Quantum Heterointegration Process of Highly Strained Group IV Semiconductors Si0.42Ge0.58 3 nm Si 1.8 nm Si0.42Ge0.58 3 nm Si 1.8 nm Si0.42Ge0.58 3 nm Si0.8Ge0.2 12 nm p+Si0.8Ge0.2 5 nm p+Si Interface Rough. 界面ラフネス抑制 RMS 0.87 nm 0.13 nm 4 Si2H6 400oC 3 RMS 0.13 nm 2 295K 1 SiH4 500oC RMS 0.87 nm 0 0.0 0.2 0.4 0.6 Applied Voltage (V) 10 -5 | Current at -0.01V | (A) Si0.8Ge0.2 12 nm 1/2 10 -4 SiSi障壁成長条件 Barrier Growth SiH4 500oC Si2H6 400oC Current (mA) p+Si0.8Ge0.2 50 nm Masao Sakuraba Si Barrier Thick. Si2H6 400oC 1.0 nm 1.8 nm 2.2 nm Takahashi et al., Solid-State 10 -6 Electron., 60 (2011) 112. 10 -7 10 -8 10 -9 Calculation Based on Thermionic Emission ∝T 2 exp(-φB/k T ) Top Contact Area 60 um2 0 100 200 300 For Si-Ge resonant tunneling devices with higher Temperature (K) performance, formation of heterostructure with nanometer-order thick films and control of atomic-order flatness are necessary. Moreover, exploring of higher barrier height materials for tunnel barriers is important. Quantum Heterointegration Process of Highly Strained Group IV Semiconductors Quantized 量子準位 State Hole ホール + (b) + (c) ワイド Higher ギャップ Barrier 障壁 + 300 200 100 Expanding range of plasma condition for epitaxial growth ier r r a rB e p. gh i m : H Te rier w r : Lo i Ba 0o C er i r S 40 ar nm B r .8 : ne 4 ~1 n er i . i r 1 h r T Ba 7 nm r . e ick .4 ~2 h T 2 Modulated Spacer (○,○,●) Uniform Spacer (△,▲) 0 0.0 0.2 0.4 0.6 0.8 1.0 Ge Fraction for Spacer SiH4, GeH4 , CH4 ,・・・ Si(100) Ge-Frac. Modulated Ge比率変調 Spacer & Quantum Well スペーサ&量子井戸 400 Low-Energy Ar Plasma Strained Si1-xGex EV Critical Temperature for Negative Differential Conductance (K) (a) 2/2 Strained Si1-yCy Hole Energy ホールエネルギー • Surface reaction control of ultraclean reactant gases under lowdamage and low-energy plasma without substrate heating • Adsorption and reaction control by utilizing reactant gas activation (modification) • Epitaxial growth of highly strained nanometer-order thin films out of thermal equilibrium Masao Sakuraba • Selective film formation (deposition and etching control) on upper surface and side-wall • Improvement of room-temp. resonant tunneling surface • Epitaxial growth of highly characteristics by utilizing highly strained doped nanometer-order thin nanometer-order thin films films out of thermal equilibrium • Establishment of heterointegration process of quantum-effect nanodevices
© Copyright 2024 ExpyDoc