JAEA-Data-Code-2015-022:3.31MB

JAEA-Data/Code
2015-022
DOI:10.11484/jaea-data-code-2015-022
Data Report of ROSA/LSTF Experiment SB-HL-12
-1% Hot Leg Break LOCA with SG Depressurization
and Gas Inflow-
Takeshi TAKEDA
Reactor Safety Research Division
Nuclear Safety Research Center
Sector of Nuclear Safety Research and Emergency Preparedness
January 2016
Japan Atomic Energy Agency
日本原子力研究開発機構
本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。
本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。
なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp)
より発信されています。
国立研究開発法人日本原子力研究開発機構 研究連携成果展開部 研究成果管理課
〒319-1195 茨城県那珂郡東海村大字白方 2 番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:[email protected]
This report is issued irregularly by Japan Atomic Energy Agency.
Inquiries about availability and/or copyright of this report should be addressed to
Institutional Repository Section,
Intellectual Resources Management and R&D Collaboration Department,
Japan Atomic Energy Agency.
2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:[email protected]
© Japan Atomic Energy Agency, 2016
JAEA-Data/Code 2015-022
JAEA-Data/Code 2015-022
Data Report of ROSA/LSTF Experiment SB-HL-12
-1% Hot Leg Break LOCA with SG Depressurization and Gas Inflow-
Takeshi TAKEDA
Reactor Safety Research Division
Nuclear Safety Research Center
Sector of Nuclear Safety Research and Emergency Preparedness
Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken
(Received November 24, 2015)
An experiment SB-HL-12 was conducted on February 24, 1998 using the Large Scale Test
Facility (LSTF) in the Rig of Safety Assessment-V (ROSA-V) Program. The ROSA/LSTF
experiment SB-HL-12 simulated a 1% hot leg small-break loss-of-coolant accident in a
pressurized water reactor under assumptions of total failure of high pressure injection system
and non-condensable gas (nitrogen gas) inflow to the primary system from accumulator
(ACC) tanks of emergency core cooling system (ECCS). Steam generator (SG)
secondary-side depressurization by fully opening the relief valves in both SGs as an accident
management (AM) action was initiated immediately after maximum surface temperature of
simulated fuel rod reached 600 K. Auxiliary feedwater injection into the secondary-side of both
SGs was started immediately after the initiation of AM action.
After the onset of AM action due to first core uncovery by core boil-off, the primary pressure
decreased following the SG secondary-side pressure, causing core mixture level swell. The
fuel rod surface temperature then increased up to 635 K. Second core uncovery by core
boil-off took place before loop seal clearing (LSC) induced by steam condensation on ACC
coolant injected into cold legs. The core liquid level recovered rapidly after the LSC. The fuel
rod surface temperature then increased up to 696 K. The pressure difference became larger
between the primary and SG secondary sides after the ACC tanks started to discharge
nitrogen gas, which resulted in no actuation of LPI system of ECCS during the experiment.
Third core uncovery by core boil-off occurred during the reflux condensation in the SG
U-tubes under nitrogen gas inflow. The core power was automatically decreased by the LSTF
core protection system when the maximum fuel rod surface temperature exceeded 908 K.
The obtained data would be useful to define the conditions for counterpart testing of other
integral test facilities to address scaling problems through thermal-hydraulic phenomena.
This report summarizes the test procedures, conditions and major observation in the
ROSA/LSTF experiment SB-HL-12.
Keywords: PWR, LSTF, Small Break LOCA, Accident Management, Steam Generator
Depressurization, Gas Inflow, Steam Condensation, Core Uncovery, Core Boil-off,
Loop Seal Clearing
i
JAEA-Data/Code 2015-022
-$($'DWD&RGH
526$/67) 実験 6%+/ データレポート
-ガスが流入する条件での1%高温側配管小破断冷却材喪失事故時蒸気発生器減圧-
日本原子力研究開発機構安全研究・防災支援部門
安全研究センター原子炉安全研究ディビジョン
竹田武司
年 月 日受理
526$9 計画において、大型非定常実験装置/67)を用いた実験実験番号6%+/が
年 月 日に行われた。526$/67)6%+/ 実験では、加圧水型原子炉の1%高温側
配管小破断冷却材喪失事故を模擬した。このとき、非常用炉心冷却系(&&6である高圧注入
系の全故障とともに、蓄圧注入系$&&タンクから一次系への非凝縮性ガス窒素ガスの流入
を仮定した。また、アクシデントマネジメント$0策として両ループの蒸気発生器6*逃し
弁全開による 6* 二次側減圧を模擬燃料棒表面最高温度が . に到達直後に開始し、両ルー
プの 6* 二次側への補助給水は $0 策直後に開始した。
一回目のボイルオフによる炉心露出に起因した $0 策開始後、6* 二次側圧力の低下にした
がって一次系圧力は低下したため、炉心二相混合水位は上昇し、燃料棒表面温度は . まで
の上昇にとどまった。低温側配管内での $&& 水と蒸気の凝縮に誘発されたループシールクリ
アリング/6&前に、二回目のボイルオフによる炉心露出が生じた。/6& 後速やかに炉心水位
は回復し、燃料棒表面温度は . までの上昇にとどまった。$&& タンクから一次系へ窒素ガ
スが流入を開始後、一次系と 6* 二次側の圧力差が大きくなったため、(&&6 である低圧注入
系は実験中に作動しなかった。窒素ガス流入下における 6* 伝熱管でのリフラックス凝縮時に、
三回目のボイルオフによる炉心露出が生じた。燃料棒表面最高温度が . を超えたとき、
/67) 炉心保護系により炉心出力は自動的に低下した。
取得したデータは、熱水力現象のスケーリングに対する課題に対処するための他実験施設
との相互参照実験の条件設定に役立てることができる。
本報告書は、526$/67)6%+/ 実験の手順、条件および実験で観察された主な結果をま
とめたものである。
原子力科学研究所:〒 茨城県那珂郡東海村大字白方 ii
JAEA-Data/Code 2015-022
Contents
1.
Introduction ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
2.
Overview of LSTF
3.
Test Conditions and Procedures ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2
3.1
Initial Steady State and Boundary Conditions ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
3.2
Test Procedures ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・4
3.3
Instrumentation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.3.1 Measured Data ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.3.2 Data Conversion, Reduction and Calibration ・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.3.3 Data Qualification ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・6
4.
Experimental Results
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.1
Initial and Boundary Conditions ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.2
Thermal-hydraulic Responses Concerning Boundary Conditions ・・・・・・・・・・・・・12
4.3
Transient Thermal-hydraulic Responses ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
4.3.1 Thermal-hydraulic Responses in Pressure Vessel ・・・・・・・・・・・・・・・・・・・・・・14
4.3.2 Thermal-hydraulic Responses in Primary Loops ・・・・・・・・・・・・・・・・・・・・・・・・15
4.3.3 Thermal-hydraulic Responses of Steam Generators ・・・・・・・・・・・・・・・・・・・・16
5.
Summary
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
Acknowledgements ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
References ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
Appendix A
Available Experimental Data List ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
iii
JAEA-Data/Code 2015-022
目 次
1.
緒 言
2.
/ 6 7 )の概要
3.
実験条件および手順
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・1
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・2
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
3.1
初期定常および境界条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3
3.2
実験手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・4
3.3
計 装 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.3.1 計測データ
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
3.3.2 データ変換、処理および校正
3.3.3 データ評価
4.
実験結果
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・6
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.1
初期および境界条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.2
境界条件に係る熱水力応答 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.3
過渡熱水力応答 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
4.3.1 圧力容器内の熱水力応答 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
4.3.2 一次系ループ内の熱水力応答 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・15
4.3.3 蒸気発生器の熱水力応答 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・16
5.
まとめ
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
謝 辞 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
付録 A 利用可能な実験データリスト ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
iv
JAEA-Data/Code 2015-022
List of Tables
Table 3-1
Initial steady state and boundary conditions
Table 3-2
Specified control logic, operation set points and conditions
Table 3-3
Specified pump rotation speed ratio after scram signal generation ・・・・・・・・・10
Table 3-4
Pre-determined core power decay curve after scram signal generation ・・・・・10
Table 4-1
Initial steady-state conditions ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
Table 4-2
Chronology of major events until break valve closure
Table A-1
List of available experimental data for LSTF SB-HL-12 ・・・・・・・・・・・・・・・・・・・39
・・・・・・・・・・・・・・・・・・・・・・・・・・・・7
・・・・・・・・・・・・・・・9
・・・・・・・・・・・・・・・・・・・・18
List of Figures
Fig. 2-1
Schematic view of the Large Scale Test Facility (LSTF)
Fig. 3-1
Configuration of break unit
Fig. 4-1
Core power
Fig. 4-2
Pressurizer heater power ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
Fig. 4-3
Pressurizer liquid level ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
Fig. 4-4
Primary coolant pump rotation speed
Fig. 4-5
Primary loop mass flow rate
Fig. 4-6
SG main steam flow rate
Fig. 4-7
SG main feedwater flow rate
Fig. 4-8
SG secondary-side collapsed liquid level
Fig. 4-9
Auxiliary feedwater flow rate
・・・・・・・・・・・・・・・・・・・・2
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・19
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
Fig. 4-10
Break flow rate
Fig. 4-11
Liquid level in accumulator tank
Fig. 4-12
Coolant injection flow rate from accumulator tank
Fig. 4-13
Primary and secondary pressures
Fig. 4-14
SG relief valve line flow rate
Fig. 4-15
Upper plenum collapsed liquid level
Fig. 4-16
Core collapsed liquid level
Fig. 4-17
Core exit temperature
Fig. 4-18
Fuel rod surface temperatures at Positions 9 through 5 (-363 to 4500 s) ・・・・28
Fig. 4-19
Fuel rod surface temperatures at Positions 9 through 5 (1000 to 2000 s) ・・・・28
Fig. 4-20
Downcomer collapsed liquid level
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
Fig. 4-21
Upper-head differential pressure
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
Fig. 4-22
Hot leg liquid level
Fig. 4-23
Hot leg fluid temperature
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
・・・・・・・・・・・・・・・・・・・・・・・25
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・25
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30
v
JAEA-Data/Code 2015-022
Fig. 4-24
Cold leg liquid level ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・31
Fig. 4-25
Cold leg fluid temperature ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・31
Fig. 4-26
Collapsed liquid level in crossover leg downflow-side ・・・・・・・・・・・・・・・・・・・・・32
Fig. 4-27
Collapsed liquid level in crossover leg upflow-side ・・・・・・・・・・・・・・・・・・・・・・・・32
Fig. 4-28
Collapsed liquid level in SG U-tube upflow-side in loop-A ・・・・・・・ ・・・・・・・・・・・33
Fig. 4-29
Collapsed liquid level in SG U-tube downflow-side in loop-A ・・・・・・・・・・・・・・・・33
Fig. 4-30
Collapsed liquid level in SG U-tube upflow-side in loop-B ・・・・・・・・・・・・・・・・・・34
Fig. 4-31
Collapsed liquid level in SG U-tube downflow-side in loop-B ・・・・・・・・・・・・・・・・34
Fig. 4-32
SG inlet plenum collapsed liquid level ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・35
Fig. 4-33
SG secondary-side fluid temperature in loop-A ・・・・・・・・・・・・・・・・・・・・・・・・・・・36
Fig. 4-34
SG secondary-side fluid temperature in loop-B ・・・・・・・・・・・・・・・・・・・・・・・・・・・36
Acronyms and Abbreviations
ACC
Accumulator
AFW
Auxiliary Feedwater
AM
Accident Management
ECCS
Emergency Core Cooling System
HPI
High Pressure Injection
LPI
Low Pressure Injection
LSC
Loop Seal Clearing
LSTF
Large Scale Test Facility
PKL
Primӓrkreislӓufe Versuchsanlage (primary coolant loop test facility)
PWR
Pressurized Water Reactor
PZR
Pressurizer
ROSA
Rig-of-Safety Assessment
RV
Relief Valve
SBLOCA
Small-break Loss-of-coolant Accident
SG
Steam Generator
vi
JAEA-Data/Code 2015-022
1.
Introduction
Steam generator (SG) secondary-side depressurization, by means of steam discharge
through the SG valves, is one of major accident management (AM) measures to cool and
depressurize the primary system because of steam condensation in the SG U-tubes during a
small-break loss-of-coolant accident (SBLOCA) in a pressurized water reactor (PWR). A
simulation experiment SB-HL-12 on a PWR hot leg SBLOCA with a break size of 1% was
conducted on February 24, 1998 using the Large Scale Test Facility (LSTF) [1] of
Rig-of-Safety Assessment-V (ROSA-V) Program. The LSTF simulates a Westinghouse-type
four-loop 3423 MW (thermal) PWR by a full-height and 1/48 volumetrically-scaled two-loop
system.
The break was located at the bottom of hot leg in loop without pressurizer (PZR). Total
failure of high pressure injection (HPI) system of emergency core cooling system (ECCS) and
loss of off-site power concurrent with the scram were assumed as the experimental
conditions. SG secondary-side depressurization by fully opening the relief valves (RVs) in
both SGs as an accident management (AM) action was initiated immediately after maximum
surface temperature of simulated fuel rod reached 600 K. The onset timing of AM measure
was considered focusing on core uncovery and heatup. Auxiliary feedwater (AFW) injection
into the secondary-side of both SGs was started immediately after the initiation of AM action.
As for the ECCS conditions, accumulator (ACC) and low pressure injection (LPI) flow rate
was 2:2 to cold legs in loops with and without PZR, respectively. Non-condensable gas
(nitrogen gas) inflow to the primary system from ACC tanks was assumed due to failure of the
ACC system isolation after the coolant injection initiation.
The objectives of ROSA/LSTF experiment SB-HL-12 are to investigate thermal-hydraulic
phenomena during hot leg SBLOCA with SG secondary-side depressurization as the AM
action and to confirm the effectiveness of the AM action for core cooling under
non-condensable gas inflow, as well as to provide experimental data for the assessment of
thermal-hydraulic safety analysis computer codes. The obtained data would be useful to
define the conditions for counterpart testing of other integral test facilities such as PKL
(Primӓrkreislӓufe Versuchsanlage) [2] with different volumetric scaling and pressure from the
ROSA/LSTF to address scaling problems through thermal-hydraulic phenomena.
This report summarizes the test procedures, conditions and major observation in the
ROSA/LSTF experiment SB-HL-12. All the experimental data were processed carefully and
qualified to obtain the possible best accuracy.
-1-
JAEA-Data/Code 2015-022
2.
Overview of LSTF
Figure 2-1 shows a schematic view of the LSTF that simulates a typical 3423 MW (thermal)
four-loop Westinghouse-type PWR with a two-loop system model by full height and 1/48 in
volume [1]. The reference PWR is Tsuruga Unit-2 of Japan Atomic Power Company. Hot and
cold legs, 207 mm in inner diameter, are sized to conserve the volumetric scale (2/48) and the
ratio of length to square root of pipe diameter to better simulate flow regime transitions in the
primary loops [3]. Each loop has an active SG with 141 full-size U-tubes (inner-diameter of
19.6 mm each), inlet and outlet plena, boiler section, steam separator, steam dome, steam
dryer, main steam line, four downcomer pipes and other internals (see pp.260-273 in Ref. [1]).
Six U-tubes are instrumented for each SG. Tubes 1 and 6 are short tubes (Type 1; see p.267
in Ref. [1], Tubes 3 and 4 are long tubes (Type 9), and Tubes 2 and 5 are medium-long tubes
(Type 5). The LSTF represents the reference PWR bypasses including eight upper-head
spray nozzles (inner-diameter of 3.4 mm each) (see p.202 in Ref. [1]) and the hot leg nozzle
leakage. The spray nozzles allow bypass flow that amounts to 0.3% of the total core flow rate
during initial steady-state, while bypass area of the hot leg nozzle is set to allow 0.2% bypass
flow for each loop. The LSTF core, 3.66 m in active height, mainly consists of 1008 electrically
heater rods to simulate the fuel rod assembly and 96 non-heating tie rods to simulate control
rod guide thimble (see p.220 in Ref. [1]). Radial peaking factors of high-, mean- and
low-power rod bundles are 1.51, 1.00 and 0.66, respectively. Axial core power profile is a
9-step chopped cosine with a peaking factor of 1.495. All the types of ECCS furnished to the
reference PWR are equipped in the LSTF.
Pressurizer
10m High
Steam
Generator
141 U-tubes
29 m
Accumulator
Hot
Leg
Pressure
Vessel
Cold Leg
Fig. 2-1
Primary
Coolant
Pump
Schematic view of the Large Scale Test Facility (LSTF)
-2-
JAEA-Data/Code 2015-022
3.
Test Conditions and Procedures
Following assumptions were posed to the test conditions;
1) Break size (flow area) is 1% cold leg break by using a 10.1 mm inner-diameter sharp-edge
orifice downwardly mounted flush with the hot leg inner surface.
2) Loss of off-site power concurrent with the scram
3) Total failure of HPI system
4) SG secondary-side depressurization by fully opening the RVs in both SGs as AM action,
being initiated immediately after maximum fuel rod surface temperature reaches 600 K
5) AFW injection into the secondary-side of both SGs, being started immediately after the
initiation of AM action
6) ACC and LPI flow rate is 2:2 to cold legs in loops with and without PZR, respectively.
7) Non-condensable gas inflow to the primary system from ACC tanks due to failure of the
ACC system isolation after the coolant injection initiation
8) Following thresholds of maximum fuel rod surface temperature for the LSTF core
protection and power controlling system
908K=75%, 918K=50%, 919K=25%, 920K=10%, 923K=0%, of pre-determined value [4].
3.1
Initial Steady State and Boundary Conditions
The specified initial steady state and boundary conditions are listed in Table 3-1. Initial
steady-state conditions such as PZR pressure, fluid temperatures in hot and cold legs were
15.5 MPa, 599 K and 564 K, respectively, according to the reference PWR conditions.
The LSTF initial core power is limited to 10 MW due to a limitation in the capacity of power
supply and corresponds to 14% of the volumetrically-scaled (1/48) PWR nominal core power
(3423 MW). To attain the prototypical initial fluid temperatures with this core power, core flow
rate was set to 14% of the scaled nominal flow rate. Initial SG secondary pressure was raised
to 7.3 MPa to limit the primary-to-secondary heat transfer rate to 10 MW, while 6.1 MPa is
nominal value in the reference PWR. Initial SG secondary-side collapsed liquid level was
about 10.2 m that corresponds to the medium tube height.
Proportional heaters in the PZR are used to trim the pressure, while backup heaters to
mitigate system heat losses. Powers to the proportional and backup heaters were 3.6 and
33.0 kW, respectively, as the initial conditions. Many regions of the LSTF are equipped with
trace heaters to mitigate environmental heat losses.
Figure 3-1 shows the configuration of the break unit. The distance from the center of the
pressure vessel to the center of the break unit at the hot leg in loop without PZR (loop-B) is
2215 mm (see pp.397-398 in Ref. [1]). The break was simulated by using a 10.1 mm
inner-diameter sharp-edge orifice No.10 (see p.308 in Ref. [1]), downwardly mounted flush
-3-
JAEA-Data/Code 2015-022
with the hot leg inner surface. The orifice flow area corresponded to 1% of the
volumetrically-scaled cross-sectional area of the reference PWR cold leg. Venturi flow meter
(FE-570-BU; see p.303 in Ref. [1]) is installed in the break unit.
Initial volume of non-condensable gas (nitrogen gas) in the ACC tank is 0.95 m 3 for both
loops. Initial water level and volume above the standpipe for the control of ACC water injection
volume (see p.322 in Ref. [1]) are 1.58 m and 1.12 m3 respectively for both loops. The angle
of the ACC injection to cold leg is 90° for loop with PZR (loop-A) and 45° for loop without PZR
(loop-B) (see pp.397-398 in Ref. [1]).
3.2
Test Procedures
Table 3-2 shows the specified control logic, operation set points and conditions. The test
was initiated by opening a break valve located downstream of the break orifice at time zero. At
the same time, rotation speed of primary coolant pumps was increased up to 1500 rpm in 4 s
for better simulation of pressure and temperature transients in the reference PWR.
The scram signal was generated when the primary pressure dropped to 12.97 MPa,
causing the closure of SG main steam isolation valves, the termination of SG main feedwater
and the coastdown of primary coolant pumps. Table 3-3 shows the specified rotation speed
ratio of primary coolant pump after the scram signal generation. The pump rotation speed was
decreased to zero 250 s after the scram.
Table 3-4 shows the pre-determined core power decay curve after the scram signal
generation based on calculations considering delayed neutron fission power and stored heat
in PWR fuel rod [4]. The core power was maintained at the initial value of 10 MW for 18 s after
the scram signal until the scaled PWR core decay power dropped to 10 MW. The LSTF core
power started to decay afterwards according to the specified core power.
Set point pressures for opening and closure of the SG RVs are 8.03 and 7.82 MPa
respectively, referring to the corresponding values in the reference PWR. Flow area of the
RVs was simulated by using a 16.2 mm inner-diameter sharp-edge orifice to provide steam
flow rate of 2 kg/s when secondary pressure is 8 MPa.
AFW flow rate in each loop was planned to be about 0.4 kg/s to avoid significant drop in the
SG secondary-side liquid level after the SG secondary-side depressurization. The AFW is
injected monitoring the narrow-range (0-1 kg/s) feedwater flow rate [Tag Name; FE520B-PAA
(for loop with PZR), FE530B-PAB (for loop without PZR)] (see pp.257-258 in Ref. [1]).
ACC and LPI systems are actuated at the primary pressure of 4.51 MPa and at the
pressure vessel lower plenum pressure of 1.2 MPa, respectively. Coolant injection
temperatures in the ACC and LPI systems are 320 and 310 K, respectively.
-4-
JAEA-Data/Code 2015-022
3.3
Instrumentation
Instruments are equipped in the LSTF to understand and evaluate thermal-hydraulic
responses during simulated accidents and transients.
3.3.1
Measured Data
A list of available experimental data is to be shown in Table A-1, which is composed of
Sequential No., Function ID., Tag Name, measurement location, range, unit and uncertainty.
The Tag Name is a fixed naming unique to each measurement. The alphabetical prefix in the
Function ID. and Tag Name represent the kind of variable or the kind of measurement as
follows;
TE, fluid temperature,
DT, differential temperature,
TW, heater rod and structure temperature,
FE, flow rate measured with conventional (differential pressure) flow meters,
PE, pressure,
MI, miscellaneous instrumented-signal (power, pump rotation speed, etc.),
LE, liquid level,
DP, differential pressure,
CP, conductance probe signal,
MF, momentum flux with drag disk,
DE, fluid density with gamma-ray densitometer.
The values of the conductance probe “CP” output are invalid. Data from these
measurements are processed after the experiment to obtain the “secondary” data such as
area-averaged fluid density derived from measurement with three-beam gamma-ray
densitometer. These data are stored with Function ID. starting with a prefix of “RC”.
3.3.2
Data Conversion, Reduction and Calibration
The instrumented-signals are recorded in volts by the data logger of DARWIN system
(Yokogawa Electric Co.) and are converted into engineering units using appropriate
conversion equations and factors. Some parameters such as flow rate (FE) and liquid level
(LE) that employ differential pressure (DP) cell data require the calculation of the single-phase
coolant density based on local pressure and fluid temperature data using steam table.
DP cell data for both the differential pressures and liquid levels are corrected based on a
similar calibration test for static pressure effect. Three-valve manifold is operated for each of
DP cells to obtain zero calibration data for 200 s twice at a little before the break valve
-5-
JAEA-Data/Code 2015-022
opening and at a little after the closure of the break valve.
The applicability of flow rates measured with the conventional flow meters using venturi,
orifice or nozzle and DP cell is limited in principle to either single-phase liquid or vapor flow. In
addition, the accuracy is poor when the readings are below about 20% of the measurement
range, because the flow rate is proportional to the square root of the measured DP. For
example, a zero level drift of 1% in the DP cell output may result in the flow rate reading of
10% of the measurement range especially when the actual flow rate is nearly equal to zero. It
is thus good to pay attention when the flow rate is below about 20% of the measurement
range even though the data are corrected based on a calibration test for static pressure effect.
Two-phase flow instruments such as gamma-ray densitometers use certain conversion
equations considering attenuation effects of gamma-ray that goes through coolant flow.
After the data acquisition, some experimental data are calibrated. The high-range pressure
data in the PZR and the upper plenum, for example, are corrected based on a zero level shift
using the low-range pressure data first, and then all the density data are calibrated at two
points with different fluid conditions.
3.3.3
Data Qualification
The experimental data are qualified manually. Thermocouple data are reviewed by using
pre-test ambient temperature data for anomalous readings and are mutually compared with
readings of instruments in the same vicinity. Pressure transducers are checked for zero level
drift as well as any other suspicious behaviors. The outputs of conductance probe, power
meters, pump speed and vibration meters and valve position indicators are individually
reviewed for inconsistent readings.
The flow meters, DP transducers, gamma-ray densitometers and drag disk transducers
require extensive manual qualification efforts. The validity of the flow meters and differential
pressure data mostly depends on whether the reading is in the sensitive range of the
measurement or not. The data from these instruments are presented with appropriate
corrections based on calibration data for each transducer.
Available experimental data are “Good” defined as follows. “Good” means that the type of
data has been reviewed manually and is presumed to lie within the published span and
uncertainty values. Certain measurements, however, may be affected by various extraneous
factors such as flow velocity, flow regime and wall effects. Table A-1 shows the list of
available experimental data qualified as “Good” for LSTF SB-HL-12 (Run ID designated to be
SHC).
-6-
JAEA-Data/Code 2015-022
Table 3-1
Initial steady state and boundary conditions (1/2)
Initial core power
10 MW
Core power profile
Case 3
(9-step chopped cosine,
peaking factor = 1.495)
Initial hot leg fluid temperatures
598.1 K
Primary
Initial cold leg fluid temperatures
562.4 K
Loops
Initial mass flow rate
24.3 kg/s / loop
Initial downcomer-to-hot leg bypass
0.049 kg/s / loop
Initial pressure
15.5 MPa
Initial liquid level
7.2 m
Pressurizer
Inner diameter of relief valve orifice
6.85 mm
(PZR)
Relief valve open / closure
Primary pressure =
16.20 / 16.07 MPa
14.4 mm
Core
Inner diameter of safety valve orifice
Safety valve open / closure
Primary pressure =
17.26 / 17.06 MPa
Initial secondary-side pressure
7.3 MPa
Initial secondary-side liquid level
10.3 m
Initial main steam flow rate
2.74 kg/s
Steam
Initial main feedwater flow rate
2.74 kg/s
Generators
Main feedwater temperature
495.2 K
(SGs)
Inner diameter of relief valve orifice
16.2 mm
Relief valve open / closure
SG secondary-side pressure =
8.03 / 7.82 MPa
26.6 mm
Inner diameter of safety valve orifice
SG secondary-side pressure =
8.68 / 7.69 MPa
Safety valve open / closure
-7-
JAEA-Data/Code 2015-022
Table 3-1
Initial steady state and boundary conditions (2/2)
Break
Location
Hot leg in loop without PZR (loop-B)
Orientation
Downward
Type
Sharp-edge orifice mounted flush with hot leg
inner surface
10.1 mm
Inner diameter of orifice
ECCS
Water temperature
Primary pressure =
4.51 MPa
320 K
Initial water level above tank bottom in both loops
6.2 m
Standpipe level above tank bottom in both loops
4.62 m
Initial water volume above standpipe in both loops
1.12 m3*
Initial gas volume in both loops
0.95 m3
Cross-sectional flow area above standpipe
0.7085 m2
Orifice diameter (d) in loops with / w/o PZR
38.2 mm / 35.0 mm
Connecting pipe diameter (D) in both loops
97.1 mm
Contraction ratio (d/D) in loops with / w/o PZR
0.393 / 0.360
Ratio of injection flow rate in loops with / w/o PZR
2:2
Injection location
Cold legs in both loops
Initiation of system
Fluid temperature
Pressure vessel
lower plenum pressure =
1.2 MPa
310 K
Ratio of injection flow rate in loops with / w/o PZR
2:2
Injection location
Same with ACC system
Initiation of system
Accumulator
(ACC)
system
Low
pressure
injection
(LPI)
system
* (6.2 - 4.62 [m]) X 0.7085 [m2] = 1.12 [m3]
-8-
JAEA-Data/Code 2015-022
Table 3-2
Specified control logic, operation set points and conditions
Control Logic
Event
Condition
Break
Time zero
Generation of scram signal
Primary pressure = 12.97 MPa
Pressurizer (PZR) proportional heater off
PZR backup heater off
Generation of scram signal or
PZR liquid level below 2.3 m
PZR liquid level below 2.3 m
Initiation of core power decay curve simulation
Generation of scram signal
Initiation of primary coolant pump coastdown
Generation of scram signal
Turbine trip (closure of stop valve)
Generation of scram signal
Closure of SG main steam isolation valve
Generation of scram signal
Termination of SG main feedwater
Generation of scram signal
Generation of safety injection signal
Primary pressure = 12.27 MPa
SG secondary-side depressurization by fully
opening relief valves in both SGs as AM action
Initiation of auxiliary feedwater injection into
secondary-side of both SGs
Initiation of ACC system in both loops
Maximum fuel rod surface
temperature reaches 600 K.
Initiation of AM action
Initiation of LPI system in both loops
Pressure vessel lower plenum
pressure = 1.2 MPa
Primary pressure = 4.51 MPa
LSTF Core Protection System Logic
Control of core power to
75%
50%
25%
10%
0% (core power trip)
Maximum fuel rod surface temperature reaches
908 K
918 K
919 K
920 K
923 K
-9-
JAEA-Data/Code 2015-022
Table 3-3
Specified pump rotation speed ratio after scram signal generation
Time
(s)
Rotation
Speed Ratio
Time
(s)
Rotation
Speed Ratio
Time
(s)
Rotation
Speed Ratio
0
1.000
30
0.280
80
0.125
2
0.850
40
0.220
90
0.110
5
0.730
50
0.185
100
0.100
10
0.540
60
0.160
250
0.000
20
0.370
70
0.140
Table 3-4
Pre-determined core power decay curve after scram signal generation
Time
(s)
Power
(MW)
Time
(s)
Power
(MW)
Time
(s)
Power
(MW)
0
10
100
2.763
1000
1.487
18
10
150
2.423
1500
1.342
20
8.150
200
2.263
2000
1.238
30
5.366
300
2.079
3000
1.096
40
4.504
400
2.000
4000
1.003
50
3.906
500
1.913
5000
0.936
60
3.538
600
1.832
6000
0.886
80
3.042
800
1.577
- 10 -
JAEA-Data/Code 2015-022
Fig. 3-1
Configuration of break unit
- 11 -
JAEA-Data/Code 2015-022
4.
Experimental Results
4.1
Initial and Boundary Conditions
Initial steady-state conditions achieved in the experiment were in reasonable agreement
with the specified values, as shown in Table 4-1. The measured values indicated are those
averaged for the last 60 s prior to the onset of the break. Initial SG re-circulation ratio
estimated from the measured flow rates in the downcomer and SG main steam line was 6.5 in
loop with PZR (loop-A) and 6.3 in loop without PZR (loop-B). Table 4-2 shows the chronology
of major events until 4312 s at the break valve closure.
4.2
Thermal-hydraulic Responses Concerning Boundary Conditions
As shown in Fig. 4-1, the core power started to decay at 70 s. The core power was
automatically decreased by the LSTF core protection system at 4065 s when the maximum
fuel rod surface temperature exceeded 908 K (to be shown in Fig. 4-18). The core power was
controlled to 10% of the pre-determined value [4] at 4088 s immediately after the maximum
fuel rod surface temperature reached 920 K. The core power turned off at 4303 s.
Figure 4-2 shows that the power values of the PZR proportional and backup heaters were
initially kept constant at 3.6 and 33.0 kW, respectively. After the break, they began to increase
up to 8.2 and 85.0 kW and turned to zero by 52 and 54 s, respectively. The proportional
heater was powered-off because of the scram signal. The backup heater was powered-off
because of low liquid level in the PZR when the PZR liquid level became below 2.3 m (as
shown in Fig. 4-3). The PZR liquid level began to decrease immediately and monotonously
after the break. The PZR became empty of liquid by 94 s.
Figures 4-4 and 4-5 show the primary coolant pump rotation speed and the primary loop
mass flow rate measured by using a venturi flow meter at each primary coolant pump suction
leg, respectively. The pump rotation speed started to increase simultaneously with the break,
and reached about 1550 rpm in 4 s. The pump coastdown started at 52 s. The primary loop
mass flow rate decreased thereafter according to the decrease in the primary coolant pump
rotation speed. During the coolant injection by the ACC system, the primary loop mass flow
rate recovered following the recovery of primary coolant inventory. After the termination of
ACC coolant injection, the primary loop mass flow rate became to zero again, suggesting that
reflux condensation should occur in the SG U-tubes (to be shown in Figs. 4-28 through
4-31).
Figures 4-6 and 4-7 show the SG main steam and feedwater flow rates, respectively. The
SG main steam was terminated by SG main steam stop valve (AOV-220) at 50 s. The SG
main steam isolation valves (AOV-170 and -200) were manually closed at 56 s following the
closure of the main steam stop valve. The SG main feedwater was terminated by 53 s by
closing the main feedwater line valve AOV-260.
Figures 4-8 and 4-9 show the SG secondary-side collapsed liquid level and auxiliary
- 12 -
JAEA-Data/Code 2015-022
feedwater (AFW) flow rate, respectively. The SG secondary-side collapsed liquid level began
to increase after the main steam isolation valve closure and main feedwater termination (Figs.
4-6 and 4-7) probably due to the decrease in the net upward steam flow through the boiling
section. The SG secondary-side collapsed liquid level was maintained at a certain liquid level,
which is enough to cover the long U-tubes, until 1346 s when the SG secondary-side
depressurization was started. Flow meter for AFW counts flow rate in the return line from the
pump to the refueling water storage tank during the time period except the pump actuation.
The AFW injection into the secondary-side of both SGs was initiated at 1355 s, and continued
thereafter. The AFW flow rate was then about 0.32-0.34 and 0.41-0.43 kg/s respectively for
the SG-A and SG-B. The SG secondary-side collapsed liquid level started to decrease at
1346 s when the SG secondary-side depressurization was started, and turned to increase at
around 3250 and 3000 s respectively for the SG-A and SG-B because the steam discharge
flow rate through the SG RV became lower than the AFW flow rate.
Figure 4-10 shows the break flow rate derived as the differential of the time-integrated
break flow evaluated from the liquid level increase in the storage tank. The break flow rate
decreased roughly stepwise when the break flow turned from single-phase liquid to two-phase
flow at 80 s first as liquid level formed in the hot leg (to be shown in Fig. 4-22), and then to
single-phase vapor at 750 s when hot legs became empty of liquid.
The coolant injection flow rate from the ACC tank derived from the liquid level history in the
tank in Fig. 4-11 is shown in Fig. 4-12. The ACC system was initiated in both loops at 1780 s
when the primary pressure decreased to 4.51 MPa. The initial water level above the ACC tank
bottom was 6.10 and 6.09 m respectively for the loop-A and loop-B, and the final water level
above the ACC tank bottom was 4.64 and 4.63 m respectively for the loop-A and loop-B. The
ACC coolant injection, however, was intermittently performed due to the primary pressure
response (to be shown in Fig. 4-13), including the temporal stop due to the temporal increase
in the primary pressure during two time periods around 1825-1855 and 2195-2255 s.
4.3
Transient Thermal-hydraulic Responses
Figure 4-13 shows the primary and secondary pressures. The primary pressure began to
decrease at time zero when the break valve was opened. The scram signal and the safety
injection signal were generated at 48 and 80 s, respectively. The scram signal caused the
closure of SG main steam stop valve, the coastdown of primary coolant pumps and the
manual closure of SG main steam isolation valves. The SG secondary-side pressure
increased rapidly up to about 8 MPa after the closure of the main steam isolation valves. The
SG secondary-side pressure fluctuated between 8.03 and 7.82 MPa by cycle opening of the
RVs, as shown in Fig. 4-14. SG secondary-side depressurization by fully opening the RVs in
both SGs as the AM action (Fig. 4-14) was initiated at 1346 s immediately after the maximum
fuel rod surface temperature reached 600 K (to be shown in Figs. 4-18 and 4-19), and the
- 13 -
JAEA-Data/Code 2015-022
depressurization continued thereafter. After the onset of AM action, the primary pressure
decreased following the SG secondary-side pressure, resulting in the actuation of the ACC
system (Fig. 4-12). After nitrogen gas began to enter primary loops and SG U-tubes at around
2300 s, primary depressurization rate decreased implying that degradation should occur in
the condensation heat transfer in the SG U-tubes. The pressure difference increased between
the primary and SG secondary sides after around 2500 s, as shown in Fig. 4-13. The LPI
system was not actuated during the experiment because the primary pressure remained at
1.48 MPa at 4303 s of the core power off.
4.3.1
Thermal-hydraulic Responses in Pressure Vessel
Liquid level behaviors in upper plenum and core
Figures 4-15 and 4-16 respectively show the collapsed liquid levels in upper plenum and
core. The upper plenum collapsed liquid level changed in response to the hot leg liquid level
(to be shown in Fig. 4-22). First core uncovery by core boil-off took place at 1247 s after the
upper plenum became empty of liquid. After the onset of AM action, the core mixture level
swell occurred at 1358 s by the primary depressurization. The whole core was quenched by
1398 s. The liquid level once recovered in the upper plenum. The core liquid level started to
drop significantly at 1625 s after the upper plenum became voided again following depletion of
the primary coolant inventory through the break. Second core uncovery by core boil-off took
place at 1698 s before loop seal clearing (LSC) induced by steam condensation on ACC
coolant injected into cold legs (Fig. 4-12) and liquid level in the crossover leg downflow-side
dropped to the bottom (to be shown in Fig. 4-26). The core liquid level decreased temporarily
at 1780 s when the ACC system started coolant injection into the cold legs due to steam
condensation on the ACC coolant. The core liquid level started at 1823 s to recover along with
the LSC. The whole core was quenched by 1831 s. Third core uncovery by core boil-off
occurred at 3323 s after the upper plenum became empty of liquid again. The core liquid level
temporarily recovered with the start of the automatic core power reduction at 4065 s (Fig.
4-1).
Core exit and fuel rod surface temperature responses
Figure 4-17 shows fluid temperatures at the core exit measured at the center [Tag Name;
TE-EX040-B22-UCP, -B21-UCP], middle region [TE-EX040-B19-UCP, -B18-UCP] and outer
region [TE-EX040-B06-UCP, -B07-UCP] of upper core plate. The core exit temperatures were
kept saturated until around 4200 s because of condensate falling from hot leg nozzle.
Figures 4-18 and 4-19 show the surface temperatures of simulated fuel rods in high-power
bundles (B15 and B17) at Positions 9 through 5 (= respectively at 3.610 through 1.830 m
above the core bottom (= 0.0 m EL)). The arrangement of high-, mean- and low-power
bundles is presented in Ref. [1] (p.228). During the first core uncovery period, the fuel rod
surface temperatures at Positions 9 and 8 (at 3.610 and 3.048 m EL) started to increase at
- 14 -
JAEA-Data/Code 2015-022
1247 and 1312 s, and then reached 621 and 635 K, respectively. The whole core was
quenched until 1398 s. During the second core uncovery period, the fuel rod surface
temperatures at Positions 8, 9, 7, 6 and 5 (at 3.048, 3.610, 2.642, 2.236 and 1.830 m EL)
began to increase at 1698, 1716, 1723, 1755 and 1782 s, respectively. The fuel rod surface
temperatures at Positions 8, 9, 7, 6 and 5 then reached 680, 593, 696, 684 and 648 K,
respectively. The whole core was quenched until 1831 s. During the third core uncovery
period, the fuel rod surface temperatures at Positions 9, 8, 7, 6 and 5 (at 3.610, 3.048, 2.642,
2.236 and 1.830 m EL) started to increase at 3322, 3457, 3585, 3747 and 3950 s, respectively.
The core power was automatically decreased by the LSTF core protection system at 4065 s
when the maximum fuel rod surface temperature exceeded 908 K. The core power was
controlled to 10% of the pre-determined value [4] at 4088 s immediately after the maximum
fuel rod surface temperature reached 920 K, as shown in Fig. 4-1. The peak cladding
temperature was observed at Position 8 of the fuel rod when the core power control started.
The fuel rod surface temperatures at Positions 7, 6, 9 and 5 then reached 915, 843, 753 and
681 K, respectively.
Coolant behaviors in pressure vessel
Figure 4-20 shows the downcomer collapsed liquid level. Liquid level appeared in the
downcomer at about 575 s. The downcomer liquid level started to recover at about 1780 s
after the initiation of ACC coolant injection (Fig. 4-12) and began to drop significantly at about
2430 s due to the termination of ACC coolant injection.
Figure 4-21 shows the upper-head differential pressure corresponding to the collapsed
liquid level. Liquid level appeared in the upper-head at about 125 s. A gradual decrease
started in the upper-head liquid level after the initiation of SG secondary-side
depressurization.
4.3.2
Thermal-hydraulic Responses in Primary Loops
Figures 4-22 and 4-23 respectively show liquid levels and fluid temperatures in the hot legs.
The hot leg liquid level is estimated from fluid densities measured by a three-beam
gamma-ray densitometer. The hot leg fluid became saturated at 80 s almost simultaneously
with the liquid level formation in the hot leg. The hot leg liquid level was kept at around 2/3
(67%) and 7/12 (58%) of the inner diameter respectively for the loop-A and loop-B during the
time period around 250-650 s. The hot leg liquid level became close to zero when the liquid
level in the upper plenum started to drop. The hot leg fluid temperature indicated superheating
temporarily at around 1810-1860 s due to the second core uncovery. The hot leg liquid level
began to recover at 1890 s due to the ACC coolant injection (Fig. 4-12). The hot leg liquid
level ranged from around 5/12 (42%) to 3/4 (75%) and from around 1/4 (25%) to 3/4 (75%) of
the inner diameter respectively for the loop-A and loop-B during the time period around
2000-2700 s. The hot leg fluid temperature indicated superheating after about 3400 s due to
- 15 -
JAEA-Data/Code 2015-022
the third core uncovery following the empty hot leg.
Figure 4-24 and 4-25 respectively show liquid levels and fluid temperatures in the cold legs.
The cold leg liquid level is estimated from fluid densities measured by a three-beam
gamma-ray densitometer. Liquid level appeared in the cold leg at about 660 s. The cold leg
became empty of liquid at about 950 and 1100 s respectively for the loop-A and loop-B.
During the coolant injection by the ACC system (Fig. 4-12), the cold leg fluid temperature
showed subcooling with the liquid level recovery. The cold leg fluid temperature increased
after the ACC termination.
Figures 4-26 and 4-27 show the collapsed liquid levels in the crossover leg downflow-side
and upflow-side, respectively. Initial significant decrease in the liquid level in the
downflow-side for the crossover leg corresponds to that in the SG outlet plenum to the
horizontal leg level. The crossover leg downflow-side liquid level started to decrease greatly at
around 500 s for the loop-A and loop-B. After the onset of AM action, the liquid level increased
in the downflow-side and decreased in the upflow-side for the crossover leg. The LSC took
place at 1823 s due to steam condensation on ACC coolant injected into the cold legs (Fig.
4-12). The liquid level in the upflow-side for the crossover leg then decreased to near the
bottom. The liquid levels in the crossover leg downflow-side and upflow-side began to recover
at about 2450 and 2600 s, respectively.
4.3.3
Thermal-hydraulic Responses of Steam Generators
Figures 4-28 through 4-31 show the collapsed liquid levels in all the instrumented SG
U-tubes. The instrumented SG U-tubes designated as Tubes 1 and 6 are short tubes (Type 1;
see p.267 in Ref. [1], Tubes 3 and 4 are long tubes (Type 9), and Tubes 2 and 5 are
medium-long tubes (Type 5). The liquid level in the upflow-side balanced that in the
downflow-side for each instrumented SG U-tube. Difference between the liquid levels in the
upflow-side and downflow-side was almost the same for the same-length instrumented
U-tubes. Start of significant decrease in the SG U-tube liquid level was almost the same for
the loop-A and loop-B. The SG U-tubes became empty of liquid at about 500 and 570 s
respectively for the loop-A and loop-B. The liquid level decrease in the SG U-tube
downflow-side and upflow-side continued down to the crossover leg downflow-side (Fig. 4-26)
and the SG inlet plenum (Fig. 4-32), respectively.
Figure 4-32 shows the SG inlet plenum collapsed liquid level. Significant decrease in the
SG inlet plenum liquid level in the loop-B started later than in the loop-A. The SG inlet plenum
became empty of liquid at about 650 and 690 s respectively for the loop-A and loop-B. The SG
inlet plenum liquid level started to recover at about 2030 and 2075 s respectively for the
loop-A and loop-B due to an increase in the ACC flow rate (Fig. 4-12), and became empty of
liquid again at about 2635 and 2695 s respectively for the loop-A and loop-B due to the
termination of ACC coolant injection.
- 16 -
JAEA-Data/Code 2015-022
Figures 4-33 and 4-34 show the SG secondary-side fluid temperatures in the loop-A and
loop-B, respectively. Positions 1, 3, 5, 7 and 9 are located at 0.811, 2.101, 3.381, 5.941 and
8.501 m respectively above the SG U-tube bottom. The SG secondary-side fluid temperature
at Position 1 was kept subcooled until around 150 s. The SG secondary-side fluid
temperatures were kept saturated almost thereafter.
Table 4-1
Items
Initial steady-state conditions
Tag Name
Specified
Measured *1
(Loops with / w/o PZR)
(Loops with/w/o PZR)
(Loops with/w/o PZR)
WE270A-T
10.0±0.07
10.12
None
0.3
Not Measured
Hot leg fluid temperature (K)
TE020C-HLA /TE160C-HLB
598.1±2.75
598.9 / 598.6
Cold leg fluid temperature (K)
TE070C-CLA /TE210C-CLB
562.4±2.75
563.7 / 564.0
Mass flow rate (kg/s / loop)
FE020A-LSA / FE160A-LSB
24.3±1.25
24.56 / 24.33
FE010-HLA / FE150-HLB
0.049±0.01
0.049 / 0.042
Pressure (MPa)
PE300A-PR
15.5±0.108
15.52
Liquid level (m)
LE280-PR
7.2±0.25
7.22
Secondary-side pressure (MPa)
PE430-SGA / PE450-SGB
7.3±0.054
7.33 / 7.36
Secondary-side liquid level (m)
LE430-SGA / LE450-SGB
10.3±0.38
10.25 / 10.21
Steam flow rate (kg/s)
FE440-SGA / FE480-SGB
2.74±0.10
2.67 / 2.60
Main feedwater flow rate (kg/s)
FE430-SGA / FE470-SGB
2.74±0.05
2.70 / 2.67
Main feedwater temperature (K)
TE430-SGA / TE470-SGB
495.2±2.63
495.9 / 495.6
Auxiliary feedwater temperature (K)
TE880-RWST
310±2.37
309.6
Pressure (MPa)
PE650-ACC / PE660-ACH
4.51±0.054
4.53 / 4.53
Temperature (K)
TE660-ACC / TE700-ACH
320±2.3 / 2.4
312.0 / 316.1
Water level above tank bottom (m) *2
LE650-ACC / LE660-ACH
6.2±0.12/0.15
6.10 / 6.09
TE840-PL
310±2.63
310.2
Pressure vessel
Core power (MW)
Downcomer-to-upper head bypass (%)
Primary loop
Downcomer-to-hot leg bypass (kg/s)
Pressurizer (PZR)
Steam generator
Accumulator system
Low pressure injection system
Temperature (K)
*1
Averaged for 60 s (-60 to 0 s)
*2
Distance from standpipe top to tank bottom is 4.62 m.
- 17 -
JAEA-Data/Code 2015-022
Table 4-2
Chronology of major events until break valve closure
Time (s)
Event
48
50
52
53
56
70
Break valve open
Start of primary coolant pumps rotation speed increase (to 1550 rpm in 4 s)
Scram signal
Closure of SG main steam stop valve
Initiation of coastdown of primary coolant pumps
Termination of SG main feedwater
Closure of SG main steam isolation valves
Initiation of core power decay
80
Safety injection signal
300
Stop of primary coolant pumps
1247
1355
Start of increase in fuel rod surface temperature at Position 9 by core boil-off
Initiation of SG secondary-side depressurization by fully opening relief valves
in both SGs as AM action
Initiation of auxiliary feedwater injection into secondary-side of both SGs
1358
Start of core mixture level swell by primary depressurization
1369
Fuel rod surface temperature = 635 K at Position 8
1398
Whole core quench
1698
Start of increase in fuel rod surface temperature at Position 8 by core boil-off
1780
Initiation of ACC system in both loops
1823
Start of core level recovery along with loop seal clearing
1824
Fuel rod surface temperature = 696 K at Position 7
1831
Whole core quench
0
1346
1825-1855
Temporal stop of ACC system in both loops
2195-2255
Temporal stop of ACC system in both loops
2300
Termination of ACC system in both loops
2500
Start of degradation in primary depressurization after nitrogen gas inflow
3323
4303
Start of increase in fuel rod surface temperature at Position 9 by core boil-off
Start of automatic core power reduction (fuel rod surface temperature = 908 K
at Position 8)
Start of core power control to 10% of pre-determined value (fuel rod surface
temperature = 920 K at Position 8)
Core power off
4312
Break valve closure
4065
4088
- 18 -
JAEA-Data/Code 2015-022
MI
17 WE270A-T : Total Core Power
SB-HL-12(SHC)
12
10
Core Power (MW)
8
6
4
2
0
-2
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-1
Core power
- 19 -
JAEA-Data/Code 2015-022
MI
MI
24 WE280A-PR : PZR Proportional Heater
25 WE280B-PR : PZR Base Heater
SB-HL-12(SHC)
Pressurizer Heater Power (kW)
100
80
60
40
20
0
-20
-50
0
50
100
150
200
Time (s)
Fig. 4-2
LE
Pressurizer heater power
2 LE280-PR : PZR Overall Level
SB-HL-12(SHC)
Pressurizer Liquid Level (m)
8
6
4
2
0
-2
-50
0
50
100
150
Time (s)
Fig. 4-3
Pressurizer liquid level
- 20 -
200
JAEA-Data/Code 2015-022
MI
MI
1 RE010-PCA : PCA (Rotational Speed)
2 RE150-PCB : PCB (Rotational Speed)
SB-HL-12(SHC)
Pump Rotational Speed (rps)
30
25
20
15
10
5
0
-5
-50
0
50
100
150
200
250
300
350
Time (s)
Fig. 4-4
FE
FE
FE
FE
Primary coolant pump rotation speed
2
3
5
6
FE020A-LSA
FE020B-LSA
FE160A-LSB
FE160B-LSB
:
:
:
:
Primary
Primary
Primary
Primary
Loop
Loop
Loop
Loop
LSA
LSA
LSB
LSB
(High)
(Low)
(High)
(Low)
50
Primary Loop Flow Rate (kg/s)
SB-HL-12(SHC)
40
30
20
10
0
-10
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-5
Primary loop mass flow rate
- 21 -
JAEA-Data/Code 2015-022
FE
FE
18 FE440-SGA : SGA Steam Line
26 FE480-SGB : SGB Steam Line
SB-HL-12(SHC)
SG Main Steam Flow Rate (kg/s)
4
3
2
1
0
-1
-100
0
100
200
300
400
500
600
Time (s)
Fig. 4-6
FE
FE
SG main steam flow rate
13 FE430-SGA : SGA Feedwater
21 FE470-SGB : SGB Feedwater
SB-HL-12(SHC)
SG Main Feedwater Flow Rate (kg/s)
4
3
2
1
0
-1
-100
0
100
200
300
400
500
Time (s)
Fig. 4-7
SG main feedwater flow rate
- 22 -
600
JAEA-Data/Code 2015-022
LE
LE
3 LE430-SGA : SGA Wide Range
6 LE450-SGB : SGB Wide Range
SB-HL-12(SHC)
SG Secondary-side Liquid Level (m)
14
12
10
8
6
4
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-8
SG secondary-side collapsed liquid level
Auxiliary Feedwater Flow Rate (kg/s)
FE
FE
71 FE520B-PAA : Aux. Feedwater A (Low)
72 FE530B-PAB : Aux. Feedwater B (Low)
SB-HL-12(SHC)
0.6
AFW
0.5
0.4
0.3
0.2
0.1
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-9
Auxiliary feedwater flow rate
- 23 -
JAEA-Data/Code 2015-022
RC 194 IM-ST : Break Flow Supp. Tank
SB-HL-12(SHC)
10
Break Flow Rate (kg/s)
8
6
4
2
0
-2
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-10
LE
LE
Break flow rate
14 LE650-ACC : Acc-Cold Tank
15 LE660-ACH : Acc-Hot Tank
SB-HL-12(SHC)
Accumulator Tank Liquid Level (m)
6.5
6
5.5
5
4.5
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-11
Liquid level in accumulator tank
- 24 -
JAEA-Data/Code 2015-022
RC 192 DM-ACC : Acc-Cold Tank
RC 193 DM-ACH : Acc-Hot Tank
SB-HL-12(SHC)
Accumulator Flow Rate (kg/s)
6
5
4
3
2
1
0
-1
ACC
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-12
Coolant injection flow rate from accumulator tank
PE
PE
PE
13 PE300A-PR : Pressurizer (High)
19 PE430-SGA : SGA Steam Dome
21 PE450-SGB : SGB Steam Dome
16
SB-HL-12(SHC)
14
Pressure (MPa)
12
10
8
6
4
2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-13
Primary and secondary pressures
- 25 -
JAEA-Data/Code 2015-022
SG Relief Valve Line Flow Rate (kg/s)
FE
FE
19 FE450-SGA : SGA Relief Valve Line
27 FE490-SGB : SGB Relief Valve Line
SB-HL-12(SHC)
2.5
2
1.5
1
0.5
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-14
SG relief valve line flow rate
Upper Plenum Collapsed Liquid Level (m)
RC 140 CL-UP : Upper Plenum (EL.4060 - 6135)
SB-HL-12(SHC)
4
3
2
1
0
-1
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-15
Upper plenum collapsed liquid level
- 26 -
JAEA-Data/Code 2015-022
RC
139 CL-CORE : Core (EL.-35 - 3945)
SB-HL-12(SHC)
Core Collapsed Liquid Level (m)
7
6
5
4
3
2
1
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-16
TE
TE
TE
TE
TE
TE
167
155
162
161
158
154
Core collapsed liquid level
TE-EX040-B22-UCP
TE-EX040-B21-UCP
TE-EX040-B19-UCP
TE-EX040-B18-UCP
TE-EX040-B06-UCP
TE-EX040-B07-UCP
:
:
:
:
:
:
Above
Above
Above
Above
Above
Above
Upper
Upper
Upper
Upper
Upper
Upper
Core
Core
Core
Core
Core
Core
Plate
Plate
Plate
Plate
Plate
Plate
650
Core Exit Temperature (K)
SB-HL-12(SHC)
600
550
500
450
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-17
Core exit temperature
- 27 -
JAEA-Data/Code 2015-022
TW
TW
TW
TW
TW
339
340
341
753
759
TWE-B17445
TWE-B17446
TWE-B17447
TWE-B15448
TWE-B17449
:
:
:
:
:
B17
B17
B17
B15
B17
Rod(4,4)
Rod(4,4)
Rod(4,4)
Rod(4,4)
Rod(4,4)
Pos.5
Pos.6
Pos.7
Pos.8
Pos.9
Fuel Rod Surface Temperature (K)
1000
SB-HL-12(SHC)
900
800
700
600
500
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-18
Fuel rod surface temperatures at Positions 9 through 5 (-363 to 4500 s)
TW
TW
TW
TW
TW
339
340
341
753
759
TWE-B17445
TWE-B17446
TWE-B17447
TWE-B15448
TWE-B17449
:
:
:
:
:
B17
B17
B17
B15
B17
Rod(4,4)
Rod(4,4)
Rod(4,4)
Rod(4,4)
Rod(4,4)
Pos.5
Pos.6
Pos.7
Pos.8
Pos.9
Fuel Rod Surface Temperature (K)
800
SB-HL-12(SHC)
750
700
650
600
550
500
450
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (s)
Fig. 4-19
Fuel rod surface temperatures at Positions 9 through 5 (1000 to 2000 s)
- 28 -
JAEA-Data/Code 2015-022
Downcomer Collapsed Liquid Level (m)
RC 142 CL-DC : Downcomer
SB-HL-12(SHC)
14
12
10
8
6
4
2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-20
Upper Head Differential Pressure (kPa)
DP
Downcomer collapsed liquid level
133 DPE333-PV : Upper Head (EL.6634 - 8860)
SB-HL-12(SHC)
30
25
20
15
10
5
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-21
Upper-head differential pressure
- 29 -
JAEA-Data/Code 2015-022
RC 196 LG-HLA : HLA Water Level
RC 198 LG-HLB : HLB Water Level
SB-HL-12(SHC)
Hot Leg Liquid Level (m)
0.25
0.2
0.15
0.1
0.05
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-22
Hot leg liquid level
TE
6 TE020C-HLA : HLA Pipe Top
TE 31 TE160C-HLB : HLB Pipe Top
RC 200 TS-UP : Upper Plenum
650
Hot Leg Fluid Temperature (K)
SB-HL-12(SHC)
600
550
500
450
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-23
Hot leg fluid temperature
- 30 -
JAEA-Data/Code 2015-022
RC 197 LG-CLA : CLA Water Level
RC 199 LG-CLB : CLB Water Level
SB-HL-12(SHC)
Cold Leg Liquid Level (m)
0.25
0.2
0.15
0.1
0.05
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-24
Cold leg liquid level
TE 16 TE070C-CLA : CLA Pipe Top
TE 42 TE210D-CLB : CLB Pipe Bottom
RC 200 TS-UP : Upper Plenum
SB-HL-12(SHC)
Cold Leg Fluid Temperature (K)
650
600
550
500
450
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-25
Cold leg fluid temperature
- 31 -
Crossover Leg Downflow Collapsed Liquid Level (m)
JAEA-Data/Code 2015-022
RC
RC
156 CL-LSA-D : SGA Out.Plenum - LSA Bottom
172 CL-LSB-D : SGB Out.Plenum - LSB Bottom
SB-HL-12(SHC)
10
8
6
4
2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Crossover Leg Upflow Collapsed Liquid Level (m)
Fig. 4-26
Collapsed liquid level in crossover leg downflow-side
RC
RC
157 CL-LSA-U : LSA Bottom - PCA Suction
173 CL-LSB-U : LSB Bottom - PCB Suction
SB-HL-12(SHC)
6
5
4
3
2
1
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-27
Collapsed liquid level in crossover leg upflow-side
- 32 -
SG-A Tube Upflow Collapsed Liquid Level (m)
JAEA-Data/Code 2015-022
RC
RC
RC
RC
RC
RC
146
145
144
147
148
149
CL-TUA-U1
CL-TUA-U2
CL-TUA-U3
CL-TUA-U4
CL-TUA-U5
CL-TUA-U6
:
:
:
:
:
:
SGA
SGA
SGA
SGA
SGA
SGA
Tube
Tube
Tube
Tube
Tube
Tube
1
2
3
4
5
6
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
-
Top
Top
Top
Top
Top
Top
12
SB-HL-12(SHC)
10
8
6
4
2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
SG-A Tube Downflow Collapsed Liquid Level (m)
Fig. 4-28
Collapsed liquid level in SG U-tube upflow-side in loop-A
RC
RC
RC
RC
RC
RC
152
151
150
153
154
155
CL-TUA-D1
CL-TUA-D2
CL-TUA-D3
CL-TUA-D4
CL-TUA-D5
CL-TUA-D6
:
:
:
:
:
:
SGA
SGA
SGA
SGA
SGA
SGA
Tube
Tube
Tube
Tube
Tube
Tube
1
2
3
4
5
6
Outlet
Outlet
Outlet
Outlet
Outlet
Outlet
-
Top
Top
Top
Top
Top
Top
12
SB-HL-12(SHC)
10
8
6
4
2
0
-500
Fig. 4-29
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Collapsed liquid level in SG U-tube downflow-side in loop-A
- 33 -
SG-B Tube Upflow Collapsed Liquid Level (m)
JAEA-Data/Code 2015-022
RC
RC
RC
RC
RC
RC
162
161
160
163
164
165
CL-TUB-U1
CL-TUB-U2
CL-TUB-U3
CL-TUB-U4
CL-TUB-U5
CL-TUB-U6
:
:
:
:
:
:
SGB
SGB
SGB
SGB
SGB
SGB
Tube
Tube
Tube
Tube
Tube
Tube
1
2
3
4
5
6
Inlet
Inlet
Inlet
Inlet
Inlet
Inlet
-
Top
Top
Top
Top
Top
Top
12
SB-HL-12(SHC)
10
8
6
4
2
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
SG-B Tube Downflow Collapsed Liquid Level (m)
Fig. 4-30
Collapsed liquid level in SG U-tube upflow-side in loop-B
RC
RC
RC
RC
RC
RC
168
167
166
169
170
171
CL-TUB-D1
CL-TUB-D2
CL-TUB-D3
CL-TUB-D4
CL-TUB-D5
CL-TUB-D6
:
:
:
:
:
:
SGB
SGB
SGB
SGB
SGB
SGB
Tube
Tube
Tube
Tube
Tube
Tube
1
2
3
4
5
6
Outlet
Outlet
Outlet
Outlet
Outlet
Outlet
-
Top
Top
Top
Top
Top
Top
12
SB-HL-12(SHC)
10
8
6
4
2
0
-500
Fig. 4-31
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Collapsed liquid level in SG U-tube downflow-side in loop-B
- 34 -
JAEA-Data/Code 2015-022
SG Inlet Plenum Collapsed Liquid Level (m)
RC
RC
158 CL-SGA-IPL : SGA Inlet Plenum
174 CL-SGB-IPL : SGB Inlet Plenum
SB-HL-12(SHC)
3
2.5
2
1.5
1
0.5
0
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-32
SG inlet plenum collapsed liquid level
- 35 -
SG-A Secondary-side Fluid Temperature (K)
JAEA-Data/Code 2015-022
TE
TE
TE
TE
TE
RC
429
430
431
433
435
202
TE-086C-SGA : SGA Boiling Section
TE-099C-SGA : SGA Boiling Section
TE-112C-SGA : SGA Boiling Section
TE-137C-SGA : SGA Boiling Section
TE-163C-SGA : SGA Boiling Section
TS-SGA : Steam Generator-A
Pos.1
Pos.3
Pos.5
Pos.7
Pos.9
600
SB-HL-12(SHC)
550
500
450
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
SG-B Secondary-side Fluid Temperature (K)
Fig. 4-33
TE
TE
TE
TE
TE
RC
SG secondary-side fluid temperature in loop-A
548
549
550
552
554
203
TE-086C-SGB : SGB Boiling Section
TE-099C-SGB : SGB Boiling Section
TE-112C-SGB : SGB Boiling Section
TE-137C-SGB : SGB Boiling Section
TE-163C-SGB : SGB Boiling Section
TS-SGB : Steam Generator-B
Pos.1
Pos.3
Pos.5
Pos.7
Pos.9
600
SB-HL-12(SHC)
550
500
450
400
-500
0
500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)
Fig. 4-34
SG secondary-side fluid temperature in loop-B
- 36 -
JAEA-Data/Code 2015-022
5.
Summary
A ROSA/LSTF experiment SB-HL-12 was conducted on February 24, 1998, which
simulated a PWR 1% hot leg SBLOCA under assumptions of total failure of HPI system and
non-condensable gas (nitrogen gas) inflow to the primary system from ACC tanks of ECCS.
SG secondary-side depressurization by fully opening the RVs in both SGs as an AM action
was initiated immediately after maximum surface temperature of simulated fuel rod reached
600 K. AFW injection into the secondary-side of both SGs was started immediately after the
initiation of AM action. Major findings are summarized as follows;
(1) After the onset of AM action due to first core uncovery by core boil-off, the primary
pressure decreased following the SG secondary-side pressure, causing core mixture level
swell. The fuel rod surface temperature then increased up to 635 K.
(2) Second core uncovery by core boil-off took place before LSC induced by steam
condensation on ACC coolant injected into cold legs. The core liquid level recovered
rapidly after the LSC. The fuel rod surface temperature then increased up to 696 K.
(3) The pressure difference became larger between the primary and SG secondary sides
after the ACC tanks started to discharge nitrogen gas, which resulted in no actuation of
LPI system of ECCS during the experiment. Third core uncovery by core boil-off occurred
during the reflux condensation in the SG U-tubes under nitrogen gas inflow. The core
power was automatically decreased by the LSTF core protection system when the
maximum fuel rod surface temperature exceeded 908 K.
Acknowledgements
The author would like to thank Mr. I. Ohtsu of Japan Atomic Energy Agency and Mr. K.
Umminger of AREVA NP GmbH for their useful comments to improve the manuscript.
References
[1]
[2]
[3]
[4]
The ROSA-V Group, ROSA-V Large Scale Test Facility (LSTF) System Description for
the Third and Fourth Simulated Fuel Assemblies. JAERI-Tech 2003-037, 2003, 479p.
Umminger, K., Dennhardt, L., Schollenberger, S., Schoen, B., Integral Test Facility PKL:
Experimental PWR Accident Investigation, Science and Technology of Nuclear
Installations, Article ID 891056, 2012.
Zuber, N., Problems in modeling small break LOCA. USNRC Report, NUREG-0724,
1980.
Kumamaru, H., Tasaka, K., Recalculation of Simulated Post-Scram Core Power Decay
Curve for Use in ROSA-IV/LSTF Experiments on PWR Small-Break LOCAs and
Transients. JAERI-M 90-142, 1990, 63p.
- 37 -
JAEA-Data/Code 2015-022
Appendix A
Available Experimental Data List
Table A-1 shows the list of available experimental data qualified as “Good” for LSTF
SB-HL-12 (Run ID designated to be SHC). This table contains Sequential No., Function ID.,
Tag Name, measurement location, range, unit and uncertainty. The alphabetical prefix of the
Function ID. and Tag Name is explained as follows;
(1)
TE, fluid temperature,
(2)
DT, differential temperature,
(3)
TW, heater rod and structure temperature,
(4)
FE, flow rate measured with conventional (differential pressure) flow meters,
(5)
PE, pressure,
(6)
MI, miscellaneous instrumented-signal (power, pump rotation speed, etc.),
(7)
LE, liquid level,
(8)
DP, differential pressure,
(9)
CP, conductance probe signal,
(10)
MF, momentum flux with drag disk,
(11)
DE, fluid density with gamma-ray densitometer,
(12)
RC, two-phase flow data calculated with MF, DE and others.
- 38 -
JAEA-Data/Code 2015-022
Table A-1
SEQ No.
3rd Core
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Function
ID.
TE
1
TE
2
TE
3
TE
4
TE
5
TE
6
TE
7
TE
8
TE 10
TE 11
TE 12
TE 13
TE 14
TE 15
TE 16
TE 17
TE 18
TE 20
TE 21
TE 22
TE 23
TE 25
TE 27
TE 28
TE 29
TE 30
TE 31
TE 32
TE 33
TE 35
TE 36
TE 37
TE 38
TE 39
TE 40
TE 42
TE 43
TE 46
TE 47
TE 48
TE 49
TE 50
TE 51
TE 52
TE 55
TE 56
TE 57
TE 59
TE 60
TE 61
TE 63
TE 64
TE 65
TE 66
TE 67
TE 68
TE 69
TE 70
TE 71
TE 72
TE 73
TE 74
TE 75
TE 76
TE 77
TE 78
TE 79
TE 80
TE 81
TE 82
TE 83
TE 84
TE 85
TE 86
TE 87
TE 88
TE 89
TE 90
TE 91
TE 94
TE 96
Tagname
TE010A-HLA
TE010B-HLA
TE010C-HLA
TE010D-HLA
TE010E-HLA
TE020C-HLA
TE020D-HLA
TE030C-HLA
TE040A-HLA
TE040B-HLA
TE040C-HLA
TE040D-HLA
TE040E-HLA
TE050C-LSA
TE070C-CLA
TE070D-CLA
TE080C-CLA
TE090A-CLA
TE090B-CLA
TE090C-CLA
TE090D-CLA
TE100-HLA
TE150B-HLB
TE150C-HLB
TE150D-HLB
TE150E-HLB
TE160C-HLB
TE160D-HLB
TE170C-HLB
TE180A-HLB
TE180B-HLB
TE180C-HLB
TE180D-HLB
TE180E-HLB
TE190C-LSB
TE210D-CLB
TE220C-CLB
TE230B-CLB
TE230C-CLB
TE230D-CLB
TE230E-CLB
TE240-HLB
TE270C-PR
TE280C-PR
TE430-SGA
TE440-SGA
TE450-SGA
TE470-SGB
TE480-SGB
TE490-SGB
TE510-SH
TE520-JC
TE530-JC
TE540-JC
TE550-JC
TE431-SGA
TE432-SGA
TE433-SGA
TE434-SGA
TE471-SGB
TE472-SGB
TE473-SGB
TE474-SGB
TE560C-BU
TE560D-BU
TE570C-BU
TE570D-BU
TE580C-BU
TE580D-BU
TE590C-BU
TE590D-BU
TE600-ST
TE610-ST
TE620-ST
TE630-ST
TE640-ST
TE650-ACC
TE660-ACC
TE670-ACC
TE700-ACH
TE720-ACH
List of available experimental data for LSTF SB-HL-12
Location
HLA Vessel-Side CPT
HLA Vessel-Side CPT
HLA Vessel-Side CPT
HLA Vessel-Side CPT
HLA Vessel-Side CPT
HLA Pipe Top
HLA Pipe Bottom
HLA Pipe Top
HLA SG-Side CPT
HLA SG-Side CPT
HLA SG-Side CPT
HLA SG-Side CPT
HLA SG-Side CPT
LSA Upflow Leg
CLA Pipe Top
CLA Pipe Bottom
CLA Pipe Top
CLA Vessel-Side CPT
CLA Vessel-Side CPT
CLA Vessel-Side CPT
CLA Vessel-Side CPT
HLA-CLA Average
HLB Vessel-Side CPT
HLB Vessel-Side CPT
HLB Vessel-Side CPT
HLB Vessel-Side CPT
HLB Pipe Top
HLB Pipe Bottom
HLB Pipe Top
HLB SG-Side CPT
HLB SG-Side CPT
HLB SG-Side CPT
HLB SG-Side CPT
HLB SG-Side CPT
LSB Upflow Leg
CLB Pipe Bottom
CLB Pipe Top
CLB Vessel-Side CPT
CLB Vessel-Side CPT
CLB Vessel-Side CPT
CLB Vessel-Side CPT
HLB-CLB Average
PZR Spray Line
PZR Surge Line
SGA Feedwater Line
SGA Main Steam Line
SGA Relief Valve Line
SGB Feedwater Line
SGB Main Steam Line
SGB Relief Valve Line
MSL Steam Header
JC Hot Water
PF Suction Line
JC Spray Water
JC Steam Vent Line
SGA Downcomer A
SGA Downcomer B
SGA Downcomer C
SGA Downcomer D
SGB Downcomer A
SGB Downcomer B
SGB Downcomer C
SGB Downcomer D
Break Upstream
Break Upstream
RSV Spool Piece, Outlet Side
RSV Spool Piece, Outlet Side
Break Orif. Upstream Top
Break Orif. Upstream Bottom
Break Orif. Downstream Top
Break Orif. Downstream Bottom
ST Inlet Line
ST Top Region
ST Middle Region
ST Bottom Region
ST Spray Line
Acc-Cold Tank Bottom
Acc-Cold Tank Top
Acc-Cold Line to CLA
Acc-Hot Tank Top
Acc-Hot Line to CLB
- 39 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
670
670
670
670
670
670
670
670
670
670
670
670
670
670
670
670
670
670
670
720
720
720
720
720
720
720
720
470
470
470
470
470
470
470
470
570
570
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.30
1.15
2.30
1.15
2.30
1.15
2.30
1.15
2.30
1.15
2.30
1.15
2.30
1.15
2.30
1.15
2.42
0.81
2.42
0.81
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
Function
ID.
TE 97
TE 98
TE 99
TE 100
TE 101
TE 102
TE 103
TE 104
TE 106
TE 107
TE 108
TE 112
TE 113
TE 115
TE 116
TE 117
TE 118
TE 119
TE 120
TE 121
TE 122
TE 123
TE 124
TE 125
TE 126
TE 127
TE 128
TE 129
TE 130
TE 131
TE 132
TE 133
TE 134
TE 135
TE 136
TE 137
TE 138
TE 139
TE 140
TE 141
TE 142
TE 143
TE 144
TE 145
TE 146
TE 147
TE 148
TE 149
TE 154
TE 155
TE 158
TE 161
TE 162
TE 164
TE 166
TE 167
TE 168
TE 193
TE 194
TE 196
TE 197
TE 198
TE 199
TE 200
TE 201
TE 202
TE 203
TE 204
TE 205
TE 206
TE 208
TE 209
TE 210
TE 211
TE 212
TE 213
TE 214
TE 215
TE 216
TE 217
TE 218
Tagname
TE730-HLA
TE740-LSA
TE750-CLA
TE760-HLB
TE770-LSB
TE780-CLB
TE790-PV
TE800-PV
TE820-PL
TE830-PL
TE840-PL
TE880-RWST
TE890-RWST
TE-E066F-PV
TE-W066F-PV
TE-E075F-PV
TE-W075F-PV
TE-E081F-PV
TE-W081F-PV
TE-E080H-PV
TE-W080H-PV
TE-E049F-PV
TE-W049F-PV
TE-E055F-PV
TE-W055F-PV
TE-E060F-PV
TE-W060F-PV
TE-IN038-B09-UCP
TE-IN038-B11-UCP
TE-IN038-B01-UCP
TE-IN038-B03-UCP
TE-IN038-B05-UCP
TE-IN038-B07-UCP
TE-IN038-B21-UCP
TE-IN038-B23-UCP
TE-IN038-B02-UCP
TE-IN038-B06-UCP
TE-IN038-B14-UCP
TE-IN038-B15-UCP
TE-IN038-B18-UCP
TE-IN038-B19-UCP
TE-IN038-B10-UCP
TE-IN038-B12-UCP
TE-IN038-B04-UCP
TE-IN038-B08-UCP
TE-IN038-B22-UCP
TE-IN038-B24-UCP
TE-EX040-B09-UCP
TE-EX040-B07-UCP
TE-EX040-B21-UCP
TE-EX040-B06-UCP
TE-EX040-B18-UCP
TE-EX040-B19-UCP
TE-EX040-B12-UCP
TE-EX040-B08-UCP
TE-EX040-B22-UCP
TE-EX040-B24-UCP
TE-N000C-DC
TE-S000C-DC
TE-W000C-DC
TE-N018C-DC
TE-S018C-DC
TE-E018C-DC
TE-W018C-DC
TE-N036C-DC
TE-S036C-DC
TE-E036C-DC
TE-W036C-DC
TE-N060C-DC
TE-S060C-DC
TE-W060C-DC
TE-N055C-DC
TE-S055C-DC
TE-C-021-LP
TE-C-018-LP
TE-C-015-LP
TE-C-012-LP
TE-C-009-LP
TE-C-006-LP
TE-C-005-LP
TE-C-003-LP
Location
HLA ECCS Nozzle
LSA ECCS Nozzle
CLA ECCS Nozzle
HKB ECCS Nozzle
LSB ECCS Nozzle
CLB ECCS Nozzle
PV Bottom ECCS Nozzle
PV Top ECCS Nozzle
RHR Inlet Region
RHR Outlet Region
RHR Injection Line
RWST Lower Region
RWST Middle Region
Upper Head Bottom
Upper Head Bottom
Upper Head Middle
Upper Head Middle
Upper Head Top
Upper Head Top
CR Guide Tube Top
CR Guide Tube Top
Upper Plenum Bottom
Upper Plenum Bottom
Upper Plenum Middle
Upper Plenum Middle
Upper Plenum Top
Upper Plenum Top
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Below Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Above Upper Core Plate
Downcomer EL.0.0m,North
Downcomer EL.0.0m,South
Downcomer EL.0.0m,West
Downcomer EL.1.8m,North
Downcomer EL.1.8m,South
Downcomer EL.1.8m,East
Downcomer EL.1.8m,West
Downcomer EL.3.6m,North
Downcomer EL.3.6m,South
Downcomer EL.3.6m,East
Downcomer EL.3.6m,West
Downcomer EL.6.0m,North
Downcomer EL.6.0m,South
Downcomer EL.6.0m,West
Downcomer EL.5.5m,North
Downcomer EL.5.5m,South
Lower Plenum EL.-2.1m,C
Lower Plenum EL.-1.8m,C
Lower Plenum EL.-1.5m,C
Lower Plenum EL.-1.2m,C
Lower Plenum EL.-0.9m,C
Lower Plenum EL.-0.6m,C
Lower Plenum EL.-0.5m,C
Lower Plenum EL.-0.3m,C
- 40 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
670
670
670
670
670
670
670
670
670
670
670
370
370
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.37
2.37
2.37
2.37
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
3.73
0.83
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
Function
ID.
TE 219
TE 220
TE 221
TE 222
TE 223
TE 224
TE 225
TE 226
TE 227
TE 234
TE 235
TE 236
TE 273
TE 274
TE 275
TE 276
TE 277
TE 278
TE 324
TE 325
TE 326
TE 330
TE 331
TE 332
TE 333
TE 334
TE 335
TE 336
TE 337
TE 338
TE 339
TE 340
TE 341
TE 343
TE 344
TE 345
TE 346
TE 347
TE 348
TE 349
TE 350
TE 351
TE 352
TE 353
TE 354
TE 355
TE 356
TE 357
TE 358
TE 359
TE 360
TE 361
TE 362
TE 363
TE 364
TE 365
TE 366
TE 367
TE 368
TE 369
TE 371
TE 372
TE 373
TE 374
TE 376
TE 377
TE 378
TE 379
TE 380
TE 381
TE 382
TE 383
TE 384
TE 385
TE 386
TE 387
TE 388
TE 389
TE 390
TE 391
TE 392
Tagname
TE-B18621
TE-B18622
TE-B18623
TE-B18624
TE-B18625
TE-B18626
TE-B18627
TE-B18628
TE-B18629
TE-B14262
TE-B14264
TE-B14268
TE-B14261
TE-B14263
TE-B14265
TE-B14266
TE-B14267
TE-B14269
TE-IN0641-SGA
TE-IN0642-SGA
TE-IN0643-SGA
TE-IN0861-SGA
TE-IN0862-SGA
TE-IN0863-SGA
TE-IN0864-SGA
TE-IN0865-SGA
TE-IN0866-SGA
TE-EX0861-SGA
TE-EX0862-SGA
TE-EX0863-SGA
TE-EX0864-SGA
TE-EX0865-SGA
TE-EX0866-SGA
TE-IN0932-SGA
TE-IN0933-SGA
TE-IN0934-SGA
TE-IN0935-SGA
TE-IN0936-SGA
TE-IN0991-SGA
TE-EX0991-SGA
TE-IN0992-SGA
TE-EX0992-SGA
TE-IN0993-SGA
TE-EX0993-SGA
TE-IN0994-SGA
TE-EX0994-SGA
TE-IN0995-SGA
TE-EX0995-SGA
TE-IN0996-SGA
TE-EX0996-SGA
TE-IN1051-SGA
TE-IN1052-SGA
TE-IN1053-SGA
TE-IN1054-SGA
TE-IN1055-SGA
TE-IN1056-SGA
TE-IN1121-SGA
TE-EX1121-SGA
TE-IN1122-SGA
TE-EX1122-SGA
TE-EX1123-SGA
TE-IN1124-SGA
TE-EX1124-SGA
TE-IN1125-SGA
TE-IN1126-SGA
TE-EX1126-SGA
TE-IN1251-SGA
TE-EX1251-SGA
TE-IN1252-SGA
TE-EX1252-SGA
TE-IN1253-SGA
TE-EX1253-SGA
TE-IN1254-SGA
TE-EX1254-SGA
TE-IN1255-SGA
TE-EX1255-SGA
TE-IN1256-SGA
TE-EX1256-SGA
TE-IN1371-SGA
TE-EX1371-SGA
TE-IN1372-SGA
Location
B18 Rod(6,2) Pos.1,Fluid
B18 Rod(6,2) Pos.2,Fluid
B18 Rod(6,2) Pos.3,Fluid
B18 Rod(6,2) Pos.4,Fluid
B18 Rod(6,2) Pos.5,Fluid
B18 Rod(6,2) Pos.6,Fluid
B18 Rod(6,2) Pos.7,Fluid
B18 Rod(6,2) Pos.8,Fluid
B18 Rod(6,2) Pos.9,Fluid
B18 Rod(2,6) Pos.2,Fluid
B18 Rod(2,6) Pos.4,Fluid
B18 Rod(2,6) Pos.8,Fluid
B14 Rod(2,6) Pos.1,Fluid
B14 Rod(2,6) Pos.3,Fluid
B14 Rod(2,6) Pos.5,Fluid
B14 Rod(2,6) Pos.6,Fluid
B14 Rod(2,6) Pos.7,Fluid
B14 Rod(2,6) Pos.9,Fluid
SGA Inlet Plenum
SGA Inlet Plenum
SGA Inlet Plenum
SGA U-Tube(1,IN) Pos.1
SGA U-Tube(2,IN) Pos.1
SGA U-Tube(3,IN) Pos.1
SGA U-Tube(4,IN) Pos.1
SGA U-Tube(5,IN) Pos.1
SGA U-Tube(6,IN) Pos.1
SGA U-Tube(1,EX) Pos.1
SGA U-Tube(2,EX) Pos.1
SGA U-Tube(3,EX) Pos.1
SGA U-Tube(4,EX) Pos.1
SGA U-Tube(5,EX) Pos.1
SGA U-Tube(6,EX) Pos.1
SGA U-Tube(2,IN) Pos.2
SGA U-Tube(3,IN) Pos.2
SGA U-Tube(4,IN) Pos.2
SGA U-Tube(5,IN) Pos.2
SGA U-Tube(6,IN) Pos.2
SGA U-Tube(1,IN) Pos.3
SGA U-Tube(1,EX) Pos.3
SGA U-Tube(2,IN) Pos.3
SGA U-Tube(2,EX) Pos.3
SGA U-Tube(3,IN) Pos.3
SGA U-Tube(3,EX) Pos.3
SGA U-Tube(4,IN) Pos.3
SGA U-Tube(4,EX) Pos.3
SGA U-Tube(5,IN) Pos.3
SGA U-Tube(5,EX) Pos.3
SGA U-Tube(6,IN) Pos.3
SGA U-Tube(6,EX) Pos.3
SGA U-Tube(1,IN) Pos.4
SGA U-Tube(2,IN) Pos.4
SGA U-Tube(3,IN) Pos.4
SGA U-Tube(4,IN) Pos.4
SGA U-Tube(5,IN) Pos.4
SGA U-Tube(6,IN) Pos.4
SGA U-Tube(1,IN) Pos.5
SGA U-Tube(1,EX) Pos.5
SGA U-Tube(2,IN) Pos.5
SGA U-Tube(2,EX) Pos.5
SGA U-Tube(3,EX) Pos.5
SGA U-Tube(4,IN) Pos.5
SGA U-Tube(4,EX) Pos.5
SGA U-Tube(5,IN) Pos.5
SGA U-Tube(6,IN) Pos.5
SGA U-Tube(6,EX) Pos.5
SGA U-Tube(1,IN) Pos.6
SGA U-Tube(1,EX) Pos.6
SGA U-Tube(2,IN) Pos.6
SGA U-Tube(2,EX) Pos.6
SGA U-Tube(3,IN) Pos.6
SGA U-Tube(3,EX) Pos.6
SGA U-Tube(4,IN) Pos.6
SGA U-Tube(4,EX) Pos.6
SGA U-Tube(5,IN) Pos.6
SGA U-Tube(5,EX) Pos.6
SGA U-Tube(6,IN) Pos.6
SGA U-Tube(6,EX) Pos.6
SGA U-Tube(1,IN) Pos.7
SGA U-Tube(1,EX) Pos.7
SGA U-Tube(2,IN) Pos.7
- 41 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
Function
ID.
TE 393
TE 394
TE 395
TE 396
TE 397
TE 398
TE 399
TE 400
TE 401
TE 402
TE 403
TE 404
TE 405
TE 406
TE 407
TE 408
TE 409
TE 410
TE 412
TE 413
TE 414
TE 415
TE 416
TE 417
TE 418
TE 419
TE 420
TE 421
TE 422
TE 424
TE 425
TE 426
TE 427
TE 429
TE 430
TE 431
TE 432
TE 433
TE 434
TE 435
TE 436
TE 437
TE 438
TE 439
TE 440
TE 441
TE 442
TE 443
TE 444
TE 445
TE 449
TE 450
TE 451
TE 452
TE 453
TE 454
TE 455
TE 456
TE 457
TE 458
TE 459
TE 460
TE 461
TE 463
TE 464
TE 465
TE 466
TE 467
TE 468
TE 469
TE 470
TE 471
TE 472
TE 473
TE 474
TE 476
TE 477
TE 478
TE 479
TE 480
TE 482
Tagname
TE-EX1372-SGA
TE-IN1373-SGA
TE-EX1373-SGA
TE-IN1374-SGA
TE-EX1374-SGA
TE-IN1375-SGA
TE-EX1375-SGA
TE-IN1376-SGA
TE-EX1376-SGA
TE-IN1501-SGA
TE-EX1501-SGA
TE-IN1502-SGA
TE-EX1502-SGA
TE-IN1503-SGA
TE-EX1503-SGA
TE-IN1504-SGA
TE-EX1504-SGA
TE-IN1505-SGA
TE-IN1506-SGA
TE-EX1506-SGA
TE-IN1632-SGA
TE-EX1632-SGA
TE-IN1633-SGA
TE-EX1633-SGA
TE-IN1634-SGA
TE-EX1634-SGA
TE-IN1635-SGA
TE-EX1635-SGA
TE-IN1701-SGA
TE-IN1782-SGA
TE-IN1785-SGA
TE-IN1863-SGA
TE-IN1864-SGA
TE-086C-SGA
TE-099C-SGA
TE-112C-SGA
TE-125C-SGA
TE-137C-SGA
TE-150C-SGA
TE-163C-SGA
TE-178C-SGA
TE-192F-SGA
TE-208F-SGA
TE-192C-SGA
TE-208C-SGA
TE-223C-SGA
TE-245C-SGA
TE-IN0641-SGB
TE-IN0642-SGB
TE-IN0643-SGB
TE-IN0861-SGB
TE-IN0862-SGB
TE-IN0863-SGB
TE-IN0864-SGB
TE-IN0865-SGB
TE-IN0866-SGB
TE-EX0861-SGB
TE-EX0862-SGB
TE-EX0863-SGB
TE-EX0864-SGB
TE-EX0865-SGB
TE-EX0866-SGB
TE-IN0931-SGB
TE-IN0933-SGB
TE-IN0934-SGB
TE-IN0935-SGB
TE-IN0936-SGB
TE-IN0991-SGB
TE-EX0991-SGB
TE-IN0992-SGB
TE-EX0992-SGB
TE-IN0993-SGB
TE-EX0993-SGB
TE-IN0994-SGB
TE-EX0994-SGB
TE-EX0995-SGB
TE-IN0996-SGB
TE-EX0996-SGB
TE-IN1051-SGB
TE-IN1052-SGB
TE-IN1054-SGB
Location
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGA
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
SGB
U-Tube(2,EX) Pos.7
U-Tube(3,IN) Pos.7
U-Tube(3,EX) Pos.7
U-Tube(4,IN) Pos.7
U-Tube(4,EX) Pos.7
U-Tube(5,IN) Pos.7
U-Tube(5,EX) Pos.7
U-Tube(6,IN) Pos.7
U-Tube(6,EX) Pos.7
U-Tube(1,IN) Pos.8
U-Tube(1,EX) Pos.8
U-Tube(2,IN) Pos.8
U-Tube(2,EX) Pos.8
U-Tube(3,IN) Pos.8
U-Tube(3,EX) Pos.8
U-Tube(4,IN) Pos.8
U-Tube(4,EX) Pos.8
U-Tube(5,IN) Pos.8
U-Tube(6,IN) Pos.8
U-Tube(6,EX) Pos.8
U-Tube(2,IN) Pos.9
U-Tube(2,EX) Pos.9
U-Tube(3,IN) Pos.9
U-Tube(3,EX) Pos.9
U-Tube(4,IN) Pos.9
U-Tube(4,EX) Pos.9
U-Tube(5,IN) Pos.9
U-Tube(5,EX) Pos.9
U-Tube(1,IN) Pos.10
U-Tube(2,IN) Pos.10
U-Tube(5,IN) Pos.10
U-Tube(3,IN) Pos.11
U-Tube(4,IN) Pos.11
Boiling Section Pos.1
Boiling Section Pos.3
Boiling Section Pos.5
Boiling Section Pos.6
Boiling Section Pos.7
Boiling Section Pos.8
Boiling Section Pos.9
Boiling Section Pos.10
Boiling Section
Separator
Downcomer
Downcomer
Steam Dome
Steam Dome
Inlet Plenum
Inlet Plenum
Inlet Plenum
U-Tube(1,IN) Pos.1
U-Tube(2,IN) Pos.1
U-Tube(3,IN) Pos.1
U-Tube(4,IN) Pos.1
U-Tube(5,IN) Pos.1
U-Tube(6,IN) Pos.1
U-Tube(1,EX) Pos.1
U-Tube(2,EX) Pos.1
U-Tube(3,EX) Pos.1
U-Tube(4,EX) Pos.1
U-Tube(5,EX) Pos.1
U-Tube(6,EX) Pos.1
U-Tube(1,IN) Pos.2
U-Tube(3,IN) Pos.2
U-Tube(4,IN) Pos.2
U-Tube(5,IN) Pos.2
U-Tube(6,IN) Pos.2
U-Tube(1,IN) Pos.3
U-Tube(1,EX) Pos.3
U-Tube(2,IN) Pos.3
U-Tube(2,EX) Pos.3
U-Tube(3,IN) Pos.3
U-Tube(3,EX) Pos.3
U-Tube(4,IN) Pos.3
U-Tube(4,EX) Pos.3
U-Tube(5,EX) Pos.3
U-Tube(6,IN) Pos.3
U-Tube(6,EX) Pos.3
U-Tube(1,IN) Pos.4
U-Tube(2,IN) Pos.4
U-Tube(4,IN) Pos.4
- 42 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
670
670
670
670
670
670
670
670
670
670
670
670
670
670
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
Function
ID.
TE 483
TE 486
TE 487
TE 488
TE 489
TE 490
TE 491
TE 492
TE 494
TE 495
TE 496
TE 497
TE 498
TE 499
TE 500
TE 502
TE 503
TE 504
TE 505
TE 506
TE 507
TE 508
TE 509
TE 510
TE 511
TE 512
TE 514
TE 515
TE 516
TE 517
TE 518
TE 519
TE 520
TE 523
TE 524
TE 525
TE 526
TE 527
TE 528
TE 529
TE 530
TE 531
TE 532
TE 533
TE 534
TE 535
TE 536
TE 537
TE 538
TE 539
TE 540
TE 541
TE 544
TE 545
TE 546
TE 548
TE 549
TE 550
TE 551
TE 552
TE 553
TE 554
TE 555
TE 556
TE 557
TE 558
TE 559
TE 560
TE 561
TE 595
TE 607
TE 609
TE 610
TE 612
TE 613
TE 614
TE 615
TE 619
TE 620
TE 624
TE 625
Tagname
TE-IN1055-SGB
TE-EX1121-SGB
TE-IN1122-SGB
TE-EX1122-SGB
TE-IN1123-SGB
TE-EX1123-SGB
TE-IN1124-SGB
TE-EX1124-SGB
TE-EX1125-SGB
TE-IN1126-SGB
TE-EX1126-SGB
TE-IN1251-SGB
TE-EX1251-SGB
TE-IN1252-SGB
TE-EX1252-SGB
TE-EX1253-SGB
TE-IN1254-SGB
TE-EX1254-SGB
TE-IN1255-SGB
TE-EX1255-SGB
TE-IN1256-SGB
TE-EX1256-SGB
TE-IN1371-SGB
TE-EX1371-SGB
TE-IN1372-SGB
TE-EX1372-SGB
TE-EX1373-SGB
TE-IN1374-SGB
TE-EX1374-SGB
TE-IN1375-SGB
TE-EX1375-SGB
TE-IN1376-SGB
TE-EX1376-SGB
TE-IN1502-SGB
TE-EX1502-SGB
TE-IN1503-SGB
TE-EX1503-SGB
TE-IN1504-SGB
TE-EX1504-SGB
TE-IN1505-SGB
TE-EX1505-SGB
TE-IN1506-SGB
TE-EX1506-SGB
TE-IN1632-SGB
TE-EX1632-SGB
TE-IN1633-SGB
TE-EX1633-SGB
TE-IN1634-SGB
TE-EX1634-SGB
TE-IN1635-SGB
TE-EX1635-SGB
TE-IN1701-SGB
TE-IN1785-SGB
TE-IN1863-SGB
TE-IN1864-SGB
TE-086C-SGB
TE-099C-SGB
TE-112C-SGB
TE-125C-SGB
TE-137C-SGB
TE-150C-SGB
TE-163C-SGB
TE-178C-SGB
TE-192F-SGB
TE-208F-SGB
TE-192C-SGB
TE-208C-SGB
TE-223C-SGB
TE-245C-SGB
TE724-ACH
TE011B-HLA
TE012C-HLA
TE012D-HLA
TE051B-LSA
TE051C-LSA
TE051D-LSA
TE052-LSA
TE072C-CLA
TE072D-CLA
TE152C-HLB
TE152D-HLB
Location
SGB U-Tube(5,IN) Pos.4
SGB U-Tube(1,EX) Pos.5
SGB U-Tube(2,IN) Pos.5
SGB U-Tube(2,EX) Pos.5
SGB U-Tube(3,IN) Pos.5
SGB U-Tube(3,EX) Pos.5
SGB U-Tube(4,IN) Pos.5
SGB U-Tube(4,EX) Pos.5
SGB U-Tube(5,EX) Pos.5
SGB U-Tube(6,IN) Pos.5
SGB U-Tube(6,EX) Pos.5
SGB U-Tube(1,IN) Pos.6
SGB U-Tube(1,EX) Pos.6
SGB U-Tube(2,IN) Pos.6
SGB U-Tube(2,EX) Pos.6
SGB U-Tube(3,EX) Pos.6
SGB U-Tube(4,IN) Pos.6
SGB U-Tube(4,EX) Pos.6
SGB U-Tube(5,IN) Pos.6
SGB U-Tube(5,EX) Pos.6
SGB U-Tube(6,IN) Pos.6
SGB U-Tube(6,EX) Pos.6
SGB U-Tube(1,IN) Pos.7
SGB U-Tube(1,EX) Pos.7
SGB U-Tube(2,IN) Pos.7
SGB U-Tube(2,EX) Pos.7
SGB U-Tube(3,EX) Pos.7
SGB U-Tube(4,IN) Pos.7
SGB U-Tube(4,EX) Pos.7
SGB U-Tube(5,IN) Pos.7
SGB U-Tube(5,EX) Pos.7
SGB U-Tube(6,IN) Pos.7
SGB U-Tube(6,EX) Pos.7
SGB U-Tube(2,IN) Pos.8
SGB U-Tube(2,EX) Pos.8
SGB U-Tube(3,IN) Pos.8
SGB U-Tube(3,EX) Pos.8
SGB U-Tube(4,IN) Pos.8
SGB U-Tube(4,EX) Pos.8
SGB U-Tube(5,IN) Pos.8
SGB U-Tube(5,EX) Pos.8
SGB U-Tube(6,IN) Pos.8
SGB U-Tube(6,EX) Pos.8
SGB U-Tube(2,IN) Pos.9
SGB U-Tube(2,EX) Pos.9
SGB U-Tube(3,IN) Pos.9
SGB U-Tube(3,EX) Pos.9
SGB U-Tube(4,IN) Pos.9
SGB U-Tube(4,EX) Pos.9
SGB U-Tube(5,IN) Pos.9
SGB U-Tube(5,EX) Pos.9
SGB U-Tube(1,IN) Pos.10
SGB U-Tube(5,IN) Pos.10
SGB U-Tube(3,IN) Pos.11
SGB U-Tube(4,IN) Pos.11
SGB Boiling Section Pos.1
SGB Boiling Section Pos.3
SGB Boiling Section Pos.5
SGB Boiling Section Pos.6
SGB Boiling Section Pos.7
SGB Boiling Section Pos.8
SGB Boiling Section Pos.9
SGB Boiling Section Pos.10
SGB Boiling Section
SGB Separator
SGB Downcomer
SGB Downcomer
SGB Steam Dome
SGB Steam Dome
Acc-Hot Line to CLB
HLA Spool Piece Side
HLA Spool Piece Top
HLA Spool Piece Bottom
LSA Spool Piece South
LSA Spool Piece West
LSA Spool Piece North
LSA Spool Piece
CLA Spool Piece Top
CLA Spool Piece Bottom
HLB Spool Piece Top
HLB Spool Piece Bottom
- 43 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
670
670
670
670
670
670
670
670
670
670
670
670
670
670
570
720
720
720
720
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.29
2.42
0.81
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
Function
ID.
TE 626
TE 628
TE 630
TE 632
TE 634
TE 635
TE 644
TE 645
TE 662
TE 663
TE 664
TE 665
TE 707
TE 708
TE 709
TE 710
TE 711
TE 712
TE 713
TE 714
TE 715
TE 716
TE 724
TE 725
TE 726
TE 727
TE 728
TE 729
TE 730
TE 731
TE 732
TE 733
TE 734
TE 735
TE 739
TE 752
TE 780
TE 805
TE 806
TE 807
TE 808
TE 809
TE 810
TE 811
TE 812
TE 813
TE 814
TE 815
TE 816
TE 817
TE 818
TE 819
TE 820
TE 821
TE 822
TE 823
TE 824
TE 825
TE 826
TE 827
TE 828
TE 829
TE 830
TE 831
TE 832
TE 833
TE 834
TE 835
TE 836
TE 837
TE 838
TE 839
TE 840
TE 841
TE 842
TE 843
TE 844
TE 845
TE 846
TE 847
TE 848
Tagname
TE191A-LSB
TE191C-LSB
TE192-LSB
TE211B-CLB
TE212C-CLB
TE212D-CLB
TE571C-BU
TE571D-BU
TE-N-006-DC
TE-S-006-DC
TE-E-006-DC
TE-W-006-DC
TE-121E-UHDP
TE-121A-UHDP
TE-121B-UHDP
TE-121C-UHDP
TE-E071C-DC
TE-W071C-DC
TE-E067C-DC
TE-W067C-DC
TE-951-CS
TE-952-CS
TE-B07221
TE-B07223
TE-B07225
TE-B07226
TE-B07227
TE-B07229
TE-EX0650-SGA
TE-EX0680-SGA
TE-EX0720-SGA
TE-EX0650-SGB
TE-EX0680-SGB
TE-EX0720-SGB
TE275C-PR
TE293-ACH
TE687X-ACH
TE-B03221
TE-B03222
TE-B03223
TE-B03224
TE-B03225
TE-B03226
TE-B03227
TE-B03228
TE-B03229
TE-B07222
TE-B07224
TE-B07228
TE-B13221
TE-B13222
TE-B13223
TE-B13224
TE-B13225
TE-B13226
TE-B13227
TE-B13228
TE-B13229
TE-B17661
TE-B17662
TE-B17663
TE-B17664
TE-B17665
TE-B17666
TE-B17667
TE-B17668
TE-B17669
TE-B21621
TE-B21622
TE-B21623
TE-B21624
TE-B21625
TE-B21626
TE-B21627
TE-B21628
TE-B21629
TE-B23261
TE-B23262
TE-B23263
TE-B23264
TE-B23265
Location
LSB Spool Piece West
LSB Spool Piece East
LSB Spool Piece
CLB Spool Piece Side
CLB Spool Piece Top
CLB Spool Piece Bottom
RSV Spool Piece, Inlet Side
RSV Spool Piece, Inlet Side
PV Downcomer DTT North
PV Downcomer DTT South
PV Downcomer DTT East
PV Downcomer DTT West
PLR-UH-9 Oil Outlet
PLR-UH-9 EL. 6.9m
PLR-UH-9 EL. 7.6m
PLR-UH-9 EL. 8.2m
Downcomer EL.7.1m,East
Downcomer EL.7.1m,West
Downcomer EL.6.7m,East
Downcomer EL.6.7m,West
Oil Inlet-Main
Oil Outlet-Main
B07 Rod(2,2) Pos.1,Fluid
B07 Rod(2,2) Pos.3,Fluid
B07 Rod(2,2) Pos.5,Fluid
B07 Rod(2,2) Pos.6,Fluid
B07 Rod(2,2) Pos.7,Fluid
B07 Rod(2,2) Pos.9,Fluid
SGA Outlet Plenum
SGA Outlet Plenum
SGA Outlet Plenum
SGB Outlet Plenum
SGB Outlet Plenum
SGB Outlet Plenum
PZR Spray Inlet Nozzle
Acc-Hot Top Gas Line
Acc-Hot Tank Fluid DL.6570
B03 Rod(2,2) Pos.1 Fluid
B03 Rod(2,2) Pos.2 Fluid
B03 Rod(2,2) Pos.3 Fluid
B03 Rod(2,2) Pos.4 Fluid
B03 Rod(2,2) Pos.5 Fluid
B03 Rod(2,2) Pos.6 Fluid
B03 Rod(2,2) Pos.7 Fluid
B03 Rod(2,2) Pos.8 Fluid
B03 Rod(2,2) Pos.9 Fluid
B07 Rod(2,2) Pos.2 Fluid
B07 Rod(2,2) Pos.4 Fluid
B07 Rod(2,2) Pos.8 Fluid
B13 Rod(2,2) Pos.1 Fluid
B13 Rod(2,2) Pos.2 Fluid
B13 Rod(2,2) Pos.3 Fluid
B13 Rod(2,2) Pos.4 Fluid
B13 Rod(2,2) Pos.5 Fluid
B13 Rod(2,2) Pos.6 Fluid
B13 Rod(2,2) Pos.7 Fluid
B13 Rod(2,2) Pos.8 Fluid
B13 Rod(2,2) Pos.9 Fluid
B17 Rod(6,6) Pos.1 Fluid
B17 Rod(6,6) Pos.2 Fluid
B17 Rod(6,6) Pos.3 Fluid
B17 Rod(6,6) Pos.4 Fluid
B17 Rod(6,6) Pos.5 Fluid
B17 Rod(6,6) Pos.6 Fluid
B17 Rod(6,6) Pos.7 Fluid
B17 Rod(6,6) Pos.8 Fluid
B17 Rod(6,6) Pos.9 Fluid
B21 Rod(6,2) Pos.1 Fluid
B21 Rod(6,2) Pos.2 Fluid
B21 Rod(6,2) Pos.3 Fluid
B21 Rod(6,2) Pos.4 Fluid
B21 Rod(6,2) Pos.5 Fluid
B21 Rod(6,2) Pos.6 Fluid
B21 Rod(6,2) Pos.7 Fluid
B21 Rod(6,2) Pos.8 Fluid
B21 Rod(6,2) Pos.9 Fluid
B23 Rod(2,6) Pos.1 Fluid
B23 Rod(2,6) Pos.2 Fluid
B23 Rod(2,6) Pos.3 Fluid
B23 Rod(2,6) Pos.4 Fluid
B23 Rod(2,6) Pos.5 Fluid
- 44 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
1470
1470
1470
1470
1470
1470
720
720
720
720
720
720
720
720
720
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
970
970
970
970
970
970
970
970
970
1470
1470
1470
1470
1470
1470
1470
1470
1470
970
970
970
970
970
970
970
970
970
1470
1470
1470
1470
1470
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
Function
ID.
TE 849
TE 850
TE 851
TE 852
TE 853
TE 854
TE 855
TE 856
TE 857
TE 858
TE 859
TE 860
TE 861
TE 862
TE 863
TE 864
TE 865
TE 866
TE 867
TE 868
TE 869
TE 870
TE 871
TE 872
TE 873
TE 874
TE 875
TE 876
TE 877
TE 878
TE 879
TE 880
TE 881
TE 882
TE 883
TE 884
TE 885
TE 886
TE 887
TE 888
TE 889
TE 890
TE 891
TE 892
TE 893
TE 894
TE 895
TE 896
TE 897
TE 898
TE 899
TE 900
TE 901
TE 902
TE 903
TE 904
TE 905
TE 906
TE 907
TE 908
TE 909
TE 910
TE 911
TE 912
TE 913
TE 914
TE 915
TE 916
TE 917
TE 918
TE 919
TE 920
TE 921
TE 922
TE 923
TE 924
TE 925
TE 926
TE 958
TE 960
TE 961
Tagname
TE-B23266
TE-B23267
TE-B23268
TE-B23269
TE-NP047F-PV
TE-NP053F-PV
TE-NP055F-PV
TE-NP057F-PV
TE-NP059F-PV
TE-EP047F-PV
TE-EP053F-PV
TE-EP055F-PV
TE-EP057F-PV
TE-EP059F-PV
TE-SP047F-PV
TE-SP053F-PV
TE-SP055F-PV
TE-SP057F-PV
TE-SP059F-PV
TE-WP047F-PV
TE-WP053F-PV
TE-WP055F-PV
TE-WP057F-PV
TE-WP059F-PV
TE-EM053F-PV
TE-EM057F-PV
TE-WM053F-PV
TE-WM057F-PV
TE-WC047F-PV
TE-WC053F-PV
TE-WC055F-PV
TE-WC057F-PV
TE-WC059F-PV
TE-EC047F-PV
TE-EC053F-PV
TE-EC055F-PV
TE-EC057F-PV
TE-EC059F-PV
TE-EN037C-DC
TE-E037C-DC
TE-ES037C-DC
TE-WN037C-DC
TE-W037C-DC
TE-WS037C-DC
TE-EN040C-DC
TE-E040C-DC
TE-ES040C-DC
TE-WN040C-DC
TE-W040C-DC
TE-WS040C-DC
TE-W042C-DC
TE-E042C-DC
TE-SW045C-DC
TE-NE045C-DC
TE-N045C-DC
TE-NW045C-DC
TE-S045C-DC
TE-SE045C-DC
TE-NE051C-DC
TE-N051C-DC
TE-NW051C-DC
TE-SW051C-DC
TE-S051C-DC
TE-SE051C-DC
TE-N054C-DC
TE-S054C-DC
TE-EX-000803-LCP
TE-EX-000807-LCP
TE-EX-000811-LCP
TE-EX-000814-LCP
TE-EX-000818-LCP
TE-EX-000821-LCP
HTE-C046-PV
TE-C046-PV
HTE-C051-PV
TE-C051-PV
TE-C056-PV
HTE-C056-PV
TE194A-PR
TE194C-PR
TE194D-PR
Location
B23 Rod(2,6) Pos.6 Fluid
B23 Rod(2,6) Pos.7 Fluid
B23 Rod(2,6) Pos.8 Fluid
B23 Rod(2,6) Pos.9 Fluid
PV UP North Peri. EL.4672
PV UP North Peri. EL.5299
PV UP North Peri. EL.5503
PV UP North Peri. EL.5706
PV UP North Peri. EL.5938
PV UP East Peri. EL.4672
PV UP East Peri. EL.5299
PV UP East Peri. EL.5503
PV UP East Peri. EL.5706
PV UP East Peri. EL.5938
PV UP South Peri. EL.4672
PV UP South Peri. EL.5299
PV UP South Peri. EL.5503
PV UP South Peri. EL.5706
PV UP South Peri. EL.5938
PV UP West Peri. EL.4672
PV UP West Peri. EL.5299
PV UP West Peri. EL.5503
PV UP West Peri. EL.5706
PV UP West Peri. EL.5938
PV UP East Middle EL.5299
PV UP East Middle EL.5706
PV UP West Middle EL.5299
PV UP West Middle EL.5706
PV UP West Center EL.4672
PV UP West Center EL.5299
PV UP West Center EL.5503
PV UP West Center EL.5706
PV UP West Center EL.5938
PV UP East Center EL.4672
PV UP East Center EL.5299
PV UP East Center EL.5503
PV UP East Center EL.5706
PV UP East Center EL.5938
DC East-North EL.3662
DC East EL.3662
DC East-South EL.3662
DC West-North EL.3662
DC West EL.3662
DC West-South EL.3662
DC East-North EL.4037
DC East EL.4037
DC East-South EL.4037
DC West-North EL.4037
DC West EL.4037
DC West-South EL.4037
DC West EL.4210
DC East EL.4210
DC South-West EL.4497
DC North-East EL.4497
DC North EL.4497
DC North-West EL.4497
DC South EL.4497
DC South-East EL.4497
DC North-East EL.5074
DC North EL.5074
DC North-West EL.5074
DC South-West EL.5074
DC South EL.5074
DC South-East EL.5074
DC North EL.5363
DC South EL.5363
Above Lower Core Plate
Above Lower Core Plate
Above Lower Core Plate
Above Lower Core Plate
Above Lower Core Plate
Above Lower Core Plate
Heated TC, EL.4597
HTC Fluid, EL.4597
Heated TC, EL.5102
HTC Fluid, EL.5102
HTC Fluid, EL.5606
Heated TC, EL.5606
PZR DL.2025
PZR DL.5995
PZR DL.7965
- 45 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
1470
1470
1470
1470
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
720
720
720
720
720
720
1270
1270
1270
1270
1270
1270
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
k
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
4.55
0.46
4.55
0.46
4.55
0.46
4.55
0.46
4.55
0.46
4.55
0.46
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
Function
ID.
TE 962
TE 963
TE 964
TE 965
TE 1089
TE 1092
TE 1093
TE 1094
TE 1095
TE 1096
TE 1097
TE 1098
TE 1099
TE 1100
TE 1101
TE 1102
TE 1123
TE 1124
TE 1125
TE 1126
TE 1127
TE 1128
TE 1129
TE 1130
TE 1131
TE 1132
TE 1133
TE 1134
TE 1135
TE 1136
TE 1137
TE 1138
TE 1139
TE 1140
TE 1141
TE 1142
TE 1143
TE 1144
TE 1145
TE194E-PR
TE194F-PR
TE-PR2
TE677-ACC
TE910-CWT
TE960-AIR
TE961-AIR
TC030D-HLA
TC170D-HLB
TC080D-CLA
TC220D-CLB
TC194B-PR
TC223D-SGA
TC223D-SGB
TC-E000C-DC
TC-E060C-DC
TE687A-ACH
TE687B-ACH
TE687C-ACH
TE687D-ACH
TE687E-ACH
TE687F-ACH
TE687G-ACH
TE687H-ACH
TE687I-ACH
TE687J-ACH
TE687K-ACH
TE687L-ACH
TE687M-ACH
TE687N-ACH
TE687O-ACH
TE687P-ACH
TE687Q-ACH
TE687R-ACH
TE687S-ACH
TE687T-ACH
TE687U-ACH
TE687V-ACH
TE687W-ACH
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DT
DTE020A-HLA
DTE020B-HLA
DTE030A-HLA
DTE030B-HLA
DTE050A-LSA
DTE050B-LSA
DTE060A-PCA
DTE070A-CLA
DTE070B-CLA
DTE080A-CLA
DTE080B-CLA
DTE100-HLA
DTE160A-HLB
DTE160B-HLB
DTE170A-HLB
DTE170B-HLB
DTE190A-LSB
DTE190B-LSB
DTE200A-PCB
DTE210A-CLB
DTE210B-CLB
DTE220A-CLB
DTE220B-CLB
DTE240-HLB
DTE270A-PR
DTE280A-PR
DTE-E-015A-PV
DTE-W-015A-PV
DTE-N000A-PV
DTE-S000A-PV
DTE-E000A-PV
DTE-W000A-PV
DTE-N018A-PV
DTE-S018A-PV
DTE-E018A-PV
DTE-W018A-PV
DTE-N036A-PV
DTE-S036A-PV
DTE-E036A-PV
DTE-W036A-PV
DTE-N060A-PV
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
Tagname
Location
Range
PZR DL.9795
PZR DL.11321
PZR HT
Acc-Cold Tank Fluid DL.6450
Cooling Water Tank
Atmospheric Temperature
Room Temperature
HLA Fluid at Pipe Bottom
HLB Fluid at Pipe Bottom
CLA Fluid at Pipe Bottom
CLB Fluid at Pipe Bottom
PZR Fluid
SGA Steam Dome
SGB Steam Dome
Downcomer EL.0.0m,East
Downcomer EL.6.0m,East
Acc-Hot Tank Fluid DL.10
Acc-Hot Tank Fluid DL.475
Acc-Hot Tank Fluid DL.940
Acc-Hot Tank Fluid DL.1405
Acc-Hot Tank Fluid DL.1870
Acc-Hot Tank Fluid DL.2335
Acc-Hot Tank Fluid DL.2800
Acc-Hot Tank Fluid DL.3265
Acc-Hot Tank Fluid DL.3275
Acc-Hot Tank Fluid DL.3285
Acc-Hot Tank Fluid DL.3295
Acc-Hot Tank Fluid DL.3305
Acc-Hot Tank Fluid DL.3315
Acc-Hot Tank Fluid DL.3325
Acc-Hot Tank Fluid DL.3335
Acc-Hot Tank Fluid DL.3345
Acc-Hot Tank Fluid DL.3355
Acc-Hot Tank Fluid DL.3820
Acc-Hot Tank Fluid DL.4285
Acc-Hot Tank Fluid DL.4750
Acc-Hot Tank Fluid DL.5215
Acc-Hot Tank Fluid DL.5680
Acc-Hot Tank Fluid DL.6145
LO
270
270
270
270
270
170
170
273
273
273
273
273
273
273
273
273
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
1470
720
370
370
370
673
673
673
673
673
673
673
673
673
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
HLA Wall I/O
HLA Wall-Fluid
HLA Wall I/O
HLA Wall-Fluid
LSA Wall I/O
LSA Wall-Fluid
PCA Wall I/O
CLA Wall I/O
CLA Wall-Fluid
CLA Wall I/O
CLA Wall-Fluid
HLA-CLA
HLB Wall I/O
HLB Wall-Fluid
HLB Wall I/O
HLB Wall-Fluid
LSB Wall I/O
LSB Wall-Fluid
PCB Wall I/O
CLB Wall I/O
CLB Wall-Fluid
CLB Wall I/O
CLB Wall-Fluid
HLB-CLB
PZR Spray Line Wall-Fluid
PZR Surge Line Wall-Fluid
PV Wall I/O-E at L. Plenum
PV Wall I/O-W at L. Plenum
PV Wall I/O-N at DC Bottom
PV Wall I/O-S at DC Bottom
PV Wall I/O-E at DC Bottom
PV Wall I/O-W at DC Bottom
PV Wall I/O-N at DC Middle
PV Wall I/O-S at DC Middle
PV Wall I/O-E at DC Middle
PV Wall I/O-W at DC Middle
PV Wall I/O-N at Upper DC
PV Wall I/O-S at Upper DC
PV Wall I/O-E at Upper DC
PV Wall I/O-W at Upper DC
PV Wall I/O-N at DC Top
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
- 46 -
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
5.31
0.44
2.75
0.61
2.37
2.37
2.30
1.15
2.30
1.15
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
2.90
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.97
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
Function
ID.
DT 42
DT 43
DT 44
DT 45
DT 46
DT 47
DT 48
DT 50
DT 51
DT 52
DT 53
DT 54
DT 55
DT 56
DT 57
DT 58
DT 59
DT 60
DT 62
DT 63
DT 64
DT 66
DT 67
DT 68
DT 69
DT 70
DT 71
DT 72
DT 73
DT 74
DT 75
DT 76
DT 78
DT 79
DT 80
DT 81
DT 82
DT 83
DT 84
DT 85
DT 86
DT 87
DT 88
DT 89
DT 90
DT 91
DT 92
DT 93
DT 94
DT 95
DT 96
DT 97
DT 98
DT 99
DT 100
DT 101
DT 102
DT 103
DT 104
DT 105
DT 106
DT 107
DT 108
DT 109
DT 110
DT 111
DT 112
DT 113
DT 114
DT 115
DT 116
DT 117
DT 118
DT 119
DT 120
DT 121
DT 122
DT 123
DT 124
DT 125
DT 126
Tagname
DTE-S060A-PV
DTE-E060A-PV
DTE-W060A-PV
DTE-E080A-PV
DTE-W080A-PV
DTE-N000B-PV
DTE-S000B-PV
DTE-W000B-PV
DTE-N018B-PV
DTE-S018B-PV
DTE-E018B-PV
DTE-W018B-PV
DTE-N036B-PV
DTE-S036B-PV
DTE-E036B-PV
DTE-W036B-PV
DTE-N060B-PV
DTE-S060B-PV
DTE-W060B-PV
DTE-N000C-PV
DTE-S000C-PV
DTE-W000C-PV
DTE-N018C-PV
DTE-S018C-PV
DTE-E018C-PV
DTE-W018C-PV
DTE-N036C-PV
DTE-S036C-PV
DTE-E036C-PV
DTE-W036C-PV
DTE-N060C-PV
DTE-S060C-PV
DTE-W060C-PV
DTE-N000E-PV
DTE-S000E-PV
DTE-E000E-PV
DTE-W000E-PV
DTE-N010E-PV
DTE-S010E-PV
DTE-E010E-PV
DTE-W010E-PV
DTE-N018E-PV
DTE-S018E-PV
DTE-E018E-PV
DTE-W018E-PV
DTE-N026E-PV
DTE-S026E-PV
DTE-E026E-PV
DTE-W026E-PV
DTE-N036E-PV
DTE-S036E-PV
DTE-E036E-PV
DTE-W036E-PV
DTE-N049E-PV
DTE-S049E-PV
DTE-E049E-PV
DTE-W049E-PV
DTE-N060E-PV
DTE-S060E-PV
DTE-E060E-PV
DTE-W060E-PV
DTE-040-B09-UCP
DTE-040-B11-UCP
DTE-040-B01-UCP
DTE-040-B03-UCP
DTE-040-B05-UCP
DTE-040-B07-UCP
DTE-040-B21-UCP
DTE-040-B23-UCP
DTE-040-B02-UCP
DTE-040-B15-UCP
DTE-040-B06-UCP
DTE-040-B14-UCP
DTE-040-B18-UCP
DTE-040-B19-UCP
DTE-040-B10-UCP
DTE-040-B12-UCP
DTE-040-B04-UCP
DTE-040-B08-UCP
DTE-040-B22-UCP
DTE-040-B24-UCP
Location
PV Wall I/O-S at DC Top
PV Wall I/O-E at DC Top
PV Wall I/O-W at DC Top
PV Wall I/O-E at DC Head
PV Wall I/O-W at DC Head
PV/DC Fluid at DC Bottom
PV/DC Fluid at DC Bottom
PV/DC Fluid at DC Bottom
PV/DC Fluid at DC Middle
PV/DC Fluid at DC Middle
PV/DC Fluid at DC Middle
PV/DC Fluid at DC Middle
PV/DC Fluid at Upper DC
PV/DC Fluid at Upper DC
PV/DC Fluid at Upper DC
PV/DC Fluid at Upper DC
PV/DC Fluid at DC Top
PV/DC Fluid at DC Top
PV/DC Fluid at DC Top
CB/DC Fluid at DC Bottom
CB/DC Fluid at DC Bottom
CB/DC Fluid at DC Bottom
CB/DC Fluid at DC Middle
CB/DC Fluid at DC Middle
CB/DC Fluid at DC Middle
CB/DC Fluid at DC Middle
CB/DC Fluid at Upper DC
CB/DC Fluid at Upper DC
CB/DC Fluid at Upper DC
CB/DC Fluid at Upper DC
CB/DC Fluid at DC Top
CB/DC Fluid at DC Top
CB/DC Fluid at DC Top
CB Wall I/O at DC Bottom
CB Wall I/O at DC Bottom
CB Wall I/O at DC Bottom
CB Wall I/O at DC Bottom
CB Wall I/O at Lower DC
CB Wall I/O at Lower DC
CB Wall I/O at Lower DC
CB Wall I/O at Lower DC
CB Wall I/O at DC Middle
CB Wall I/O at DC Middle
CB Wall I/O at DC Middle
CB Wall I/O at DC Middle
CB Wall I/O at DC Center
CB Wall I/O at DC Center
CB Wall I/O at DC Center
CB Wall I/O at DC Center
CB Wall I/O at Upper DC
CB Wall I/O at Upper DC
CB Wall I/O at Upper DC
CB Wall I/O at Upper DC
CB Wall I/O below Nozzle
CB Wall I/O below Nozzle
CB Wall I/O below Nozzle
CB Wall I/O below Nozzle
CB Wall I/O at DC Top
CB Wall I/O at DC Top
CB Wall I/O at DC Top
CB Wall I/O at DC Top
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
Fluid DT across UCP
- 47 -
Range
LO
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
HI
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
Function
ID.
DT 139
DT 140
DT 141
DT 142
DT 143
DT 144
DT 145
DT 146
DT 147
DT 148
DT 149
DT 150
DT 151
DT 152
DT 153
DT 154
DT 155
DT 156
DT 157
DT 158
DT 160
DT 161
DT 162
DT 163
DT 164
DT 165
DT 166
DT 167
DT 168
DT 169
DT 170
DT 171
DT 172
DT 173
DT 174
DT 175
DT 176
DT 177
DT 178
DT 179
DT 180
DT 181
DT 182
DT 183
DT 184
DT 185
DT 186
DT 187
DT 188
DT 189
DT 191
DT 192
DT 193
DT 194
DT 195
DT 196
DT 197
DT 198
DT 199
DT 201
DT 202
DT 203
DT 204
DT 205
DT 206
DT 208
DT 211
DT 212
DT 213
DT 214
DT 215
DT 216
DT 217
DTE-086A-SGA
DTE-137A-SGA
DTE-178A-SGA
DTE-223A-SGA
DTE-IN0861-SGA
DTE-EX0861-SGA
DTE-IN0862-SGA
DTE-EX0862-SGA
DTE-IN0863-SGA
DTE-EX0863-SGA
DTE-IN0991-SGA
DTE-EX0991-SGA
DTE-IN0992-SGA
DTE-EX0992-SGA
DTE-IN0993-SGA
DTE-EX0993-SGA
DTE-IN1121-SGA
DTE-EX1121-SGA
DTE-IN1122-SGA
DTE-EX1122-SGA
DTE-EX1123-SGA
DTE-IN1371-SGA
DTE-EX1371-SGA
DTE-IN1372-SGA
DTE-EX1372-SGA
DTE-IN1373-SGA
DTE-EX1373-SGA
DTE-IN1632-SGA
DTE-EX1632-SGA
DTE-IN1633-SGA
DTE-EX1633-SGA
DTE-IN1701-SGA
DTE-IN1782-SGA
DTE-IN1863-SGA
DTE-086A-SGB
DTE-137A-SGB
DTE-178A-SGB
DTE-223A-SGB
DTE-IN0861-SGB
DTE-EX0861-SGB
DTE-IN0862-SGB
DTE-EX0862-SGB
DTE-IN0863-SGB
DTE-EX0863-SGB
DTE-IN0991-SGB
DTE-EX0991-SGB
DTE-IN0992-SGB
DTE-EX0992-SGB
DTE-IN0993-SGB
DTE-EX0993-SGB
DTE-EX1121-SGB
DTE-IN1122-SGB
DTE-EX1122-SGB
DTE-IN1123-SGB
DTE-EX1123-SGB
DTE-IN1371-SGB
DTE-EX1371-SGB
DTE-IN1372-SGB
DTE-EX1372-SGB
DTE-EX1373-SGB
DTE-IN1632-SGB
DTE-EX1632-SGB
DTE-IN1633-SGB
DTE-EX1633-SGB
DTE-IN1701-SGB
DTE-IN1863-SGB
DTE-N022E-PV
DTE-S022E-PV
DTE-N030E-PV
DTE-S030E-PV
DTE-C046-PV
DTE-C051-PV
DTE-C056-PV
SGA Wall I/O Pos.1
SGA Wall I/O Pos.7
SGA Wall I/O Pos.10
SGA Steam Dome Wall I/O
SGA U-Tube(1,IN) Pos.1
SGA U-Tube(1,EX) Pos.1
SGA U-Tube(2,IN) Pos.1
SGA U-Tube(2,EX) Pos.1
SGA U-Tube(3,IN) Pos.1
SGA U-Tube(3,EX) Pos.1
SGA U-Tube(1,IN) Pos.3
SGA U-Tube(1,EX) Pos.3
SGA U-Tube(2,IN) Pos.3
SGA U-Tube(2,EX) Pos.3
SGA U-Tube(3,IN) Pos.3
SGA U-Tube(3,EX) Pos.3
SGA U-Tube(1,IN) Pos.5
SGA U-Tube(1,EX) Pos.5
SGA U-Tube(2,IN) Pos.5
SGA U-Tube(2,EX) Pos.5
SGA U-Tube(3,EX) Pos.5
SGA U-Tube(1,IN) Pos.7
SGA U-Tube(1,EX) Pos.7
SGA U-Tube(2,IN) Pos.7
SGA U-Tube(2,EX) Pos.7
SGA U-Tube(3,IN) Pos.7
SGA U-Tube(3,EX) Pos.7
SGA U-Tube(2,IN) Pos.9
SGA U-Tube(2,EX) Pos.9
SGA U-Tube(3,IN) Pos.9
SGA U-Tube(3,EX) Pos.9
SGA U-Tube(1,IN) Pos.10
SGA U-Tube(2,IN) Pos.10
SGA U-Tube(3,IN) Pos.11
SGB Wall I/O Pos.1
SGB Wall I/O Pos.7
SGB Wall I/O Pos.10
SGB Steam Dome Wall I/O
SGB U-Tube(1,IN) Pos.1
SGB U-Tube(1,EX) Pos.1
SGB U-Tube(2,IN) Pos.1
SGB U-Tube(2,EX) Pos.1
SGB U-Tube(3,IN) Pos.1
SGB U-Tube(3,EX) Pos.1
SGB U-Tube(1,IN) Pos.3
SGB U-Tube(1,EX) Pos.3
SGB U-Tube(2,IN) Pos.3
SGB U-Tube(2,EX) Pos.3
SGB U-Tube(3,IN) Pos.3
SGB U-Tube(3,EX) Pos.3
SGB U-Tube(1,EX) Pos.5
SGB U-Tube(2,IN) Pos.5
SGB U-Tube(2,EX) Pos.5
SGB U-Tube(3,IN) Pos.5
SGB U-Tube(3,EX) Pos.5
SGB U-Tube(1,IN) Pos.7
SGB U-Tube(1,EX) Pos.7
SGB U-Tube(2,IN) Pos.7
SGB U-Tube(2,EX) Pos.7
SGB U-Tube(3,EX) Pos.7
SGB U-Tube(2,IN) Pos.9
SGB U-Tube(2,EX) Pos.9
SGB U-Tube(3,IN) Pos.9
SGB U-Tube(3,EX) Pos.9
SGB U-Tube(1,IN) Pos.10
SGB U-Tube(3,IN) Pos.11
CB Wall I/O at DC Middle
CB Wall I/O at DC Middle
CB Wall I/O at Upper DC
CB Wall I/O at Upper DC
HTC Differential Temp
HTC Differential Temp
HTC Differential Temp
TW
TW
TW
TW
TW
TW
TW
TWE020B-HLA
TWE030B-HLA
TWE050B-LSA
TWE060B-PCA
TWE070B-CLA
TWE080B-CLA
TWE160B-HLB
HLA Inner Surface
HLA Inner Surface
LSA Inner Surface
PCA Inner Surface
CLA Inner Surface
CLA Inner Surface
HLB Inner Surface
1
2
3
4
5
6
7
Tagname
Location
- 48 -
Range
LO
-40
-40
-40
-40
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-40
-40
-40
-40
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-100
-150
-150
-150
-150
-150
-150
-150
HI
40
40
40
40
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
40
40
40
40
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
150
150
150
150
150
150
150
270
270
270
270
270
270
270
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.07
2.58
2.07
2.58
2.07
2.58
2.07
2.58
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.07
2.58
2.07
2.58
2.07
2.58
2.07
2.58
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.42
1.21
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.90
0.97
2.75
2.75
2.75
2.75
2.75
2.75
2.75
0.61
0.61
0.61
0.61
0.61
0.61
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
Function
ID.
TW
8
TW
9
TW 10
TW 11
TW 12
TW 13
TW 14
TW 15
TW 16
TW 17
TW 18
TW 19
TW 20
TW 21
TW 22
TW 23
TW 24
TW 25
TW 26
TW 27
TW 28
TW 29
TW 30
TW 31
TW 32
TW 33
TW 34
TW 35
TW 36
TW 37
TW 38
TW 39
TW 40
TW 41
TW 42
TW 43
TW 44
TW 45
TW 46
TW 47
TW 48
TW 49
TW 50
TW 51
TW 52
TW 53
TW 54
TW 55
TW 56
TW 57
TW 58
TW 59
TW 60
TW 61
TW 62
TW 63
TW 64
TW 65
TW 66
TW 67
TW 68
TW 69
TW 70
TW 71
TW 72
TW 73
TW 74
TW 75
TW 76
TW 77
TW 78
TW 79
TW 80
TW 81
TW 82
TW 83
TW 84
TW 85
TW 86
TW 87
TW 88
Tagname
TWE170B-HLB
TWE190B-LSB
TWE200B-PCB
TWE210B-CLB
TWE220B-CLB
TWE280B-PR
TWE431A-SGA
TWE432A-SGA
TWE433A-SGA
TWE434A-SGA
TWE471A-SGB
TWE472A-SGB
TWE473A-SGB
TWE474A-SGB
TWE-E-015B-PV
TWE-W-015B-PV
TWE-N000B-PV
TWE-S000B-PV
TWE-E000B-PV
TWE-W000B-PV
TWE-N018B-PV
TWE-S018B-PV
TWE-E018B-PV
TWE-W018B-PV
TWE-N036B-PV
TWE-S036B-PV
TWE-E036B-PV
TWE-W036B-PV
TWE-N060B-PV
TWE-S060B-PV
TWE-E060B-PV
TWE-W060B-PV
TWE-E080B-PV
TWE-W080B-PV
TWE-N000D-CB
TWE-S000D-CB
TWE-E000D-CB
TWE-W000D-CB
TWE-N010D-CB
TWE-S010D-CB
TWE-E010D-CB
TWE-W010D-CB
TWE-N018D-CB
TWE-S018D-CB
TWE-E018D-CB
TWE-W018D-CB
TWE-N026D-CB
TWE-S026D-CB
TWE-E026D-CB
TWE-W026D-CB
TWE-N036D-CB
TWE-S036D-CB
TWE-E036D-CB
TWE-W036D-CB
TWE-N049D-CB
TWE-S049D-CB
TWE-E049D-CB
TWE-W049D-CB
TWE-N060D-CB
TWE-S060D-CB
TWE-E060D-CB
TWE-W060D-CB
TWE-N000E-CB
TWE-S000E-CB
TWE-E000E-CB
TWE-W000E-CB
TWE-N010E-CB
TWE-S010E-CB
TWE-E010E-CB
TWE-W010E-CB
TWE-N018E-CB
TWE-S018E-CB
TWE-E018E-CB
TWE-W018E-CB
TWE-N026E-CB
TWE-S026E-CB
TWE-E026E-CB
TWE-W026E-CB
TWE-N036E-CB
TWE-S036E-CB
TWE-E036E-CB
Location
HLB Inner Surface
LSB Inner Surface
PCB Inner Surface
CLB Inner Surface
CLB Inner Surface
Pressurizer Surge Line
SGA Downcomer A Wall
SGA Downcomer B Wall
SGA Downcomer C Wall
SGA Downcomer D Wall
SGB Downcomer A Wall
SGB Downcomer B Wall
SGB Downcomer C Wall
SGB Downcomer D Wall
PV Inner Surf. EL.-1.5m,E
PV Inner Surf. EL.-1.5m,W
PV Inner Surf. EL.0.0m,N
PV Inner Surf. EL.0.0m,S
PV Inner Surf. EL.0.0m,E
PV Inner Surf. EL.0.0m,W
PV Inner Surf. EL.1.8m,N
PV Inner Surf. EL.1.8m,S
PV Inner Surf. EL.1.8m,E
PV Inner Surf. EL.1.8m,W
PV Inner Surf. EL.3.6m,N
PV Inner Surf. EL.3.6m,S
PV Inner Surf. EL.3.6m,E
PV Inner Surf. EL.3.6m,W
PV Inner Surf. EL.6.0m,N
PV Inner Surf. EL.6.0m,S
PV Inner Surf. EL.6.0m,E
PV Inner Surf. EL.6.0m,W
PV Inner Surf. EL.8.0m,E
PV Inner Surf. EL.8.0m,W
CB Outer Surf. EL.0.0m,N
CB Outer Surf. EL.0.0m,S
CB Outer Surf. EL.0.0m,E
CB Outer Surf. EL.0.0m,W
CB Outer Surf. EL.1.0m,N
CB Outer Surf. EL.1.0m,S
CB Outer Surf. EL.1.0m,E
CB Outer Surf. EL.1.0m,W
CB Outer Surf. EL.1.8m,N
CB Outer Surf. EL.1.8m,S
CB Outer Surf. EL.1.8m,E
CB Outer Surf. EL.1.8m,W
CB Outer Surf. EL.2.6m,N
CB Outer Surf. EL.2.6m,S
CB Outer Surf. EL.2.6m,E
CB Outer Surf. EL.2.6m,W
CB Outer Surf. EL.3.6m,N
CB Outer Surf. EL.3.6m,S
CB Outer Surf. EL.3.6m,E
CB Outer Surf. EL.3.6m,W
CB Outer Surf. EL.4.9m,N
CB Outer Surf. EL.4.9m,S
CB Outer Surf. EL.4.9m,E
CB Outer Surf. EL.4.9m,W
CB Outer Surf. EL.6.0m,N
CB Outer Surf. EL.6.0m,S
CB Outer Surf. EL.6.0m,E
CB Outer Surf. EL.6.0m,W
CB Inner Surf. EL.0.0m,N
CB Inner Surf. EL.0.0m,S
CB Inner Surf. EL.0.0m,E
CB Inner Surf. EL.0.0m,W
CB Inner Surf. EL.1.0m,N
CB Inner Surf. EL.1.0m,S
CB Inner Surf. EL.1.0m,E
CB Inner Surf. EL.1.0m,W
CB Inner Surf. EL.1.8m,N
CB Inner Surf. EL.1.8m,S
CB Inner Surf. EL.1.8m,E
CB Inner Surf. EL.1.8m,W
CB Inner Surf. EL.2.6m,N
CB Inner Surf. EL.2.6m,S
CB Inner Surf. EL.2.6m,E
CB Inner Surf. EL.2.6m,W
CB Inner Surf. EL.3.6m,N
CB Inner Surf. EL.3.6m,S
CB Inner Surf. EL.3.6m,E
- 49 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
670
670
670
670
670
670
670
670
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
Function
ID.
TW 89
TW 90
TW 92
TW 93
TW 94
TW 95
TW 96
TW 97
TW 108
TW 109
TW 110
TW 111
TW 112
TW 113
TW 114
TW 117
TW 118
TW 119
TW 120
TW 133
TW 134
TW 135
TW 136
TW 137
TW 138
TW 151
TW 152
TW 153
TW 154
TW 155
TW 156
TW 165
TW 166
TW 167
TW 168
TW 171
TW 172
TW 173
TW 174
TW 187
TW 188
TW 189
TW 190
TW 191
TW 192
TW 205
TW 206
TW 207
TW 208
TW 209
TW 210
TW 225
TW 226
TW 227
TW 231
TW 232
TW 233
TW 234
TW 235
TW 238
TW 239
TW 240
TW 249
TW 250
TW 251
TW 252
TW 265
TW 268
TW 269
TW 270
TW 285
TW 286
TW 287
TW 288
TW 295
TW 297
TW 298
TW 299
TW 300
TW 307
TW 310
Tagname
TWE-W036E-CB
TWE-N049E-CB
TWE-E049E-CB
TWE-W049E-CB
TWE-N060E-CB
TWE-S060E-CB
TWE-E060E-CB
TWE-W060E-CB
TWE-063-B09-UCSP
TWE-065-B09-UCSP
TWE-E047G-UP
TWE-W047G-UP
TWE-E056G-UP
TWE-W056G-UP
TWE-080G-UH
TWE-B01345
TWE-B01346
TWE-B01347
TWE-B01348
TWE-B02341
TWE-B02343
TWE-B02345
TWE-B02346
TWE-B02348
TWE-B02349
TWE-B03431
TWE-B03433
TWE-B03435
TWE-B03436
TWE-B03438
TWE-B03439
TWE-B04435
TWE-B04436
TWE-B04437
TWE-B04438
TWE-B05345
TWE-B05346
TWE-B04437
TWE-B04438
TWE-B06341
TWE-B06343
TWE-B06345
TWE-B06346
TWE-B06348
TWE-B06349
TWE-B07431
TWE-B07433
TWE-B07435
TWE-B07436
TWE-B07438
TWE-B07439
TWE-B08435
TWE-B08436
TWE-B08437
TWE-B09445
TWE-B09446
TWE-B09447
TWE-B09448
TWE-B10441
TWE-B10445
TWE-B10447
TWE-B10449
TWE-B11445
TWE-B11446
TWE-B11447
TWE-B11448
TWE-B12441
TWE-B12445
TWE-B12447
TWE-B12449
TWE-B13445
TWE-B13446
TWE-B13447
TWE-B13448
TWE-B14441
TWE-B14445
TWE-B14446
TWE-B14448
TWE-B14449
TWE-B15441
TWE-B15445
Location
CB Inner Surf. EL.3.6m,W
CB Inner Surf. EL.4.9m,N
CB Inner Surf. EL.4.9m,E
CB Inner Surf. EL.4.9m,W
CB Inner Surf. EL.6.0m,N
CB Inner Surf. EL.6.0m,S
CB Inner Surf. EL.6.0m,E
CB Inner Surf. EL.6.0m,W
UCSP L.Surf. EL.6.3m,B09
UCSP U.Surf. EL.6.5m,B09
UP Str. Surf. EL.4.7m,East
UP Str. Surf. EL.4.7m,West
UP Str. Surf. EL.5.6m,East
UP Str. Surf. EL.5.6m,West
UH Str. Surf. EL.8.0m,CTR
B01 Rod(3,4) Pos.5
B01 Rod(3,4) Pos.6
B01 Rod(3,4) Pos.7
B01 Rod(3,4) Pos.8
B02 Rod(3,4) Pos.1
B02 Rod(3,4) Pos.3
B02 Rod(3,4) Pos.5
B02 Rod(3,4) Pos.6
B02 Rod(3,4) Pos.8
B02 Rod(3,4) Pos.9
B03 Rod(4,3) Pos.1
B03 Rod(4,3) Pos.3
B03 Rod(4,3) Pos.5
B03 Rod(4,3) Pos.6
B03 Rod(4,3) Pos.8
B03 Rod(4,3) Pos.9
B04 Rod(4,3) Pos.5
B04 Rod(4,3) Pos.6
B04 Rod(4,3) Pos.7
B04 Rod(4,3) Pos.8
B05 Rod(3,4) Pos.5
B05 Rod(3,4) Pos.6
B05 Rod(3,4) Pos.7
B05 Rod(3,4) Pos.8
B06 Rod(3,4) Pos.1
B06 Rod(3,4) Pos.3
B06 Rod(3,4) Pos.5
B06 Rod(3,4) Pos.6
B06 Rod(3,4) Pos.8
B06 Rod(3,4) Pos.9
B07 Rod(4,3) Pos.1
B07 Rod(4,3) Pos.3
B07 Rod(4,3) Pos.5
B07 Rod(4,3) Pos.6
B07 Rod(4,3) Pos.8
B07 Rod(4,3) Pos.9
B08 Rod(4,3) Pos.5
B08 Rod(4,3) Pos.6
B08 Rod(4,3) Pos.7
B09 Rod(4,4) Pos.5
B09 Rod(4,4) Pos.6
B09 Rod(4,4) Pos.7
B09 Rod(4,4) Pos.8
B10 Rod(4,4) Pos.1
B10 Rod(4,4) Pos.5
B10 Rod(4,4) Pos.7
B10 Rod(4,4) Pos.9
B11 Rod(4,4) Pos.5
B11 Rod(4,4) Pos.6
B11 Rod(4,4) Pos.7
B11 Rod(4,4) Pos.8
B12 Rod(4,4) Pos.1
B12 Rod(4,4) Pos.5
B12 Rod(4,4) Pos.7
B12 Rod(4,4) Pos.9
B13 Rod(4,4) Pos.5
B13 Rod(4,4) Pos.6
B13 Rod(4,4) Pos.7
B13 Rod(4,4) Pos.8
B14 Rod(4,4) Pos.1
B14 Rod(4,4) Pos.5
B14 Rod(4,4) Pos.6
B14 Rod(4,4) Pos.8
B14 Rod(4,4) Pos.9
B15 Rod(4,4) Pos.1
B15 Rod(4,4) Pos.5
- 50 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
970
970
970
970
970
970
970
970
970
970
970
970
970
970
970
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
Function
ID.
TW 311
TW 312
TW 327
TW 328
TW 329
TW 330
TW 339
TW 340
TW 341
TW 342
TW 355
TW 356
TW 357
TW 358
TW 359
TW 360
TW 367
TW 368
TW 369
TW 370
TW 371
TW 372
TW 373
TW 376
TW 377
TW 378
TW 379
TW 382
TW 383
TW 384
TW 409
TW 410
TW 411
TW 412
TW 413
TW 414
TW 421
TW 424
TW 425
TW 426
TW 445
TW 446
TW 447
TW 448
TW 449
TW 450
TW 457
TW 458
TW 459
TW 463
TW 464
TW 465
TW 466
TW 467
TW 468
TW 469
TW 470
TW 471
TW 472
TW 473
TW 474
TW 475
TW 476
TW 477
TW 478
TW 479
TW 480
TW 481
TW 482
TW 483
TW 484
TW 485
TW 486
TW 487
TW 488
TW 489
TW 490
TW 491
TW 492
TW 493
TW 494
Tagname
TWE-B15447
TWE-B15449
TWE-B16445
TWE-B16446
TWE-B16447
TWE-B16448
TWE-B17445
TWE-B17446
TWE-B17447
TWE-B17448
TWE-B18441
TWE-B18443
TWE-B18445
TWE-B18446
TWE-B18448
TWE-B18449
TWE-B19441
TWE-B19443
TWE-B19445
TWE-B19446
TWE-B19448
TWE-B19449
TWE-B20441
TWE-B20445
TWE-B20447
TWE-B20449
TWE-B21441
TWE-B21445
TWE-B21447
TWE-B21449
TWE-B22441
TWE-B22443
TWE-B22445
TWE-B22446
TWE-B22448
TWE-B22449
TWE-B23441
TWE-B23445
TWE-B23447
TWE-B23449
TWE-B24441
TWE-B24443
TWE-B24445
TWE-B24446
TWE-B24448
TWE-B24449
TWE-IN0641-SGA
TWE-IN0642-SGA
TWE-IN0643-SGA
TWE-086B-SGA
TWE-137B-SGA
TWE-178B-SGA
TWE-223B-SGA
TWE-IN0861-SGA
TWE-EX0861-SGA
TWE-IN0862-SGA
TWE-EX0862-SGA
TWE-IN0863-SGA
TWE-EX0863-SGA
TWE-IN0991-SGA
TWE-EX0991-SGA
TWE-IN0992-SGA
TWE-EX0992-SGA
TWE-IN0993-SGA
TWE-EX0993-SGA
TWE-IN1121-SGA
TWE-EX1121-SGA
TWE-IN1122-SGA
TWE-EX1122-SGA
TWE-IN1123-SGA
TWE-EX1123-SGA
TWE-IN1371-SGA
TWE-EX1371-SGA
TWE-IN1372-SGA
TWE-EX1372-SGA
TWE-IN1373-SGA
TWE-EX1373-SGA
TWE-IN1632-SGA
TWE-EX1632-SGA
TWE-IN1633-SGA
TWE-EX1633-SGA
Location
B15 Rod(4,4) Pos.7
B15 Rod(4,4) Pos.9
B16 Rod(4,4) Pos.5
B16 Rod(4,4) Pos.6
B16 Rod(4,4) Pos.7
B16 Rod(4,4) Pos.8
B17 Rod(4,4) Pos.5
B17 Rod(4,4) Pos.6
B17 Rod(4,4) Pos.7
B17 Rod(4,4) Pos.8
B18 Rod(4,4) Pos.1
B18 Rod(4,4) Pos.3
B18 Rod(4,4) Pos.5
B18 Rod(4,4) Pos.6
B18 Rod(4,4) Pos.8
B18 Rod(4,4) Pos.9
B19 Rod(4,4) Pos.1
B19 Rod(4,4) Pos.3
B19 Rod(4,4) Pos.5
B19 Rod(4,4) Pos.6
B19 Rod(4,4) Pos.8
B19 Rod(4,4) Pos.9
B20 Rod(4,4) Pos.1
B20 Rod(4,4) Pos.5
B20 Rod(4,4) Pos.7
B20 Rod(4,4) Pos.9
B21 Rod(4,4) Pos.1
B21 Rod(4,4) Pos.5
B21 Rod(4,4) Pos.7
B21 Rod(4,4) Pos.9
B22 Rod(4,4) Pos.1
B22 Rod(4,4) Pos.3
B22 Rod(4,4) Pos.5
B22 Rod(4,4) Pos.6
B22 Rod(4,4) Pos.8
B22 Rod(4,4) Pos.9
B23 Rod(4,4) Pos.1
B23 Rod(4,4) Pos.5
B23 Rod(4,4) Pos.7
B23 Rod(4,4) Pos.9
B24 Rod(4,4) Pos.1
B24 Rod(4,4) Pos.3
B24 Rod(4,4) Pos.5
B24 Rod(4,4) Pos.6
B24 Rod(4,4) Pos.8
B24 Rod(4,4) Pos.9
SGA Inlet Plenum
SGA Inlet Plenum
SGA Inlet Plenum
SGA Inner Surf. Pos.1
SGA Inner Surf. Pos.7
SGA Inner Surf. Pos.10
SGA Inner Surf.
SGA U-Tube(1,IN) Pos.1
SGA U-Tube(1,EX) Pos.1
SGA U-Tube(2,IN) Pos.1
SGA U-Tube(2,EX) Pos.1
SGA U-Tube(3,IN) Pos.1
SGA U-Tube(3,EX) Pos.1
SGA U-Tube(1,IN) Pos.3
SGA U-Tube(1,EX) Pos.3
SGA U-Tube(2,IN) Pos.3
SGA U-Tube(2,EX) Pos.3
SGA U-Tube(3,IN) Pos.3
SGA U-Tube(3,EX) Pos.3
SGA U-Tube(1,IN) Pos.5
SGA U-Tube(1,EX) Pos.5
SGA U-Tube(2,IN) Pos.5
SGA U-Tube(2,EX) Pos.5
SGA U-Tube(3,IN) Pos.5
SGA U-Tube(3,EX) Pos.5
SGA U-Tube(1,IN) Pos.7
SGA U-Tube(1,EX) Pos.7
SGA U-Tube(2,IN) Pos.7
SGA U-Tube(2,EX) Pos.7
SGA U-Tube(3,IN) Pos.7
SGA U-Tube(3,EX) Pos.7
SGA U-Tube(2,IN) Pos.9
SGA U-Tube(2,EX) Pos.9
SGA U-Tube(3,IN) Pos.9
SGA U-Tube(3,EX) Pos.9
- 51 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
720
720
720
670
670
670
670
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
Function
ID.
TW 495
TW 496
TW 497
TW 498
TW 499
TW 500
TW 504
TW 505
TW 506
TW 507
TW 508
TW 509
TW 510
TW 511
TW 512
TW 513
TW 514
TW 515
TW 516
TW 517
TW 518
TW 519
TW 520
TW 521
TW 522
TW 523
TW 524
TW 525
TW 526
TW 527
TW 528
TW 529
TW 530
TW 531
TW 532
TW 533
TW 534
TW 535
TW 536
TW 537
TW 538
TW 545
TW 598
TW 673
TW 674
TW 675
TW 676
TW 677
TW 678
TW 679
TW 680
TW 681
TW 682
TW 683
TW 684
TW 685
TW 686
TW 687
TW 688
TW 689
TW 690
TW 691
TW 692
TW 693
TW 694
TW 695
TW 696
TW 697
TW 698
TW 699
TW 700
TW 701
TW 702
TW 703
TW 704
TW 705
TW 706
TW 707
TW 708
TW 709
TW 710
Tagname
TWE-IN1701-SGA
TWE-IN1782-SGA
TWE-IN1863-SGA
TWE-IN0641-SGB
TWE-IN0642-SGB
TWE-IN0643-SGB
TWE-086B-SGB
TWE-137B-SGB
TWE-178B-SGB
TWE-223B-SGB
TWE-IN0861-SGB
TWE-EX0861-SGB
TWE-IN0862-SGB
TWE-EX0862-SGB
TWE-IN0863-SGB
TWE-EX0863-SGB
TWE-IN0991-SGB
TWE-EX0991-SGB
TWE-IN0992-SGB
TWE-EX0992-SGB
TWE-IN0993-SGB
TWE-EX0993-SGB
TWE-IN1121-SGB
TWE-EX1121-SGB
TWE-IN1122-SGB
TWE-EX1122-SGB
TWE-IN1123-SGB
TWE-EX1123-SGB
TWE-IN1371-SGB
TWE-EX1371-SGB
TWE-IN1372-SGB
TWE-EX1372-SGB
TWE-IN1373-SGB
TWE-EX1373-SGB
TWE-IN1632-SGB
TWE-EX1632-SGB
TWE-IN1633-SGB
TWE-EX1633-SGB
TWE-IN1701-SGB
TWE-IN1782-SGB
TWE-IN1863-SGB
TWE270A-PR
TWE-121D-UHDP
TWE-EN037B-PV
TWE-E037B-PV
TWE-ES037B-PV
TWE-EN040B-PV
TWE-E040B-PV
TWE-ES040B-PV
TWE-E042B-PV
TWE-WN037B-PV
TWE-W037B-PV
TWE-WS037B-PV
TWE-WN040B-PV
TWE-W040B-PV
TWE-WS040B-PV
TWE-W042B-PV
TWE-SW045B-PV
TWE-S045B-PV
TWE-SE045B-PV
TWE-SW051B-PV
TWE-S051B-PV
TWE-SE051B-PV
TWE-S054B-PV
TWE-NE045B-PV
TWE-N045B-PV
TWE-NW045B-PV
TWE-NE051B-PV
TWE-N051B-PV
TWE-NW051B-PV
TWE-N054B-PV
TWE-N022D-CB
TWE-S022D-CB
TWE-N030D-CB
TWE-S030D-CB
TWE-N022E-CB
TWE-S022E-CB
TWE-N030E-CB
TWE-S030E-CB
TWE-IN038B02-UCP
TWE-IN038B04-UCP
Location
SGA U-Tube(1,IN) Pos.10
SGA U-Tube(2,IN) Pos.10
SGA U-Tube(3,IN) Pos.11
SGB Inlet Plenum
SGB Inlet Plenum
SGB Inlet Plenum
SGB Inner Surf. Pos.1
SGB Inner Surf. Pos.7
SGB Inner Surf. Pos.10
SGB Inner Surf.
SGB U-Tube(1,IN) Pos.1
SGB U-Tube(1,EX) Pos.1
SGB U-Tube(2,IN) Pos.1
SGB U-Tube(2,EX) Pos.1
SGB U-Tube(3,IN) Pos.1
SGB U-Tube(3,EX) Pos.1
SGB U-Tube(1,IN) Pos.3
SGB U-Tube(1,EX) Pos.3
SGB U-Tube(2,IN) Pos.3
SGB U-Tube(2,EX) Pos.3
SGB U-Tube(3,IN) Pos.3
SGB U-Tube(3,EX) Pos.3
SGB U-Tube(1,IN) Pos.5
SGB U-Tube(1,EX) Pos.5
SGB U-Tube(2,IN) Pos.5
SGB U-Tube(2,EX) Pos.5
SGB U-Tube(3,IN) Pos.5
SGB U-Tube(3,EX) Pos.5
SGB U-Tube(1,IN) Pos.7
SGB U-Tube(1,EX) Pos.7
SGB U-Tube(2,IN) Pos.7
SGB U-Tube(2,EX) Pos.7
SGB U-Tube(3,IN) Pos.7
SGB U-Tube(3,EX) Pos.7
SGB U-Tube(2,IN) Pos.9
SGB U-Tube(2,EX) Pos.9
SGB U-Tube(3,IN) Pos.9
SGB U-Tube(3,EX) Pos.9
SGB U-Tube(1,IN) Pos.10
SGB U-Tube(2,IN) Pos.10
SGB U-Tube(3,IN) Pos.11
PZR Spray Line Outer Surf.
PLR-UH-9 Outer Surf.
PV East-North EL.3662
PV East EL.3662
PV East-South EL.3662
PV East-North EL.4037
PV East EL.4037
PV East-South EL.4037
PV East EL.4210
PV West-North EL.3662
PV West EL.3662
PV West-South EL.3662
PV West-North EL.4037
PV West EL.4037
PV West-South EL.4037
PV West EL.4210
PV South-West EL.4497
PV South EL.4497
PV South-East EL.4497
PV South-West EL.5074
PV South EL.5074
PV South-East EL.5074
PV South EL.5363
PV North-East EL.4497
PV North EL.4497
PV North-West EL.4497
PV North-East EL.5074
PV North EL.5074
PV North-West EL.5074
PV North EL.5363
CB Outer Surf. EL2.2M,N
CB Outer Surf. EL2.2M,S
CB Outer Surf. EL3.0M,N
CB Outer Surf. EL3.0M,S
CB Outer Surf. EL2.2M,N
CB Outer Surf. EL2.2M,S
CB Outer Surf. EL3.0M,N
CB Outer Surf. EL3.0M,S
UCP L.Surf. EL.3.8m,B02
UCP L.Surf. EL.3.8m,B04
- 52 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
720
720
720
720
720
720
670
670
670
670
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
970
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
630
970
970
970
970
970
970
970
970
970
970
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
2.63
0.66
2.63
0.66
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
3.49
0.50
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.05
0.85
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
Function
ID.
TW 711
TW 712
TW 713
TW 714
TW 715
TW 716
TW 717
TW 718
TW 719
TW 720
TW 721
TW 722
TW 723
TW 724
TW 725
TW 726
TW 727
TW 728
TW 729
TW 730
TW 731
TW 732
TW 733
TW 734
TW 735
TW 736
TW 737
TW 738
TW 739
TW 740
TW 741
TW 742
TW 743
TW 744
TW 745
TW 746
TW 747
TW 748
TW 749
TW 750
TW 751
TW 752
TW 753
TW 754
TW 755
TW 756
TW 757
TW 758
TW 759
TW 760
TW 761
TW 762
TW 763
TW 764
TW 765
TW 766
TW 767
TW 768
TW 769
TW 770
TW 771
TW 772
TW 773
TW 774
TW 775
TW 776
TW 777
TW 778
TW 779
TW 780
TW 845
TW 846
TW 847
TW 848
TW 849
TW 850
TW 851
TW 852
TW 853
TW 854
Tagname
TWE-IN038B06-UCP
TWE-IN038B08-UCP
TWE-IN038B21-UCP
TWE-EX040B02-UCP
TWE-EX040B04-UCP
TWE-EX040B06-UCP
TWE-EX040B08-UCP
TWE-EX040B21-UCP
TWE-B01341
TWE-B01343
TWE-B01349
TWE-B02347
TWE-B05341
TWE-B05343
TWE-B05349
TWE-B06347
TWE-B03437
TWE-B04341
TWE-B04343
TWE-B04349
TWE-B07347
TWE-B08431
TWE-B08433
TWE-B08439
TWE-B09441
TWE-B09443
TWE-B09449
TWE-B10443
TWE-B10446
TWE-B10448
TWE-B11441
TWE-B11443
TWE-B11449
TWE-B12443
TWE-B12446
TWE-B12448
TWE-B13441
TWE-B13443
TWE-B13449
TWE-B14447
TWE-B15443
TWE-B15446
TWE-B15448
TWE-B16441
TWE-B16443
TWE-B16449
TWE-B17441
TWE-B17443
TWE-B17449
TWE-B18447
TWE-B19447
TWE-B20443
TWE-B20446
TWE-B20448
TWE-B21443
TWE-B21446
TWE-B21448
TWE-B22447
TWE-B23443
TWE-B23446
TWE-B23448
TWE-B24447
TWE211A-PR
TWE211B-PR
TWE211C-PR
TWE211D-PR
TWE211E-PR
TWE211F-PR
TWE678-ACC
TWE688-ACH
TWE111A-PR
TWE115A-PR
TWE189A-PR
TWE198A-PR
TWE-022A-PV
TWE-027A-PV
TWE-028A-PV
TWE731A-HLA
TWE078A-SGA
TWE245A-SGA
Location
UCP L.Surf. EL.3.8m,B06
UCP L.Surf. EL.3.8m,B08
UCP L.Surf. EL.3.8m,B21
UCP U.Surf. EL.4.0m,B02
UCP U.Surf. EL.4.0m,B04
UCP U.Surf. EL.4.0m,B06
UCP U.Surf. EL.4.0m,B08
UCP U.Surf. EL.4.0m,B21
B01 Rod(3,4) Pos.1
B01 Rod(3,4) Pos.3
B01 Rod(3,4) Pos.9
B02 Rod(3,4) Pos.7
B05 Rod(3,4) Pos.1
B05 Rod(3,4) Pos.3
B05 Rod(3,4) Pos.9
B06 Rod(3,4) Pos.7
B03 Rod(4,3) Pos.7
B04 Rod(4,4) Pos.1
B04 Rod(4,4) Pos.3
B04 Rod(4,4) Pos.9
B07 Rod(4,4) Pos.7
B08 Rod(4,3) Pos.1
B08 Rod(4,3) Pos.3
B08 Rod(4,3) Pos.9
B09 Rod(4,4) Pos.1
B09 Rod(4,4) Pos.3
B09 Rod(4,4) Pos.9
B10 Rod(4,4) Pos.3
B10 Rod(4,4) Pos.6
B10 Rod(4,4) Pos.8
B11 Rod(4,4) Pos.1
B11 Rod(4,4) Pos.3
B11 Rod(4,4) Pos.9
B12 Rod(4,4) Pos.3
B12 Rod(4,4) Pos.6
B12 Rod(4,4) Pos.8
B13 Rod(4,4) Pos.1
B13 Rod(4,4) Pos.3
B13 Rod(4,4) Pos.9
B14 Rod(4,4) Pos.7
B15 Rod(4,4) Pos.3
B15 Rod(4,4) Pos.6
B15 Rod(4,4) Pos.8
B16 Rod(4,4) Pos.1
B16 Rod(4,4) Pos.3
B16 Rod(4,4) Pos.9
B17 Rod(4,4) Pos.1
B17 Rod(4,4) Pos.3
B17 Rod(4,4) Pos.9
B18 Rod(4,4) Pos.7
B19 Rod(4,4) Pos.7
B20 Rod(4,4) Pos.3
B20 Rod(4,4) Pos.6
B20 Rod(4,4) Pos.8
B21 Rod(4,4) Pos.3
B21 Rod(4,4) Pos.6
B21 Rod(4,4) Pos.8
B22 Rod(4,4) Pos.7
B23 Rod(4,4) Pos.3
B23 Rod(4,4) Pos.6
B23 Rod(4,4) Pos.8
B24 Rod(4,4) Pos.7
PZR Wall DL.2025
PZR Wall DL.4238
PZR Wall DL.5995
PZR Wall DL.7965
PZR Wall DL.9795
PZR Wall DL.11321
Acc-Cold Tank Wall
Acc-Hot Tank Wall
PZR Outer Wall DL.-289
PZR Outer Wall DL.105
PZR Outer Wall DL.7219
PZR Outer Wall DL.8417
PV Outer Wall EL.-2245
PV Outer Wall EL.-2657
PV Outer Wall EL.-2677
HLA Outer Wall
SGA Outer Wall DL.-161
SGA Outer Wall DL.16572
- 53 -
Range
LO
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
270
HI
970
970
970
970
970
970
970
970
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
1470
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
720
670
670
Unit
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
Uncertainty
±ABS.
±%FR
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
3.49
0.50
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
5.31
0.44
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.75
0.61
2.63
0.66
2.63
0.66
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
Function
ID.
FE
1
FE
2
FE
3
FE
4
FE
5
FE
6
FE 13
FE 14
FE 15
FE 16
FE 17
FE 18
FE 19
FE 21
FE 22
FE 23
FE 24
FE 25
FE 26
FE 27
FE 29
FE 35
FE 36
FE 37
FE 40
FE 62
FE 63
FE 65
FE 67
FE 70
FE 71
FE 72
FE010-HLA
FE020A-LSA
FE020B-LSA
FE150-HLB
FE160A-LSB
FE160B-LSB
FE430-SGA
FE431-SGA
FE432-SGA
FE433-SGA
FE434-SGA
FE440-SGA
FE450-SGA
FE470-SGB
FE471-SGB
FE472-SGB
FE473-SGB
FE474-SGB
FE480-SGB
FE490-SGB
FE510-SH
FE580-ST
FE590-ST
FE650-ACC
FE680-ACH
FE010B-HLA
FE150B-HLB
FE440B-SGA
FE480B-SGB
FE520-PAA
FE520B-PAA
FE530B-PAB
HLA Leakage (Normal)
Primary Loop LSA (High)
Primary Loop LSA (Low)
HLB Leakage (Normal)
Primary Loop LSB (High)
Primary Loop LSB (Low)
SGA Feedwater
SGA Downcomer
SGA Downcomer
SGA Downcomer
SGA Downcomer
SGA Steam Line
SGA Relief Valve Line
SGB Feedwater
SGB Downcomer
SGB Downcomer
SGB Downcomer
SGB Downcomer
SGB Steam Line
SGB Relief Valve Line
Main-Steam Header
ST Vent Line
ST Bleed Line
Acc-Cold Flow to CLA
Acc-Hot to CLB
HLA Leakage (Reverse)
HLB Leakage (Reverse)
SGA Main Steam Line (Low)
SGB Main Steam Line (Low)
Aux. Feedwater A (High)
Aux. Feedwater A (Low)
Aux. Feedwater B (Low)
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
PE
1
3
4
5
6
7
8
9
10
11
12
13
14
19
20
21
22
23
24
25
26
28
29
30
31
32
35
36
37
38
43
44
76
77
78
79
PE561-BU
PE010-SGA
PE020-LSA
PE030-CLA
PE150-SGB
PE160-LSB
PE170-CLB
PE290-PV
PE280A-PV
PE280B-PV
PE270-PV
PE300A-PR
PE300B-PR
PE430-SGA
PE440-SGA
PE450-SGB
PE460-SGB
PE470-SH
PE480-JC
PE610-ST
PE560-BU
PE580-BU
PE590-BU
PE600-ST
PE650-ACC
PE660-ACH
PE011-HLA
PE071-CLA
PE151-HLB
PE211-CLB
PE571-BU
PE591-BU
PE280C-PV
PE300C-PR
PE435-SGA
PE455-SGB
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
MI
MI
MI
MI
MI
MI
MI
MI
MI
MI
MI
1
2
5
6
8
11
12
13
14
15
16
RE010-PCA
RE150-PCB
OPE430-SGA
OPE470-SGB
OPE510-SH
VBE010-PCA
VBE150-PCB
TQE010-PCA
TQE150-PCB
AE010-PCA
AE150-PCB
Tagname
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HI
0.4
90
15.81
0.4
90
15.81
4
7
7
7
7
5
4
4
7
7
7
7
5
4
10
0.3
20
15
10
0.4
0.4
1
1
1.5
1
1
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
kg/s
Uncertainty
±ABS.
±%FR
0.01
1.54
1.25
1.39
0.22
1.37
0.01
1.54
1.25
1.39
0.22
1.37
0.05
1.35
0.09
1.26
0.09
1.26
0.09
1.26
0.09
1.26
0.10
2.04
0.07
1.82
0.05
1.35
0.09
1.26
0.09
1.26
0.09
1.26
0.09
1.26
0.10
2.04
0.07
1.82
0.22
2.16
0.19
1.25
0.12
1.23
0.01
1.53
0.01
1.53
0.02
2.04
0.02
2.04
0.02
1.23
0.01
1.23
0.01
1.23
BU-1 Venturi
SGA Inlet Plenum
PCA Suction
PCA Delivery
SGB Inlet Plenum
PCB Suction
PCB Delivery
PV Upper Head
PV Upper Plenum (High)
PV Upper Plenum (Low)
PV Lower Plenum
Pressurizer (High)
Pressurizer (Low)
SGA Steam Dome
SGA Steam Line
SGB Steam Dome
SGB Steam Line
Main-Steam Header
Jet Condenser
Break Flow Supp. Tank
BU-1 Orifice Upstream
Break Orifice Upstream
Break Orifice Downstream
Break-Flow Blowdown Line
Acc-Cold Tank
Acc-Hot Tank
HLA Spool Piece
CLA Spool Piece
HLB Spool Piece
CLB Spool Piece
RSV123 Inlet
Break Spool Piece
PV Upper Plenum (Low)
Pressurizer (Low)
SGA Steam Dome
SGB Steam Dome
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
20
20
20
20
20
20
20
20
5
20
20
5
10
10
10
10
10
10
1
20
20
20
2
10
10
20
20
20
20
20
20
0.5
0.7
10
10
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
MPa
0.1077
0.1077
0.1077
0.1077
0.1077
0.1077
0.1077
0.1077
0.1077
0.0269
0.1077
0.1077
0.0269
0.0539
0.0539
0.0539
0.0539
0.0539
0.0539
0.0032
0.1077
0.1077
0.1077
0.0064
0.0539
0.0539
0.1077
0.1077
0.1077
0.1077
0.1118
0.1118
0.0013
0.0019
0.0224
0.0224
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.54
0.32
0.54
0.54
0.54
0.32
0.54
0.54
0.54
0.54
0.54
0.54
0.56
0.56
0.27
0.27
0.22
0.22
PCA (Rotational Speed)
PCB (Rotational Speed)
SGA Feedwater (FCV430)
SGB Feedwater (FCV470)
Steam Flow (FCV510)
PCA (Vibration)
PCB (Vibration)
PCA (Torque)
PCB (Torque)
PCA (Electric Current)
PCB (Electric Current)
0
0
0
0
0
0
0
0
0
0
0
70
70
100
100
100
200
200
100
100
150
150
rps
rps
%
%
%
um
um
Nm
Nm
A
A
0.39
0.39
0.54
0.54
0.54
0.10
0.10
1.60
1.60
1.56
1.56
0.55
0.55
0.54
0.54
0.54
5.01
5.01
1.60
1.60
1.04
1.04
Location
- 54 -
Range
LO
Unit
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
Function
ID.
MI 17
MI 18
MI 19
MI 20
MI 21
MI 22
MI 23
MI 24
MI 25
MI 26
MI 27
MI 29
MI 30
MI 31
MI 32
MI 33
MI 34
MI 35
MI 36
MI 37
MI 38
MI 39
MI 40
MI 41
MI 42
MI 43
MI 44
MI 45
MI 46
MI 47
MI 49
MI 50
MI 51
MI 52
MI 53
MI 54
MI 55
MI 56
WE270A-T
WE270B-M
WE270C-H1
WE270D-H2
WE270E-L1
WE270F-L2
WE270G-L3
WE280A-PR
WE280B-PR
WE010-PCA
WE150-PCB
WE020-HLA
WE030-LSA
WE040-CLA
WE160-HLB
WE170-LSB
WE180-CLB
WE271A-PV
WE271B-PV
WE271C-PV
WE271D-PV
WE430A-SGA
WE430B-SGA
WE430C-SGA
WE430D-SGA
WE440A-SGA
WE440B-SGA
WE440C-SGA
WE440D-SGA
WE290-PR
WE450A-SGB
WE450B-SGB
WE450C-SGB
WE450D-SGB
WE460A-SGB
WE460B-SGB
WE460C-SGB
WE460D-SGB
Total Core Power
Core Power (Mid. Flux)
Core Power (High Flux 1)
Core Power (High Flux 2)
Core Power (Low Flux 1)
Core Power (Low Flux 2)
Core Power (Low Flux 3)
PZR Proportional Heater
PZR Base Heater
PCA Power
PCB Power
HLA Heater Power
LSA Heater Power
CLA Heater Power
HLB Heater Power
LSB Heater Power
CLB Heater Power
PV Heater Power
PV Heater Power
PV Heater Power
PV Heater Power
SGA Heater Power
SGA Heater Power
SGA Heater Power
SGA Heater Power
SGA Downcomer Heater Power
SGA Downcomer Heater Power
SGA Downcomer Heater Power
SGA Downcomer Heater Power
PZR Surge Line Heater Power
SGB Heater Power
SGB Heater Power
SGB Heater Power
SGB Heater Power
SGB Downcomer Heater Power
SGB Downcomer Heater Power
SGB Downcomer Heater Power
SGB Downcomer Heater Power
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
LE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
38
LE270-PV
LE280-PR
LE430-SGA
LE440-SGA
LE441-SGA
LE450-SGB
LE460-SGB
LE461-SGB
LE470-JC
LE560-ST
LE570-ST
LE580-ST
LE590-ST
LE650-ACC
LE660-ACH
LE830-RWST
LE442-SGA
LE462-SGB
DLE270-PV
DLE280-PR
DLE430-SGA
DLE440-SGA
DLE441-SGA
DLE442-SGA
DLE450-SGB
DLE460-SGB
DLE461-SGB
DLE462-SGB
DLE470-JC
DLE560-ST
DLE570-ST
DLE580-ST
DLE590-ST
DLE650-ACC
DLE660-ACH
DLE830-RWST
PV
PZR Overall Level
SGA Wide Range
SGA Narrow Range
SGA Boiling Section
SGB Wide Range
SGB Narrow Range
SGB Boiling Section
Jet Condenser
ST Wide Range
ST Low Level
ST Middle Level
ST High Level
Acc-Cold Tank
Acc-Hot Tank
RWST Overall
SGA Downcomer
SGB Downcomer
PV Overall
PZR Overall
SGA Wide Range
SGA Narrow-Range
SGA Boiling Section
SGA Downcomer
SGB Wide Range
SGB Narrow-Range
SGB Boiling Section
SGB Downcomer
JC
ST Overall Level
ST Lower Region
ST Middle Region
ST Upper Region
Acc-Cold Tank
Acc-Hot Tank
RWST
1366
1367
1368
1369
1370
DP
DP
DP
DP
DP
1
2
4
5
6
DPE010-HLA
DPE020-HLA
DPE040-HLA
DPE050A-SGA
DPE050B-SGA
Upper Plenum - HLA Nozzle
HLA Nozzle - HLA Break
HLA Break - SGA Inlet
SGA Inlet - Tube 3 Top
SGA Inlet - Tube 2 Top
Tagname
Location
- 55 -
Range
LO
Unit
Uncertainty
±ABS.
±%FR
0.07
0.44
0.01
0.44
0.02
0.44
0.02
0.44
0.01
0.44
0.01
0.44
0.01
0.44
0.04
0.39
0.59
0.39
0.01
1.50
0.01
1.50
0.003
1.50
0.01
1.50
0.01
1.50
0.003
1.50
0.02
1.50
0.02
1.50
0.02
1.50
0.02
1.50
0.01
1.50
0.01
1.50
0.01
1.50
0.01
1.50
0.003
1.50
0.003
1.50
0.003
1.50
0.003
1.50
0.01
1.50
0.01
1.50
0.01
1.50
0.01
1.50
0.01
1.50
0.003
1.50
0.003
1.50
0.003
1.50
0.003
1.50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
HI
16
2
4
4
2
2
2
10
150
30
30
5
7.5
2
5
7.5
2
15
15
15
15
4
4
4
4
2
2
2
2
4
4
4
4
4
2
2
2
2
MW
MW
MW
MW
MW
MW
MW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
kW
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
11.24
17
6
11
17
6
11
5.5
12
4
4
4
7.5
7.5
10
12
12
111.06
113.63
171.64
60.58
111.06
114.27
171.64
60.58
111.06
114.27
55.53
121.16
40.39
40.39
40.39
55.53
55.53
196.14
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
0.29
0.25
0.38
0.14
0.25
0.38
0.14
0.25
0.13
0.27
0.09
0.11
0.11
0.12
0.15
0.27
0.27
1.07
0.48
0.69
0.57
0.61
0.62
0.69
0.57
0.61
0.62
0.56
0.59
0.16
0.27
0.27
0.53
1.02
0.55
2.25
2.25
0.96
0.42
0.40
0.93
0.55
0.54
0.40
0.93
0.55
0.54
1.01
0.49
0.40
0.68
0.68
0.95
1.84
0.28
-40
-40
-40
-150
-150
40
40
40
50
50
kPa
kPa
kPa
kPa
kPa
1.02
1.02
1.02
2.03
2.03
1.28
1.28
1.28
1.02
1.02
2.68
2.22
2.26
2.32
2.27
2.26
2.32
2.27
2.33
2.26
2.25
2.65
2.65
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
Function
ID.
DP
7
DP
8
DP
9
DP
10
DP
11
DP
12
DP
13
DP
14
DP
15
DP
16
DP
17
DP
18
DP
19
DP
20
DP
21
DP
22
DP
23
DP
24
DP
25
DP
26
DP
27
DP
28
DP
29
DP
30
DP
31
DP
32
DP
33
DP
34
DP
35
DP
36
DP
37
DP
38
DP
39
DP
40
DP
41
DP
42
DP
43
DP
44
DP
45
DP
46
DP
47
DP
48
DP
49
DP
50
DP
51
DP
52
DP
53
DP
54
DP
55
DP
56
DP
57
DP
58
DP
59
DP
62
DP
63
DP
70
DP
71
DP
72
DP
73
DP
74
DP
75
DP
76
DP
77
DP
78
DP
79
DP
80
DP
81
DP
82
DP
83
DP
84
DP
85
DP
86
DP
87
DP
88
DP
89
DP
90
DP
91
DP
92
DP
93
DP
94
DP
95
Tagname
DPE050C-SGA
DPE050D-SGA
DPE050E-SGA
DPE050F-SGA
DPE060A-SGA
DPE060B-SGA
DPE060C-SGA
DPE060D-SGA
DPE060E-SGA
DPE060F-SGA
DPE070-LSA
DPE080-LSA
DPE090-PCA
DPE100-CLA
DPE110-CLA
DPE120-CLA
DPE130-CLA
DPE140-HLA
DPE150-HLB
DPE160-HLB
DPE170-HLB
DPE180-HLB
DPE190A-SGB
DPE190B-SGB
DPE190C-SGB
DPE190D-SGB
DPE190E-SGB
DPE190F-SGB
DPE200A-SGB
DPE200B-SGB
DPE200C-SGB
DPE200D-SGB
DPE200E-SGB
DPE200F-SGB
DPE210-LSB
DPE220-LSB
DPE230-PCB
DPE240-CLB
DPE250-CLB
DPE260-CLB
DPE270-PV
DPE280-PV
DPE290-PV
DPE300-PV
DPE320-PV
DPE330-PV
DPE310-PV
DPE350A-PV
DPE350B-PV
DPE360-PV
DPE370-PV
DPE380-PV
DPE390-PV
DPE332-PV
DPE331-PV
DPE030B-HLA
DPE072-LSA
DPE073-LSA
DPE074-LSA
DPE075-LSA
DPE076-LSA
DPE212-LSB
DPE213-LSB
DPE214-LSB
DPE215-LSB
DPE216-LSB
DPE430-SGA
DPE431-SGA
DPE432-SGA
DPE433-SGA
DPE434-SGA
DPE435-SGA
DPE436-SGA
DPE437-SGA
DPE438-SGA
DPE439-SGA
DPE440-SGA
DPE450-SGB
DPE451-SGB
DPE452-SGB
DPE453-SGB
Location
SGA Inlet - Tube 1 Top
SGA Inlet - Tube 4 Top
SGA Inlet - Tube 5 Top
SGA Inlet - Tube 6 Top
SGA Outlet - Tube 3 Top
SGA Outlet - Tube 2 Top
SGA Outlet - Tube 1 Top
SGA Outlet - Tube 4 Top
SGA Outlet - Tube 5 Top
SGA Outlet - Tube 6 Top
SGA Outlet - LSA Bottom
LSA Bottom - PCA Suction
PCA Suction - Delivery
PZR Spray Line
PCA Delivery - CLA Break
CLA Break - CLA Nozzle
CLA Nozzle – Downcomer
Upper Plenum - Downcomer
Upper Plenum - HLB Nozzle
HLB Nozzle - HLB Break
HLB Break - SGB Break
SGB Break - SGB Inlet
SGB Inlet - Tube 3 Top
SGB Inlet - Tube 2 Top
SGB Inlet - Tube 1 Top
SGB Inlet - Tube 4 Top
SGB Inlet - Tube 5 Top
SGB Inlet - Tube 6 Top
SGB Outlet - Tube 3 Top
SGB Outlet - Tube 2 Top
SGB Outlet - Tube 1 Top
SGB Outlet - Tube 4 Top
SGB Outlet - Tube 5 Top
SGB Outlet - Tube 6 Top
SGB Outlet - LSB Bottom
LSB Bottom - PCB Suction
PCB Suction - Delivery
PCB Delivery - CLB Break
CLB Break - CLB Nozzle
CLB Nozzle – Downcomer
PV Bottom – Top
PV Lower Plenum
Lower Core Support Plate
Core (EL.-35 -3945)
Upper Plenum
Upper Head (EL.6135 - 9653)
Upper Core Support Plate
CR Guide Tube Top Orifice
CR Guide Tube Top Orifice
PV Downcomer Overall
Lower Downcomer
Upper Downcomer
UP-DC Check Valve A
Upper Head – Downcomer
Upper Head
PZR Surge Line (Low)
LSA (SG-Side)
LSA (SG-Side)
LSA (SG-Side)
LSA (SG-Side)
LSA (SG-Side)
LSB (SG-Side)
LSB (SG-Side)
LSB (SG-Side)
LSB (SG-Side)
LSB (SG-Side)
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGA Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
- 56 -
Range
LO
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-80
-50
-50
-200
-50
-50
-50
-30
-30
-30
-30
-30
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-150
-80
-50
-50
-20
-20
-20
-100
-50
-50
-50
-50
-50
-100
-100
-100
-100
-50
-50
-50
-100
-100
-300
0
-10
-10
-10
0
0
-10
-10
-10
0
-30
-30
-30
-30
-30
-30
-30
-30
-30
-30
-40
-30
-30
-30
-30
HI
50
50
50
50
50
50
50
50
50
50
80
50
50
200
50
50
50
30
30
30
30
30
50
50
50
50
50
50
50
50
50
50
50
50
80
50
50
20
20
20
400
100
100
100
100
100
100
100
100
300
150
150
100
100
100
300
45
10
10
10
30
45
10
10
10
30
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unit
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
Uncertainty
±ABS.
±%FR
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
2.03
1.02
1.08
0.67
1.03
1.03
1.03
1.03
2.21
0.55
1.03
1.03
1.03
1.03
1.03
1.03
1.01
1.69
1.01
1.69
1.01
1.69
1.01
1.69
1.01
1.69
2.03
1.02
2.03
1.02
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
3.96
1.98
1.08
0.67
1.03
1.03
1.03
1.03
1.01
2.51
1.01
2.51
1.01
2.51
4.12
0.82
1.07
0.71
1.07
0.71
1.07
0.71
1.07
0.71
1.07
0.71
3.96
1.98
3.96
1.98
3.96
1.98
4.05
1.01
3.96
1.98
3.96
1.98
1.12
0.56
3.96
1.98
3.96
1.98
2.48
0.41
0.34
0.75
0.32
1.60
0.32
1.60
0.32
1.60
0.33
1.08
0.34
0.75
0.32
1.60
0.32
1.60
0.32
1.60
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
0.83
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
Function
ID.
DP
96
DP
97
DP
98
DP
99
DP 100
DP 101
DP 102
DP 103
DP 104
DP 105
DP 106
DP 107
DP 109
DP 110
DP 111
DP 112
DP 113
DP 114
DP 115
DP 116
DP 117
DP 118
DP 119
DP 120
DP 122
DP 123
DP 133
DP 182
DP 183
DPE454-SGB
DPE455-SGB
DPE456-SGB
DPE457-SGB
DPE458-SGB
DPE459-SGB
DPE460-SGB
DPE011-HLA
DPE071-CLA
DPE151-HLB
DPE211-CLB
DPE571-BU
DPE041-PR
DPE042-PR
DPE043-PR
DPE044-PR
DPE045-PR
DPE046-PR
DPE101-PR
DPE055A-SGA
DPE055B-SGA
DPE195A-SGB
DPE195B-SGB
DPE056-SGA
DPE196-SGB
DPE197-SGB
DPE333-PV
DPE491-SGB
DPE492-SGB
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
SGB Boiling Section
HLA Spool Piece
CLA Spool Piece
HLB Spool Piece
CLB Spool Piece
RSV123 Inlet
PZR (DL.9795 - 11321)
PZR (DL.7965 - 9795)
PZR (DL.5995 - 7965)
PZR (DL.4238 - 5995)
PZR (DL.2025 - 4238)
PZR (DL.80 - 2025)
PZR-CLA
SGA U-Tube I/O (High)
SGA U-Tube I/O (Low)
SGB U-Tube I/O (High)
SGB U-Tube I/O (Low)
SGA Inlet Plenum
SGB Inlet Plenum
SGB Primary-Secondary
Upper Head (EL.6634 - 8860)
SGB Feedwater Line
SGB Feedwater Line
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
33
34
35
DE011A-HLA
DE011B-HLA
DE011C-HLA
DE051A-LSA
DE051B-LSA
DE051C-LSA
DE071A-CLA
DE071B-CLA
DE071C-CLA
DE151A-HLB
DE151B-HLB
DE151C-HLB
DE191A-LSB
DE191B-LSB
DE191C-LSB
DE211A-CLB
DE211B-CLB
DE211C-CLB
DE052-LSA
DE192-LSB
DE591A-BU
DE591B-BU
DE591C-BU
HLA Spool Piece, Beam A
HLA Spool Piece, Beam B
HLA Spool Piece, Beam C
LSA Spool Piece, Beam A
LSA Spool Piece, Beam B
LSA Spool Piece, Beam C
CLA Spool Piece, Beam A
CLA Spool Piece, Beam B
CLA Spool Piece, Beam C
HLB Spool Piece, Beam A
HLB Spool Piece, Beam B
HLB Spool Piece, Beam C
LSB Spool Piece, Beam A
LSB Spool Piece, Beam B
LSB Spool Piece, Beam C
CLB Spool Piece, Beam A
CLB Spool Piece, Beam B
CLB Spool Piece, Beam C
PCA Suction
PCB Suction
Break Spool Piece, Beam A
Break Spool Piece, Beam B
Break Spool Piece, Beam C
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
RC
31
32
33
34
35
36
37
38
39
40
41
42
56
57
58
59
60
61
62
63
73
74
75
124
133
134
139
DE011A-HLA-EU
DE011B-HLA-EU
DE011C-HLA-EU
DE151A-HLB-EU
DE151B-HLB-EU
DE151C-HLB-EU
DE071A-CLA-EU
DE071B-CLA-EU
DE071C-CLA-EU
DE211A-CLB-EU
DE211B-CLB-EU
DE211C-CLB-EU
DE051A-LSA-EU
DE051B-LSA-EU
DE051C-LSA-EU
DE191A-LSB-EU
DE191B-LSB-EU
DE191C-LSB-EU
DE052-LSA-EU
DE192-LSB-EU
DE591A-BU-EU
DE591B-BU-EU
DE591C-BU-EU
DAE-591A-BU
TWE-PCT
TWE-PCTLOC
CL-CORE
HLA Spool Piece, Beam A
HLA Spool Piece, Beam B
HLA Spool Piece, Beam C
HLB Spool Piece, Beam A
HLB Spool Piece, Beam B
HLB Spool Piece, Beam C
CLA Spool Piece, Beam A
CLA Spool Piece, Beam B
CLA Spool Piece, Beam C
CLB Spool Piece, Beam A
CLB Spool Piece, Beam B
CLB Spool Piece, Beam C
LSA Spool Piece, Beam A
LSA Spool Piece, Beam B
LSA Spool Piece, Beam C
LSB Spool Piece, Beam A
LSB Spool Piece, Beam B
LSB Spool Piece, Beam C
PCA Suction
PCB Suction
Break Spool Piece, Beam A
Break Spool Piece, Beam B
Break Spool Piece, Beam C
Break Upstream Average
Peak Cladding Temp.
Location of PCT
Core (EL.-35 - 3945)
Tagname
Location
- 57 -
Range
LO
-30
-30
-30
-30
-30
-30
-40
-10
-10
-10
-10
0
-14.95
-17.93
-19.31
-17.22
-21.68
-19.06
-200
-30
-3
-30
-3
-40
-40
-1000
-35
0
-40
HI
0
0
0
0
0
0
0
10
10
10
10
200
0
0
0
0
0
0
200
30
3
30
3
40
40
1000
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
Unit
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
kPa
Uncertainty
±ABS.
±%FR
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
1.08
0.33
0.83
0.32
1.60
0.32
1.60
0.32
1.60
0.32
1.60
1.12
0.56
0.25
1.69
0.23
1.27
0.23
1.18
0.23
1.32
0.23
1.06
0.23
1.20
1.30
0.32
0.29
0.49
0.2
3.37
0.29
0.49
0.2
3.37
1.02
1.28
0.48
0.60
9.44
0.47
0.23
0.67
Not used
Not used
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
-
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
kg/m3
K
27
20
22
27
20
22
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
94.8
5.31
0.216
m
-
JAEA-Data/Code 2015-022
Table A-1 (Cont’d)
SEQ No.
3rd Core
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
Function
ID.
RC 140
RC 141
RC 142
RC 143
RC 144
RC 145
RC 146
RC 147
RC 148
RC 149
RC 150
RC 151
RC 152
RC 153
RC 154
RC 155
RC 156
RC 157
RC 158
RC 159
RC 160
RC 161
RC 162
RC 163
RC 164
RC 165
RC 166
RC 167
RC 168
RC 169
RC 170
RC 171
RC 172
RC 173
RC 174
RC 175
RC 176
RC 177
RC 178
RC 179
RC 180
RC 181
RC 182
RC 183
RC 184
RC 185
RC 186
RC 187
RC 188
RC 189
RC 190
RC 191
RC 192
RC 193
RC 194
RC 195
RC 196
RC 197
RC 198
RC 199
RC 200
RC 202
RC 203
Tagname
CL-UP
CL-UH
CL-DC
CL-HLA-SGA
CL-TUA-U3
CL-TUA-U2
CL-TUA-U1
CL-TUA-U4
CL-TUA-U5
CL-TUA-U6
CL-TUA-D3
CL-TUA-D2
CL-TUA-D1
CL-TUA-D4
CL-TUA-D5
CL-TUA-D6
CL-LSA-D
CL-LSA-U
CL-SGA-IPL
CL-HLB-SGB
CL-TUB-U3
CL-TUB-U2
CL-TUB-U1
CL-TUB-U4
CL-TUB-U5
CL-TUB-U6
CL-TUB-D3
CL-TUB-D2
CL-TUB-D1
CL-TUB-D4
CL-TUB-D5
CL-TUB-D6
CL-LSB-D
CL-LSB-U
CL-SGB-IPL
MC-UH
MC-LSA-DW
MC-LSB-DW
MS-CORE
MS-UP
MS-DC
MS-TUA-UP-AV
MS-TUA-DW-AV
MS-SGA-IPL
MS-LSA-UP
MS-TUB-UP-AV
MS-TUB-DW-AV
MS-SGB-IPL
MS-LSB-UP
MS-ACC
MS-ACH
MS-ST
DM-ACC
DM-ACH
IM-ST
DM-RWST
LG-HLA
LG-CLA
LG-HLB
LG-CLB
TS-UP
TS-SGA
TS-SGB
Location
Upper Plenum (EL.4060 - 6135)
Upper Head (EL.6614 - 9653)
Downcomer
HLA Riser Part
SGA Tube 3 Inlet - Top
SGA Tube 2 Inlet - Top
SGA Tube 1 Inlet - Top
SGA Tube 4 Inlet - Top
SGA Tube 5 Inlet - Top
SGA Tube 6 Inlet - Top
SGA Tube 3 Outlet - Top
SGA Tube 2 Outlet - Top
SGA Tube 1 Outlet - Top
SGA Tube 4 Outlet - Top
SGA Tube 5 Outlet - Top
SGA Tube 6 Outlet - Top
SGA Out.Plenum – LSA Bottom
LSA Bottom - PCA Suction
SGA Inlet Plenum
HLB Riser Part
SGB Tube 3 Inlet - Top
SGB Tube 2 Inlet - Top
SGB Tube 1 Inlet - Top
SGB Tube 4 Inlet - Top
SGB Tube 5 Inlet - Top
SGB Tube 6 Inlet - Top
SGB Tube 3 Outlet - Top
SGB Tube 2 Outlet - Top
SGB Tube 1 Outlet - Top
SGB Tube 4 Outlet - Top
SGB Tube 5 Outlet - Top
SGB Tube 6 Outlet - Top
SGB Out.Plenum – LSB Bottom
LSB Bottom - PCB Suction
SGB Inlet Plenum
Upper Head (EL.6614 – 9653)
SGA Out.Plenum+LSA Downflow
SGB Out.Plenum+LSB Downflow
Core (EL.-35 - 3945)
Upper Plenum (EL.4060 - 6135)
Downcomer
SGA Tubes Upflow side
SGA Tubes Downflow side
SGA Inlet Plenum
LSA Upflow side
SGB Tubes Upflow side
SGB Tubes Downflow side
SGB Inlet Plenum
LSB Upflow side
Acc-Cold Tank
Acc-Hot Tank
Break Flow Supp. Tank
Acc-Cold Tank
Acc-Hot Tank
Break Flow Supp. Tank
RWST
HLA Water Level
CLA Water Level
HLB Water Level
CLB Water Level
Upper Plenum
Steam Generator-A
Steam Generator-B
- 58 -
Range
LO
HI
Unit
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg
kg/s
kg/s
kg/s
kg/s
m
m
m
m
K
K
K
Uncertainty
±ABS.
±%FR
0.197
0.21
0.746
0.181
0.43
0.42
0.413
0.43
0.42
0.425
0.442
0.431
0.422
0.422
0.431
0.422
0.207
0.188
0.185
0.179
0.445
0.433
0.73
0.74
0.734
0.73
0.951
0.74
0.735
0.747
0.74
0.735
0.207
0.188
0.094
79.08
42.68
41.33
15.4
24.37
46.31
8.3
8.3
27.81
3.57
9.65
10.25
14.61
3.57
39.26
74.26
323.61
13.55
26.08
3.35
51.9
0.012
0.028
0.012
0.028
17.64
7.82
7.82
国際単位系(SI)
表1.SI 基本単位
SI 基本単位
基本量
名称
記号
長
さメ ートル m
質
量 キログラム kg
時
間
秒
s
電
流ア ンペア A
熱力学温度 ケ ル ビ ン K
物 質 量モ
ル mol
光
度 カ ン デ ラ cd
面
体
速
加
波
密
面
表2.基本単位を用いて表されるSI組立単位の例
SI 組立単位
組立量
名称
記号
積 平方メートル
m2
積 立方メートル
m3
さ , 速 度 メートル毎秒
m/s
速
度 メートル毎秒毎秒
m/s2
数 毎メートル
m-1
度 , 質 量 密 度 キログラム毎立方メートル
kg/m3
積
密
度 キログラム毎平方メートル
kg/m2
比
体
電
流
密
磁 界 の 強
(a)
量濃度
,濃
質
量
濃
輝
屈
折
率
比 透 磁 率
積 立方メートル毎キログラム
度 アンペア毎平方メートル
さ アンペア毎メートル
度 モル毎立方メートル
度 キログラム毎立方メートル
度 カンデラ毎平方メートル
(b)
(数字の) 1
(b)
(数字の) 1
乗数
24
10
1021
1018
1015
1012
109
106
103
3
m /kg
A/m2
A/m
mol/m3
kg/m3
cd/m2
1
1
102
101
ゼ
タ
エ ク サ
Z
E
10-2
ペ
テ
タ
ラ
P
T
ギ
メ
ガ
ガ
G
M
マイクロ
ノ
10-9 ナ
コ
10-12 ピ
10-15 フェムト
キ
ロ
ヘ ク ト
デ
カ
k
h
da
d
°
’
日
度
分
10-3
10-6
記号
セ ン チ
ミ
リ
ト
10-18 ア
10-21 ゼ プ ト
10-24 ヨ ク ト
d
c
m
µ
n
p
f
a
z
y
1 d=24 h=86 400 s
1°=(π/180) rad
1’=(1/60)°=(π/10 800) rad
”
1”=(1/60)’=(π/648 000) rad
ha 1 ha=1 hm 2=104m2
L,l 1 L=1 l=1 dm3=103cm3=10-3m3
t
1 t=103 kg
秒
ヘクタール
リットル
SI基本単位による
表し方
m/m
2
2
m /m
s-1
m kg s-2
m-1 kg s-2
m2 kg s-2
m2 kg s-3
sA
m2 kg s-3 A-1
m-2 kg-1 s4 A2
m2 kg s-3 A-2
m-2 kg-1 s3 A2
m2 kg s-2 A-1
kg s-2 A-1
m2 kg s-2 A-2
K
cd
m-2 cd
s-1
トン
表7.SIに属さないが、SIと併用される単位で、SI単位で
表される数値が実験的に得られるもの
名称
記号
SI 単位で表される数値
電 子 ボ ル ト
ダ ル ト ン
統一原子質量単位
eV
Da
u
天
ua
文
単
位
1 eV=1.602 176 53(14)×10 -19J
1 Da=1.660 538 86(28)×10-27kg
1 u=1 Da
1 ua=1.495 978 706 91(6)×1011m
表8.SIに属さないが、SIと併用されるその他の単位
名称
記号
SI 単位で表される数値
バ
ー
ル bar 1bar=0.1MPa=100 kPa=10 5Pa
水銀柱ミリメートル mmHg 1mmHg≈133.322Pa
m2 s-2
m2 s-2
s-1 mol
(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや
コヒーレントではない。
(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。
実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明
示されない。
(c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
(d)ヘルツは周期現象についてのみ、ベクレルは放射性核種の統計的過程についてのみ使用される。
(e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの
単位の大きさは同一である。したがって、温度差や温度間隔を表す数値はどちらの単位で表しても同じである。
(f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で”radioactivity”と記される。
(g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。
表4.単位の中に固有の名称と記号を含むSI組立単位の例
SI 組立単位
組立量
SI 基本単位による
名称
記号
表し方
-1
粘
度 パスカル秒
Pa s
m kg s-1
力 の モ ー メ ン ト ニュートンメートル
Nm
m2 kg s-2
表
面
張
力 ニュートン毎メートル
N/m
kg s-2
角
速
度 ラジアン毎秒
rad/s
m m-1 s-1=s-1
角
加
速
度 ラジアン毎秒毎秒
rad/s2
m m-1 s-2=s-2
熱 流 密 度 , 放 射 照 度 ワット毎平方メートル
W/m2
kg s-3
熱 容 量 , エ ン ト ロ ピ ー ジュール毎ケルビン
J/K
m2 kg s-2 K-1
比 熱 容 量 , 比 エ ン ト ロ ピ ー ジュール毎キログラム毎ケルビン J/(kg K)
m2 s-2 K-1
比 エ ネ ル
ギ ー ジュール毎キログラム
J/kg
m2 s-2
熱
伝
導
率 ワット毎メートル毎ケルビン W/(m K) m kg s-3 K-1
体 積 エ ネ ル ギ ー ジュール毎立方メートル J/m3
m-1 kg s-2
電
界
の
強
さ ボルト毎メートル
V/m
m kg s-3 A-1
電
荷
密
度 クーロン毎立方メートル C/m3
m-3 s A
表
面
電
荷 クーロン毎平方メートル C/m2
m-2 s A
電 束 密 度 , 電 気 変 位 クーロン毎平方メートル C/m2
m-2 s A
誘
電
率 ファラド毎メートル
F/m
m-3 kg-1 s4 A2
透
磁
率 ヘンリー毎メートル
H/m
m kg s-2 A-2
モ ル エ ネ ル ギ ー ジュール毎モル
J/mol
m2 kg s-2 mol-1
モルエントロピー, モル熱容量 ジュール毎モル毎ケルビン J/(mol K) m2 kg s-2 K-1 mol-1
照 射 線 量 ( X 線 及 び γ 線 ) クーロン毎キログラム
C/kg
kg-1 s A
吸
収
線
量
率 グレイ毎秒
Gy/s
m2 s-3
放
射
強
度 ワット毎ステラジアン
W/sr
m4 m-2 kg s-3=m2 kg s-3
放
射
輝
度 ワット毎平方メートル毎ステラジアン W/(m2 sr) m2 m-2 kg s-3=kg s-3
酵 素 活 性
濃 度 カタール毎立方メートル kat/m3
m-3 s-1 mol
ヨ
表5.SI 接頭語
記号
乗数
名称
タ
Y
シ
10-1 デ
表6.SIに属さないが、SIと併用される単位
名称
記号
SI 単位による値
分
min 1 min=60 s
時
h 1 h =60 min=3600 s
(a)量濃度(amount concentration)は臨床化学の分野では物質濃度
(substance concentration)ともよばれる。
(b)これらは無次元量あるいは次元1をもつ量であるが、そのこと
を表す単位記号である数字の1は通常は表記しない。
表3.固有の名称と記号で表されるSI組立単位
SI 組立単位
組立量
他のSI単位による
名称
記号
表し方
(b)
平
面
角 ラジアン(b)
rad
1
(b)
(b)
(c)
立
体
角 ステラジアン
sr
1
周
波
数 ヘルツ(d)
Hz
力
ニュートン
N
圧
力
応
力 パスカル
,
Pa
N/m2
エ ネ ル ギ ー , 仕 事 , 熱 量 ジュール
J
Nm
仕 事 率 , 工 率 , 放 射 束 ワット
W
J/s
電
荷
電
気
量 クーロン
,
C
電 位 差 ( 電 圧 ) , 起 電 力 ボルト
V
W/A
静
電
容
量 ファラド
F
C/V
電
気
抵
抗 オーム
Ω
V/A
コ ン ダ ク タ ン ス ジーメンス
S
A/V
磁
束 ウエーバ
Wb
Vs
磁
束
密
度 テスラ
T
Wb/m2
イ ン ダ ク タ ン ス ヘンリー
H
Wb/A
セ ル シ ウ ス 温 度 セルシウス度(e)
℃
光
束 ルーメン
lm
cd sr(c)
照
度 ルクス
lx
lm/m2
Bq
放 射 性 核 種 の 放 射 能 ( f ) ベクレル(d)
吸収線量, 比エネルギー分与,
グレイ
Gy
J/kg
カーマ
線量当量, 周辺線量当量,
Sv
J/kg
シーベルト(g)
方向性線量当量, 個人線量当量
酸
素
活
性 カタール
kat
名称
オングストローム
海
里
バ
ー
ン
Å
M
1Å=0.1nm=100pm=10-10m
1M=1852m
b
ノ
ネ
ベ
ト
パ
ル
kn
Np
B
1b=100fm2=(10-12cm) 2 =10-28m2
1kn=(1852/3600)m/s
ル
dB
ッ
ー
デ
シ
ベ
SI単位との数値的な関係は、
対数量の定義に依存。
表9.固有の名称をもつCGS組立単位
名称
記号
SI 単位で表される数値
ル
グ erg 1 erg=10-7 J
エ
ダ
ポ
イ
ア
ス
ス
ト ー ク
チ
ル
フ
ガ
ォ
ン dyn 1 dyn=10-5N
ズ P 1 P=1 dyn s cm-2=0.1Pa s
ス St 1 St =1cm2 s-1=10-4m2 s-1
ブ sb 1 sb =1cd cm-2=104cd m-2
ト ph 1 ph=1cd sr cm-2 =10 4lx
ル Gal 1 Gal =1cm s-2=10-2ms-2
マ ク ス ウ エ ル
ガ
ウ
ス
エルステッド( a)
Mx
G
Oe
1 Mx = 1G cm2=10-8Wb
1 G =1Mx cm-2 =10-4T
1 Oe (103/4π)A m-1
(a)3元系のCGS単位系とSIでは直接比較できないため、等号「 」
は対応関係を示すものである。
キ
レ
ラ
名称
ュ
リ
ン
レ
ガ
ト
表10.SIに属さないその他の単位の例
記号
SI 単位で表される数値
ー Ci 1 Ci=3.7×1010Bq
ゲ
ン
ン R
ド rad
ム rem
マ γ
フ
ェ
ル
ミ
メートル系カラット
ト
標
準
大
気
1 R = 2.58×10-4C/kg
1 rad=1cGy=10-2Gy
1 rem=1 cSv=10-2Sv
1 γ=1 nT=10-9T
1 フェルミ=1 fm=10-15m
1 メートル系カラット = 0.2 g = 2×10-4kg
ル Torr 1 Torr = (101 325/760) Pa
圧 atm 1 atm = 101 325 Pa
カ
ロ
リ
ー
cal
ミ
ク
ロ
ン
µ
1 cal=4.1858J(「15℃」カロリー),4.1868J
(「IT」カロリー),4.184J(「熱化学」カロリー)
1 µ =1µm=10-6m
(第8版,2006年)