RTII Vorlesung 3 08.03.2016 1 Recap: loop shaping of simple systems • Plant inversion 2 Recap: loop shaping of nonminimumphase systems • No plant inversion possible • Small crossover frequency 3 Recap: loop shaping of unstable systems • No plant inversion possible • Find stabilizing controller using Nyquist theorem 4 Vorlesung 3 Thema Prädiktive Regelung und Robuste Regelgüte Lernziele Sie können einen Regler für eine Strecke mit grosser Totzeit auslegen. Sie können die Struktur eines prädiktiven Reglers aufzeichnen. Sie können für ein gegebenes System die Robuste Regelgüte rechnerisch überprüfen (von Hand bei einer Frequenz). Sie können die Robuste Regelgüte grafisch im Nyquist- und Bodediagramm überprüfen. Buch: Kapitel 10.4.3, 11.6 Für nächste Woche: Kapitel 13.2 Ablauf 5’ Recap 50‘ Prädiktive Regelung 35‘ Robuste Regelgüte Vorlesungsplan 23.02. 01.03. 08.03. 15.03. Lektion Lektion Lektion Lektion SISO Reglersynthese 1 – Loop shaping II 2 – Prüfungsnachbesprechung 3 – Robuste Regelgüte, Prädiktive Regelung 4 – Kaskadierte Regelung, Ball on Wheel (BoW) Reglerimplementation 22.03. 05.04. Lektion 5 – Echter PID, Gain scheduling, Emulation Lektion 6 – Aliasing, Anti-reset windup, BoW 12.04 19.04. 26.04. MIMO Systemanalyse Lektion 7 – MIMO Einführung Lektion 8 – Singulärwerte Lektion 9 – Frequenzgang MIMO Reglersynthese 03.05. 10.05. 17.05. 24.05. 31.05. Lektion 10 – Zustandsrückführung (LQR), BoW Lektion 11 – Finite horizon LQR, Model Predictive Control (MPC) Lektion 12 – Zustandsbeobachter Lektion 13 – Ausgangsrückführung (LQG, LTR) Lektion 14 – Fallstudien, Prüfungsvorbereitung 6 Predictive Control Plants with substantial delay 𝑇Τ 𝑇 + 𝜏 > 0.3 SISO control scheme 7 Recap: time delay 8 Recap: time constant vs. time delay Pure time constant Pure time delay 9 Frequency response of 𝑒 𝑢 𝑡 = cos 2𝜋 ⋅ 𝑓 ⋅ 𝑡 Excitation frequency Response amplitude −𝑠 Response phase 0.1 Hz 1 Hz 10 Hz Σ 𝑠 = 𝑒 −𝑠 10 Predictive controllers Indication: when to use a predictive controller? • 𝑇Τ 𝑇 + 𝜏 > 0.3 𝑇 Totzeit 𝜏 Zeitkonstante Limits: what can be achieved by the use of a predictive controller? • The prediction allows to design the controller for the plant without delay, i.e., with much less phase drop. • The delay cannot be removed by a predictor! Every transfer function (𝑇, 𝑆) is affected by the same delay as the plant. Prerequisites: when can a predictive controller be used? • The plant must be asymptotically stable. • A good model of the plant must be available. 11 Smith predictor The idea of a predictive controller is to use a linear model of the plant, which gives access to the non-delayed plant output 𝑦ො𝑟 (𝑡). The feeback signal is the sum of the non-delayed plant output 𝑦ො𝑟 𝑡 and the correction signal 𝜖, which represents the difference between 𝑦(𝑡) and 𝑦(𝑡). ො 12 Example Goal: Design a controller for the plant described by 0.5 𝑃 𝑠 = 2 ⋅ 𝑒 −𝑠 𝑠 + 2𝑠 + 1 13 Controller w/o prediction The fast drop of the phase due to the delay prevents a high bandwith. 14 Controller w/ prediction Withouth the delay, the controller can be designed much faster. 15 Controller comparison Advantages of prediction Disadvantages of prediction 16 Model accuracy If the time delay in the internal model is not accurate, the Smith predictor performs very poorly. 17 Robust Performance Nominal performance Robust Nyquist theorem Sensitivity Complementary sensitivity 18 Recap: uncertainty and the Nyquist theorem 1 + 𝐿 𝑗𝜔 > 𝐿 𝑗𝜔 ⋅ 𝑊2 𝑗𝜔 ∀ 𝜔 ∈ 0, ∞ 19 Robust Nyquist The robust Nyquist theorem represents can be interpreted as upper bound for the complementary sensitivity: or 20 Recap: sensitivity and performance The sensitivity 𝑆 𝑠 is the transfer function from 𝑟 → 𝑒 and from 𝑑 → 𝑦. Small sensitivity = good performance 21 Nominal performance A good performance condition would be an upper bound for the sensitivity: or 22 Nominal performance The nominal performance condition can be translated for the Nyquist diagram: 23 Robust performance Robust performance represents a combination of the robust Nyquist theorem and the nominal performance condition. 24
© Copyright 2025 ExpyDoc