'4 Deformation & Strain �!'4´KJ_T,R' �!'°J±´_'©¤¨« �!%I n, '4nv uA=u uB=u+(!u/!x)dx *, $ #u ' ., +u + && )) dx / " u u " uA ,% #x ( ,0 #u != B = = dx #x dx °o'± ''4 Displacement & Deformation !!' u = x! " x * '4M: v = y! " y *x w = z! " z u,v,w: x,y,zj]q= !!' !!'°KJT,_}'x± !!k' !!"i' !!'4'°K(~4M}' ± u}Q T,'°1± Relative Displacement !!'°'4''± A(x,y,z) B(x1,y1,z1) I°'4± !!k'r II°'45± A’(x’,y’,z’) B’(x1’,y1’,z1’) r’=r+u: A’_©¤¨« r: A_©¤¨« r1: B_©¤¨« r1’=r1+u1 : B’_©¤¨« dr=r1–r u: A'©¤¨« u1: B'©¤¨« du=u1–u: T,'©¤¨« r = ix + jy + kz r1 = ix1 + jy1 + kz1 u = iu + jv + kw u1 = iu1 + jv1 + kw1 T,'°2± Relative Displacement !!BJ'©¤¨«u1 !u !u !u u1 = u + dx + dy + dz !x !y !z !!T,'©¤¨«du du = u1 ! u = = "u "x "u "x j dx + dx j "u "y dy + "u "z dz n? ©¤¨« en = i! nx + j! ny + k! nz =i dx +j dy +k dz dr dr dr dr = endr = idx + jdy + kdz !!T,'; !!'m !ui !ui dui = dx j !x j !x j dr 2 = dr ! dr °1± dr "2 = dr" ! dr" = (dr + du) ! (dr + du) = dr ! dr + 2dr ! du + du ! du dr !2 " dr 2 = 2dr # du + du # du Strain !!$S!nn !nn = dr " # dr dr = (i%nx + j%ny = %nx %nj = %ni %nj &u &x j = en $ du dr = en $ du dr 2(dr ! " dr)dr = 2dr # du = 2(e ndr) # du = 2dr(en # du) * ' &u &v &w , + k%nz ) $ )i%nj + j%nj + k%nj , ) &x &x &x ( j j j + + %ny %nj &v &x j + %nz %nj &w &x j &ui &x j du = dui dr !u !x j = #nj dx j " !ui !x j du dr = #nj !u !x j °2± Strain !!$S!nn $ #w #v ' 2 #u 2 #v 2 #w !nn = "nx + "ny + "nz + "ny "nz && + )) #x #y #z % #y #z ( $ #u #w ' $ #v #u ' )) + "nx "ny && + )) + "nz "nx && + % #z #x ( % #x #y ( !nn = "2nx! xx + "2ny!yy + "2nz! zz + 2"ny "nz!yz Bbf 1 # "u j "ui & ! ij = % + ( % 2 $ "xi "x j (' + 2"nz "nx! zx + 2"nx "ny! xy !ij: ; = "ni "nj !ij i=j: $S; i"j: £>; °3± Strain !!£>!yz cos !yz = eB " eC = jdy + duB kdz + duC " (1 + #yy )dy (1 + # zz )dz 1+!xx#1 ' $ du ' $ du C) B) & ! && j + " k + ) & ) dy dz % ( % ( duB duC +k " + " = j"k + j" dz dy dy dz duC ! j" duC +k " duB dz dy *w *v = + = 2#yz *y *z duB drB = jdy + duB = (1 + !yy )dyeB drC = kdz + duC = (1 + ! zz )dzeC duB dy duC dz =i !u =i !u !y !z +j !v +j !v !y !z +k !w +k !w !y !z °4± Strain !!£>!yz d/"/2|'d/ cos "yz sin(# / 2 $ "yz ) "/2- &>0 !yz = = "/2(~ &<0 2 2 ( 1 %# ! '' $ "yz ** 2 &2 ) 1 % +w +v ( ** = '' + 2 & +y +z ) !yz: PgR£> °§¦«± #yz: .)R£> #yz=2!yz §¦« Stain Tensor !!x? T,';du )1 " !v !u % 1 " !v !u %, du = dx + dy + dz = dx + + $$ + '' ( $$ ( ''. dy !x !y !z !x +*2 # !x !y & 2 # !x !y &.)1 " !u !w % 1 " !w !u %, '' ( $$ + + $$ + ( ''. dz 1 $ "u j "ui ' ! ij = & # ) +*2 # !z !x & 2 # !x !z &.2 &% "xi "x j )( = (/ xx dx + / xy dy + / zx dz) + (0dx ( 0 xy dy + 0 zx dz) !u !u ) ! % + ( xx # du # + " dv & = ( xy # # + $ dw ' + ( * zx !u ( xy (yy (yz !u , ) ( zx . ! % + 0 # dx # + . (yz " dy & + 0 xy .# # + ( zz . $ dz ' + /0 zx * §¦« /0 xy 0 0yz , 0 zx . ! % dx # # . /0yz " dy & .# # . $ dz ' 0 - "i§¦« "i§¦« Rotation Tensor !!;}¥¬& * ! % , 0 du # # , " dv & = ) xy # # , $ dw ' , () zx + () xy 0 )yz ) zx / ! % dx # # / ()yz " dy & /# # / dz $ ' 0 . "i !w !!'4 ' ) ! % + ( xx # du # + " dv & = ( xy # # + $ dw ' + ( * zx ( xy ( zx (yy (yz (yz ( zz , . ! dx % # . #" & . # dy # . $ dz ' - !y !yz =" !v !z 1 $ "w "v ' "w )) = = && # 2 % "y "z ( "y ; Components of Strain �!$S; �!£>; !x = !y = !z = "u �!.)R£> �!PgR£> "x "v "y "w "z ! xy = ! yz = ! zx = "u "y "v "z "w "x 6NX; §¦« + + + "v "x "w "y "u "z ! xy 1 # "u "v & = % + ( 2 $ "y "x ' ! yz 1 # "v "w & = % + ( 2 $ "z "y ' ! zx 1 # "w "u & = % + ( 2 $ "x "z ' ©¤¨«°1± Strain Vector !!n? ) ! % + ( xx # du # + " dv & = ( xy # # + $ dw ' + ( * zx ( xy (yy (yz , ( zx . ! % dx # # (yz . " dy & .# # ( zz . $ dz ' - ^\AB°=dr±'4'du du = idu + jdv + kdw o3du !!n? ^\©¤¨«!!n du dv dw n ! = =i +j +k dr dr dr dr = i!nx + j!ny + k!nz ¢ du = (i! xx + j! xy + k! zx ) +(i! zx + j!yz + k! zz ) dx dr dz + (i! xy + j!yy + k!yz ) dr = "nx! x + "ny! y + "nz! z = "ni! i dy dr ! x = i! xx + j! xy + k! zx ! y = i! xy + j!yy + k!yz ! z = i! zx + j!yz + k! zz ©¤¨«°2± Strain Vector ! xy = ! zx = 0 " xx = #u #x , " xy = !!x? ^\AX°=dx±'©¤¨« !u !v !w x du = i dx + j dx + k dx !x !x !x !u !v !w dux =i +j +k dx !x !x !x = i" xx + j" xy + k" zx = " x !xox? !!n? n ! = ^\'©¤¨« ©¤¨«!!n du = dun + dut dr dr dr = en!nn + et !nt #v #x , " zx = #w #x 0C'< Coordinate Transformation !!i'? ©¤¨«!!i’ ! i " = #i "i! i ! i = e x!ix + ey!iy + e z!iz = e j !ij = #i "i e j !ij !i "j " = e j " # ! i" = e j " # e j $i "i!ij = $i "i $ j "j !ij !i’j’: !i’j’? ; i,j,kuex,ey,ez i',j',k'uex',ey',ez' ;0C'<1 °7&± °1± Principal Strain !!k? ©¤¨« ! k = !ek = !(i"kx + j"ky + k"kz ) = i"ki!ix + j"ki!iy + k"ki!iz i(!ki"ix # !kx") + j(!ki"iy # !ky") + k(!ki"iz # !kz") = 0 !ki"ix # !kx" = 0, !ki"iy # !ky" = 0, !ki"iz # !kz" = 0 !kx (" xx # ") + !ky" xy + !kz" zx = 0 !kx" xy + !ky ("yy # ") + !kz"yz = 0 !kx" zx + !ky"yz + !kz (" zz # ") = 0 W °2± dV = dx(1 + ! xx )dy(1 + !yy )dz(1 + ! zz ) " dxdydz = V #$(1 + ! xx )(1 + !yy )(1 + ! zz ) "1%& Principal Strain = V(! xx + !yy + ! zz + !yy! zz + ! zz! xx +! xx!yy + ! xx!yy! zz ) !!L8?V1 dV ! xx " ! ! xy ! zx ! xy !yy " ! !yz ! zx !yz ! zz " ! V =0 J1 = ! xx + !yy + ! zz = !ii J2 = !yy! zz + ! zz! xx + ! xx!yy = 1 !! ( 2 ii jj " !ij !ij ) J3 = ! xx!yy !zz " ! xx !2yz " !yy!2zx (! " !1)(! " !2 )(! " !3 ) = 0 J1 = !1 + !2 + !3 J3 = !1!2!3 = ! xx + !yy + ! zz = J1 "!2yz " ! 2zx " !2xy !3 " J1!2 + J2! " J3 = 0 !1 , !2 , !3 J2 = !1!2 + !2!3 + !3!1 ! V(! xx + !yy + ! zz ) "! zz!2xy + 2!yz! zx! xy = !ij 'n J1: W²Wa2O l@1°1± Compatibility Equations !" !u 6 '3 = !y !x!y E¡ "! ! xy !" !u $ xx !v = $ # !x !y!x v !yz " 16 #!yy !" 1# ! u $ #w = %% !x!y 2 $ !x!y $ $! zz ! zx % !!9E¡x !!;p£|[@}6c !" 2 xx 2 2 yy 2 2 xy 3 2 3 2 3 2 !3v & ( + 2( !y!x ' 2 'q1|u, v, w¢G * !2" !2"yy !2" xy , xx + =2 2 ,, !y 2 !x!y !x + 2 ' $ , ! " xx ! & !"yz !" zx !" xy ) = # + + , & !y !z )( ,- !y!z !x % !x xx !y!z = !3u !x!y!z ! " xy !2 # !u !v & %% + (( =2 !x!z !x!z $ !y !x ' 2 !2"yz !2 # !v !w & (( = 2 2 %% + !x 2 !x $ !z !y ' !2" zx !2 # !w !u & %% =2 + (( !x!y !x!y $ !x !z ' l@1°2± Compatibility Equations # !2" !2"yy !2" xy % xx + =2 2 % !y 2 !x!y !x % 2 !2"yz % ! "yy !2" zz =2 $ 2 + 2 !y!z !y % !z % !2" 2 2 ! ! " " zx xx % zz + = 2 % !x 2 !z!x !z 2 & ' $ ! & !"yz !" zx !" xy ) = # + + & !y!z !x % !x !y !z )( ' $ !2"yy ! & !"yz !" zx !" xy ) = # + & !z!x !y % !x !y !z )( ' $ !2" zz ! & !"yz !" zx !" xy ) = + # & !x!y !z % !x !y !z )( !2" xx ;pHh¡¡x@ !s "! JM:}Dy§¦ «z¡~²(~{ ? ¢E³²bU ; |'n¢E²¡}Y x¢U³k*=w ³ " $ 5 &1 &1 ( "! $ = k ' ' &1 4 0 ( # ij % '# &1 0 4 (% !s "! Sd0CZq ';}2µu=5x +3y, 2µv=3x–Ay, 2µw=3z+2°µ: *=± b¡x ³'4W' }Qx ¡²Ay |µ !s "! '&}2µu=4x–y+3z, 2µv=x+7y, 2µw=–3x+4y+4z°µ: *=±b¡x ³§¦«{§¦«¢ E³ !s "! ;}k¢*= ! xx = k(x 4 + y 4 + x 2 + y 2 + 5) !yy = k(x 4 + y 4 + 3x 2 + 3y 2 + 6) ! xy = k(2x 3y + 2xy 3 + 4xy + 5) ! zz = !yz = ! zx = 0 z¡ y&}+#`|y |¢Ae8³`²¡ J{ k'"i'}0w & ';¢F*³ 7®0C'< Coordinate Transformation of Stress & Strain �!7 ! x ' = ! x cos2 " + ! y sin2 " + 2# xy sin " cos " ( ) ( ) # x ' y ' = # xy cos2 " $ sin2 " + ! y $ ! x sin " cos " t ª¯« �! ! x ' = ! x cos2 " + ! y sin2 " + # xy sin " cos " ( ) ( ) # x ' y ' = # xy cos2 " $ sin2 " + 2 ! y $ ! x sin " cos " �! �!? °? �!³³³ ±
© Copyright 2025 ExpyDoc