]
1.74960E+08
1.74960E+08
5.83006E+08
5.83006E+08
Yp(IHA2)
[mm]
3.49076E+06
3.49076E+06
1.04731E+06
1.04731E+06
Yp(IHPC2)
[mm]
-6.10507E+05
-6.10507E+05
-2.03487E+06
-2.03487E+06
R(Zo)
Image
Horn-2
λ*Zo/(3.141592*Wo^2)
Lateral
2015-09-28
NRO談話会
33
NRO 45m Multi-beam Image Horn (3)
Image
Horn-1
IHA1-Cp
Zp(IHA1)
[mm]
1.59997E+04
1.59997E+04
1.59991E+04
1.59991E+04
IHPC1-Cp
Zp(IHPC1)
[mm]
1.60015E+04
1.60015E+04
1.60004E+04
1.60004E+04
DH1
IHA1 diameter
[mm]
1.85687E+00
1.85687E+00
2.93894E+00
2.93894E+00
LH1
IHA1 horn length
[mm]
1.71933E+00
1.71933E+00
1.29241E+00
1.29241E+00
IHA1-Cs
Zs(IHA1)
[mm]
-1.29154E+03
-1.29154E+03
-1.29095E+03
-1.29095E+03
IHPC1-Cs
Zs(IHPC1)
[mm]
-1.29326E+03
-1.29326E+03
-1.29224E+03
-1.29224E+03
Ys(IHA1)
[mm]
-5.58495E+01
-5.58495E+01
-5.58474E+01
-5.58474E+01
Ys(IHPC1)
[mm]
-5.58559E+01
-5.58559E+01
-5.58523E+01
-5.58523E+01
HA-Cs
Zs(HA)
[mm]
2.04249E+04
1.44570E+04
2.02765E+04
1.43825E+04
HPC-Cs
Zs(HPC)
[mm]
2.08635E+04
1.46753E+04
2.06001E+04
1.45445E+04
DH
HA diameter
[mm]
2.93652E+01
2.07850E+01
4.61610E+01
3.27428E+01
LH
HA horn length
[mm]
4.38641E+02
2.18387E+02
3.23603E+02
1.62062E+02
Lateral
DH/λ
Real Horn LH/DH
10.77
7.63
16.94
12.01
14.94
10.51
7.01
4.95
HA-Cp
Zp(HA)
[mm]
-5.71669E+03
2.51240E+02
-5.56833E+03
3.25728E+02
HPC-Cp
Zp(HPC)
[mm]
-6.15533E+03
3.28529E+01
-5.89193E+03
1.63665E+02
Yp(HA)
[mm]
8.83222E+02
6.25154E+02
8.77179E+02
6.22198E+02
Yp(HPC)
[mm]
9.01093E+02
6.33826E+02
8.90365E+02
6.28634E+02
Lateral
Horn Tilt
2015-09-28
[deg]
-2.33
NRO談話会
-2.27
-2.33
-2.27
34
NRO 45m Multi-beam Image Horn (4)
Definition of Image HA2 by Gaussian Beam at 110 GHz
IHA2 Location wrt Cp: -1000 km
RF to design the Image Horn: 110 GHz
FOV Limit Angle (FOV/2): 0.2 deg
Pupil Location wrt Cp: 32 m
Dfpa
Focal Plane Pixel Size
Array
Numer of Pixels
Beam Separation
IHA2 Location wrt Cp: -300 km
RF to design the Image Horn: 110 GHz
NRO45m Original
Values
SM a, c:
reduced by 3m
NRO45m Original
Values
SM a, c:
reduced by 3m
Focal-Plane-Array diameter
[mm]
1770.79
1252.23
1770.79
1252.23
1.1*DH
[mm]
32.30
22.86
50.78
36.02
55
55
35
35
26.27
26.29
41.29
41.42
Dfpa/(Pixel Size)
FOV/(Number of Pixels)
[asec]
Definition of Image HA2 by Gaussian Beam at 220 GHz
IHA2 Location wrt Cp: -1000 km
RF to design the Image Horn: 220 GHz
FOV Limit Angle (FOV/2): 0.2 deg
Pupil Location wrt Cp: 32 m
Dfpa
Focal Plane Pixel Size
Array
Numer of Pixels
Beam Separation
2015-09-28
IHA2 Location wrt Cp: -300 km
RF to design the Image Horn: 220 GHz
NRO45m Original
Values
SM a, c:
reduced by 3m
NRO45m Original
Values
SM a, c:
reduced by 3m
Focal-Plane-Array diameter
[mm]
1770.79
1252.23
1770.79
1252.23
1.1*DH
[mm]
19.43
13.75
43.83
31.09
91
91
40
40
15.80
15.81
35.64
35.75
Dfpa/(Pixel Size)
FOV/(Number of Pixels)
[asec]
NRO談話会
35
Focal Plane Array by Ray Trace
[mm]
[mm]
2015-09-28
NRO談話会
36
Horn Position & Length
Horn Position:
Distance from
PM Center
(Vertex)
[mm]
Horn Length:
(HA to PC)
[mm]
2015-09-28
NRO談話会
37
OPD
(Optical Path Difference)
by Ray Trace
OPD between
Image HA2
and
Real Horn HA
OPD between
Image PC2
and
Real Horn PC
OPD is larger for HA2/HA
than for PC2/PC.
This could be improved by
Mirror modification such as
Richey-Chretien.
2015-09-28
NRO談話会
38
An Offset Cassegrain for Large FOV
50m
Submillimeter
Antenna with
Large FOV
[mm]
[mm]
[mm]
2015-09-28
NRO談話会
39
Critical Conditions for Large FOV
 Main Reflector F/D Ratio (Fp, Dp):
• NRO45m: F/D=16m/45m=0.356
• TMT30m: F/D=30m/30m=1.0
• Larger F/D is preferable for larger FOV.
 Subreflector Diameter (Ds):
• Typically Ds/Dp ~ 0.1
• Limited by blocking (in case of symmetric Cassegrain)
• Larger Ds is preferable for larger FOV.
 Cassegrain Focal Length (Fcas) and Focal Plane
Diameter (Dfp):
•
•
•
•
Fcas=Fp*Msub=Fp*Rout/Rin
Dfp=Fcas*2*tan(FOV/2)
Dfp must match with the receiver Focal Plane diameter.
Fcas must be an optimum length.
2015-09-28
NRO談話会
40
A Candidate of LST 50m ?
2015-09-28
NRO談話会
41
Strehl Ratio
Ray Tracing by
T.Takekoshi
Offset Angle [deg] +Y (outer, asym.)
Offset Angle [deg] +X/-X (sym.)
2015-09-28
Offset Angle [deg] -Y (inner, asym.)
NRO談話会
42
まとめ
• 広視野のヘテロダイン受信機を本気で考える時期に来た
• “ハイブリッド集積”開発のロードマップをつくろう
•
•
•
•
Device Selection
Hybrid Integration
Cryogenics
Wide Field Radio Optics
• “超伝導ガラパゴス”を出てSilicon Industryとの協調へ
2015-09-28
NRO談話会
43