研究室詳細はこちら

永井
健治 Takeharu NAGAI
教授
大阪大学
Professor
産業科学研究所
The Institute of Scientific and Industrial Research, Osaka University
生体分子機能科学研究分野
Department of Biomolecular Science and Technology








LAST UPDATE : 2015/01/30
発光タンパク質
バイオフォトニクス
少数性生物学
グリーンバイオロジー
Luminescent proteins
Biophotonics
Minority biology
Green biology
光による生理機能の操作ならびに可視化技術の開発と少数性生物学、グリーンバイオロジーへの展開
Development of biophotonics technology applicable to minority biology and green biology
創薬やテーラーメイド医療、或は持続的な地球環境の保全への応用に繋がる、より包括的な生理現象の理解に迫るためには生きた細胞や組
織・個体における個々の生体分子の時間的・空間的な機能動態に関する情報を得る必要があります。特に、光遺伝学(オプトジェネティクス)
を駆使して細胞やタンパク質の機能を操作しつつ生体分子反応を可視化して生命現象を理解する研究方法への関心が急速に高まっています。
In order to develop technologies useful for not only drug discovery and tailor-made medicine but also sustainable earth environment, it
is essential to comprehensively understand biological phenomena by getting information regarding spatiotemporal biomolecular
reactions in live cell and whole organisms. In particular, strong interest in research which applies otogenetic manipulation in
conjunction with bioimaging is growing rapidly.
蛍光タンパク質や化学発光タンパク質、光感受性タンパク質をエンジニアリングすることで遺伝子にコードされた斥候分子やそれを操作し可
視化する顕微鏡の開発を行い、指折り数えることができる程度の少数の要素分子から構成される細胞のナノシステムが協働的に動作し、巨視
的なレベルでの頑健な構造・機能を生み出す原理の解明を行います。また、化学発光タンパク質を組み込んだ植物(LEP)を作製し、電力フ
リーな照明源としての社会実装を目指しています。
The main objective of the research is to figure out principles of how small number biomolecules can cooperatively function to lead to
robust phenomena at macro scale level by means of molecular spies that could be made by engineering of fluorescent /chemiluminescent
proteins and photosensitive proteins as well as nanoscopic optics that can operate and visualize the molecular spies. In addition, we aim
at social implementation of the light-emitting plants (LEP) made by introduction of chemiluminescence-related genes into the plant
chromosome, thereby realizing electrical power free light source.
Fig.1.
Multicolor
fluorescence
imaging of cellular compartments
in live human cells. Nucleus,
mitochondria,
endoplasmic
reticulum and plasma membrane
were
labeled
Sirius,
Venus,
mseCFP and mCherry, respectively.
Fig.2. We are constructing optical
microscopies such as cavityenhanced absorption microscopy for
biomolecular
imaging
without
staining, and nanoscopy based on
SPoD/ExPAN (super resolution by
polarization
demodulation/excitation
polarization angle narrowing
Fig.3. Light-emitting liverworts
(Marchantia) that was genemodified by introduction of a gene
encoding
super-duper
greenemitting luminescent protein based
on hybrid of chemiluminescent
protein and fluorescent protein to
increase brightness and emission
color.
化学発光を利用した生命機能の可視化 化学と生物 49, 555-559 (2011)、回折限界を超えた超解像蛍光顕微鏡 化学 69, 21-26 (2014) Nature Methods 7, 729-732 (2010),
Science 333, 1888-1891 (2011), Nature Communications 3, 1262 (2012), Scientific Reports 3, 2629 (2013), ACS Chemical Biology 9, 1197-1203 (2014)
[email protected]
http://www.sanken.osaka-u.ac.jp/labs/bse/