B08a HSC測光的赤方偏移 -Machine Learningによる推定○西澤 淳(名古屋大学)、田中賢幸(国立天文台)、 HSC Collaboration 日本天文学会 2015年春季年会@大阪大学 2015年03月21日 1 Contents ❖ ❖ ❖ ❖ What is the Machine Learning? Random Forest ✤ method and application to the photo-z Results ✤ photo-z by Random Forest ✤ star/galaxy separation by Random Forest summary 2 機械学習(Machine Learning)とは ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ パターンの学習による予測 1950年代から発生 最初はゲームの学習 (現在も将棋、チェスなど) 1990年代中盤からphoto-zに応用 学習用データ(training set)が必要 学習用データの仕様はアルゴリズム依存 Neural Network, k-d tree, random forest, nearest neighbors, Gaussian process, … 本講演ではrandom forestを用いる 3 Random Forestの概念 データを2分木で分割、多数の木を作る root i < 22.5 y n g > 21.3 z=0.01 z=0.02 … … n … y … n … y r >24.6 … z=5.99 z=6.00 Training set を用いて、決定木を構築 bootstrapping により多数の決定木を作る=乱数の森 測光誤差も取り入れてランダムサンプルを作成 多数の決定木からPDFを構築 = photo-z 銀河モデルの仮定なしに、赤方偏移推定が可能 4 leaf TPZ(Trees for PhotoZ) 各ノードでの分類基準:分散の和が最小 S(T ) = X X (zi Kind & Bruner 2013 ẑm )2 mag or color m2values(M ) i2m redshift for training set 公開コード:MLZ (Kind & Bruner)を用いる 5 COSMOS data (ver. S14A_0b) calibration data set : • HCS data (S14A_0b) observed in S14A semester • COSMOS 30-bands photo-z(w/wo Ultra-VISTA), and zCOSMOS-bright matched with HSC sources Truncate at i<25 mag as 30-bands photo-z is not reliable beyond this (wrt zCOSMOS-faint) Totally 60,000 objects (star/gal/AGN all included) • • • Half of them are used for calibration and the rest for validation 6 COSMOS data (ver. S14A_0b) • HCS data (S14A_0) observed in S14A semester • i-band selected objects (galaxy/star/AGN not separated) • • • • force photometry for other band images Limiting mag : i 25.5 mag (5σ) Totally we have 100,000 objects Blended objects are excluded (lost 90% detected objects!) we use CModel (de Vaucauleurs + exponential) magnitude 7 photo-z results : COSMOS (S14A_0b) faint galaxies (i>22.5) HSC 5 bands photo-z HSC 5 bands photo-z bright galaxies (i<22.5) COSMOS 30 bands photo-z COSMOS 30 bands photo-z z = 0.069 ± 0.155 z = 0.060 ± 0.284 8 Clipping with PDF bright faint z_Conf clipping zConf ⌘ Z zp +a P (z)dz zp a z_Var clipping zVar ⌘ z= 0.010 ± 0.067 z= 0.001 ± 0.139 9 Z P (z) (z zp ) 2 68 dz ready for Weak Lensing? - criterion for selecting bg galaxies Z CDF ⌘ P (z > z0 ) = dzP (z) > 0.8 or zp > z0 + z0 contamination - fraction of fg galaxies in the bg subsample selected via photo-z (mean or CDF) - may bring the WL dilution completeness completeness contamination - fraction of lost bg galaxies not selected as bg by Δmean z photo-z (mean or CDF) - may reduce the statistical power (shot noise) cluster redshift z0 10 star galaxy separation? 11 star/galaxy separation { galaxy -> etrue=1 star -> etrue=0 Training set : based on COSMOS color and ACS image (Ilbert et al. 2009, Leauthaud et al 2007) magnitudes , colors , and size e=0, or 1 ? 12 銀河サンプルの品質評価 • For galaxy (sub)sample, contamination by stars is pretty low: <1% for bright and <4% even for faint. • e=1, we loose 30% objects but e>0.95, 100% completeness • e>0.95 seems optimal for picking up galaxies. 13 星サンプルの品質評価 • For star (sub)sample, contamination by galaxies is considerable: <1% for bright but <15% for faint. • Even e<0.2, 70%(30%) completeness for bright (faint) • Data (reduction) quality should be upgraded: e.g. PSF measurement 14 real images of stars/galaxies HSC r-i-z composite image correctly identified stars no no image image misidentified galaxies (stars in reality) no image correctly identified galaxies 20 21 22 23 15 24 25 (i-band magnitude) summary • ML(機械学習)はphoto-z推定に利用可能 • MLは 銀河/星/AGN などのテンプレートに依存しないため、テンプレー トフィットを用いる手法とは相補的 • photo-z精度は15%(bright), 28%(faint)だが、振る舞いの悪い銀河を クリッピングすれば7%(bright), 14%(faint)まで向上 • photo-zによる背景銀河選出はz<1のclusterに対してpure sample(contami.<4%, Δz <5%)が得られるが、30%程度のロス • MLを星/銀河 分離にも応用 • 銀河選出には非常に強力(<1%のcontamination rate でほぼ全ての銀河 を選出可能) • 明るい星選出には強力だが、暗い星には銀河のcontamination 15% 16
© Copyright 2025 ExpyDoc