H26 年度 基礎力学及び演習 担当 岩城・子田 提出日:2014 年 5 月 29 日 学生番号 氏 名 演習問題:モーメント,数力の合力,部材力 1. (1) O 点回りのモーメント力を求めよ. P=5kN M = P ⋅ l = 5kN × 3m = 15kN ⋅ m € O (2) M = P1 ⋅ l1 + P2 ⋅ l2 − P3 ⋅ l3 = 4kN × 6m + 5kN × 3m − 8kN × 9m = −33kN ⋅ m P2=5kN P1=4kN O € P3=8kN (3) P1=2kN P3=2kN l1=6m M = −P1 ⋅ l1 − P2 ⋅ l2 + P3 ⋅ l3 = −2kN × 6m − 3kN × 4m + 2kN × 9m = −6kN ⋅ m l3=9m O l2=4m P2=3kN € H26 年度 基礎力学及び演習 担当 岩城・子田 提出日:2014 年 5 月 29 日 2. (1) 合力 R とその作用位置を求め,図示せよ. R P1=10kN R R = −P1 + P2 = −10kN + 3kN = −7kN (下向き) l=3m €O' P2=3kN O M o = −P2 ⋅ l = 7kN ⋅ x −P ⋅ l −3kN ⋅ 3m x= 2 = = −1.3m 7kN 7kN € (2) R P1=10kNR l1=7m R = −P1 + P2 = −10kN + 2kN = −8kN (下向き) l2=8m M o = P1 ⋅ l1 − P2 ⋅ ( l1 + l2 ) = 8kN ⋅ x € O O'' P2=2kN O' x= P1 ⋅ l1 − P2 ⋅ ( l1 + l2 ) 10 ⋅ 7 − 2 ⋅ ( 7 + 8) = = 5m 8kN 8 € (3) R P1=10kN P2=8kN R l1=6m O R = −P1 − P2 + P3 = −9kN (下向き) l2=6m M o = P2 ⋅ l1 − P3 ⋅ ( l1 + l2 ) = 9kN ⋅ x € O' P3=9kN € x= P2 ⋅ l1 − P3 ⋅ ( l1 + l2 ) 8 ⋅ 6 − 9 ⋅ (6 + 6) = = −6.7m 9kN 9 H26 年度 基礎力学及び演習 担当 岩城・子田 提出日:2014 年 5 月 29 日 1 点に作用していない数力の合力 R とその作用位置を求め,図示せよ. 3. (1) y P1=50kN P2=30kN (2,2) (-1,1) (x0,y0)=(2,1) !H "V H•y P1 0kN -50kN 0#2m=0 P2 -30kN 0kN $ -30kN -50kN -30kN#1m =-30kN•m -30kN•m V•x 50kN#2m =100kN•m 0#1m=0 100kN•m x R R = (ΣH ) 2 + (ΣV) 2 = (−30) 2 + (−50) 2 = 58.3kN % ΣV ( −1 % −50 ( θ = tan−1' * = tan ' * = 59 & ΣH ) & −30 ) € − ΣH ⋅ y 0 = Σ( H ⋅ y ) ΣV ⋅ x0 = Σ(V ⋅ x) −30 × y 0 = −30 y 0 = 1m 50 × x0 = 100 x0 = 2m € € (2) R y P2=30kN P1=50kN (x0,y0)=(1.1, 4.8) (2,2) (-1,1) !H x "V P1 P 1 cos45°=35.4kN P 1 sin45°=35.4kN P2 -P2 cos30°=-26kN P 2 sin30°=15kN $ 9.4kN 50.4kN H•y 35.4kN#2m =70.8kN•m -26kN#1m =-26kN•m 44.8kN•m R = (ΣH) 2 + (ΣV ) 2 = (9.4) 2 + (50.4) 2 = 51.3kN % ΣV ( −1% 50.4 ( θ = tan−1' * = tan ' * = 79.4 & ΣH ) & 9.4 ) ΣH ⋅ y0 = Σ( H ⋅ y) € − ΣV ⋅ x 0 = Σ(V ⋅ x ) −50.4 × x 0 = −55.8 x 0 = 1.1m 9.4 × y0 = 44.8 y0 = 4.8m € € V•x -35.4kN#2m =-70.8kN•m 15kN#1m =15kN•m 55.8kN•m H26 年度 基礎力学及び演習 担当 岩城・子田 提出日:2014 年 5 月 29 日 4. (1) 部材力 T1,T2 を求めよ. 鉛直方向と水平方向の釣り合いより T1 A ΣV = −T2 sin 30° − P = 0 C T2 = − T2 P 10kN =− = −20kN sin 30° sin 30° ΣH = −T1 − T2 cos 30° = 0 T1 = −T2 cos 30° = −(−20kN) × cos 30° = 17.3kN P=10kN B € モーメントの釣り合いより ΣM A = P × AC + T2 ⋅ AC sin 30° = 0 T2 = − ΣM B = P ⋅ BC cos 30° − T1 ⋅ BC sin 30° = 0 P 10kN =− = −20kN sin 30° sin 30° T1 = P ⋅ cos 30° 10kN ⋅ cos 30° = = 17.3kN sin 30° sin 30° (2) A€ € 鉛直方向と水平方向の釣り合いより ΣV = T1 sin 60° − P = 0 T1 = T1 P 10kN = = 11.5kN sin 60° sin 60° ΣH = −T1 cos60° − T2 = 0 T2 = −T1 cos60° = −(11.5kN) × cos60° = −5.8kN B C€ T2 モーメントの釣り合いより ΣM A = P × AC cos60° + T2 ⋅ AC sin 60° = 0 T2 = − P=10kN P ⋅ cos60° 10kN ⋅ cos60° =− = −5.8kN sin 60° sin 60° ΣM B = P × BC − T1 ⋅ BC sin 60° = 0 € T1 = P 10kN = = 11.5kN sin 60° sin 60° (3) T1 € C モーメントの釣り合いより A ΣM A = P × AC cos15° + T2 ⋅ AC sin 30° = 0 T2 = − T2 P=10kN € B € P ⋅ cos15° 10kN ⋅ cos15° =− = −19.3kN sin 30° sin 30° ΣM B = P ⋅ BC sin 45° − T1 ⋅ BC sin 30° = 0 T1 = P ⋅ sin 45° 10kN ⋅ sin 45° = = 14.1kN sin 30° sin 30°
© Copyright 2024 ExpyDoc