Si - Biglobe

Quantum Heterointegration Process of
Highly Strained Group IV Semiconductors
Si0.42Ge0.58 3 nm
Si
1.8 nm
Si0.42Ge0.58 3 nm
Si
1.8 nm
Si0.42Ge0.58 3 nm
Si0.8Ge0.2 12 nm
p+Si0.8Ge0.2 5 nm
p+Si
Interface
Rough.
界面ラフネス抑制
RMS 0.87 nm
 0.13 nm
4
Si2H6 400oC
3 RMS 0.13 nm
2
295K
1
SiH4 500oC
RMS 0.87 nm
0
0.0 0.2 0.4 0.6
Applied Voltage (V)
10 -5
| Current at -0.01V | (A)
Si0.8Ge0.2 12 nm
1/2
10 -4
SiSi障壁成長条件
Barrier Growth
SiH4 500oC
 Si2H6 400oC
Current (mA)
p+Si0.8Ge0.2 50 nm
Masao Sakuraba
Si Barrier Thick. Si2H6
400oC
1.0 nm
1.8 nm
2.2 nm
Takahashi et al.,
Solid-State
10 -6 Electron., 60
(2011) 112.
10 -7
10 -8
10 -9
Calculation
Based on
Thermionic
Emission
∝T 2 exp(-φB/k T )
Top Contact Area
60 um2
0
100
200
300
For Si-Ge resonant tunneling devices with higher
Temperature (K)
performance, formation of heterostructure with
nanometer-order thick films and control of atomic-order flatness are necessary.
Moreover, exploring of higher barrier height materials for tunnel barriers is important.
Quantum Heterointegration Process of
Highly Strained Group IV Semiconductors
Quantized
量子準位
State
Hole
ホール
+
(b)
+
(c)
ワイド
Higher
ギャップ
Barrier
障壁
+
300
200
100
Expanding range of
plasma condition for
epitaxial growth
ier
r
r
a
rB
e
p.
gh
i
m
:
H
Te rier
w
r
:
Lo i Ba 0o C
er
i
r
S 40
ar nm
B
r .8
:
ne 4 ~1
n
er
i
.
i
r
1
h
r
T
Ba 7 nm
r
.
e
ick .4 ~2
h
T 2
Modulated
Spacer
(○,○,●)
Uniform
Spacer
(△,▲)
0
0.0 0.2 0.4 0.6 0.8 1.0
Ge Fraction for Spacer
SiH4,
GeH4 ,
CH4 ,・・・
Si(100)
Ge-Frac.
Modulated
Ge比率変調
Spacer
& Quantum Well
スペーサ&量子井戸
400
Low-Energy Ar Plasma
Strained
Si1-xGex
EV
Critical Temperature for
Negative Differential Conductance (K)
(a)
2/2
Strained
Si1-yCy
Hole Energy
ホールエネルギー
• Surface reaction control of ultraclean reactant gases under lowdamage and low-energy plasma without substrate heating
• Adsorption and reaction control by utilizing reactant gas
activation (modification)
• Epitaxial growth of highly strained nanometer-order thin films out
of thermal equilibrium
Masao Sakuraba
• Selective film formation
(deposition and etching control)
on upper surface and side-wall
• Improvement of room-temp. resonant tunneling surface
• Epitaxial growth of highly
characteristics by utilizing highly strained
doped nanometer-order thin
nanometer-order thin films
films out of thermal equilibrium
• Establishment of heterointegration process of
quantum-effect nanodevices