大阪大学 OSAKA UNIVERSITY Influence of surface melting or impurities (Ne, Ar) on deuterium permeation in tungsten タングステン表面溶融及び不純物(Ne、Ar)が水素同位体の 透過へ与える影響 H.T. Leea, M. Ishidaa, Y. Uedaa N. Tanakab, H. Nishimurab aGraduate School of Engineering, Osaka University, Japan bIns>tute of Laser Engineering, Osaka University, Japan ダイバータ関係サブクラスター合同 平成26年7月31日 筑波大学 1 Motivation Ø Worldwide fusion program is now focused on Tungsten (W) as plasma facing material in divertor. (JET-ILW, ITER, DEMO) W melt structure formed after TEXTOR edge plasma Ø Probability of some W melting and surface morphological changes due to power loads. Ø N, Ne, or Ar are considered as extrinsic impurities to reduce the local power load. Ø Hydrogen transport under such changes in surface condition has not been investigated. (i.e. change in boundary condition for hydrogen diffusion) Ø May impact tritium retention and safety. Research purpose: 1. To determine how hydrogen transport / retention affected by surface melting and N, Ne, or Ar impurities. 2. To evaluate the magnitude of such changes on Tritium retention estimates. 2 Ion driven permeation apparatus Faraday cup Ion beam mass -‐ analyzed for analysis Magnetic coils Microwave (2.45GHz) ECR plasma 60° Gas inlet Deflection coil Q- mass analyzer Permeation experiment IR Heater (2kW) Ion beam Energy : 1 keV flux(D) : ~1020 m-‐2s-‐1 Species : D3+,D2+,D+ Heat Thermo couple Three spherical electrodes Cu gasket 3 Influence of surface melting on deuterium permeation in tungsten 4 Experimental 1. Prepare surface melt layer on W Ø Nano second laser irradiation. Sample W disc thickness = 71 µm φ = 30.8 mm 2. Characterization of surface melt and morphology Ø SEM (surface/cross section). Ø Laser microscope (topological information). 30.8 mm 3. D-only ion driven permeation experiments Ø HiFIT device. Ø Temp: 500 ~ 1000 K Laser melted surface W D D Laser parameters Wavelength : 1064 nm Pulse width (FWHM) : 7 ns Beam spot: φ ~ 4 mm Intensity: ~600 mJ Laser power density: 7×1012 W/m2 5 Fine filamentary features and crater-like dimples due to surface melting 10 µm 10 µm 6 Increase in steady state permeation at T≤ 700 K Steady State condition: L ∂C 8 Depth, x • From inverse thickness dependence we confirm diffusion limited transport. • Indicates R << L. (i.e. the controlling C is close to the surface < 1µm) • T ≥ 700 K, an increase in steady state flux for melted surface (×2). (i.e an increase in solute C) W Normal surface (31 µm) (Data scaled by (31/71)) Melted surface (71 µm) 2 R D 700 K 6 15 C Permeation Flux (×10 D/m s) C* C* J = −D ≅D ∂x L ×2 4 Normal surface (61 µm) (Data scaled by (61/71)) 2 0 400 500 600 700 800 900 1000 T (K) 7 Transient permeation spectra 1.2 T = 570 K 1 Once traps filled at near surface, solute concentration increases Sum Normalized permeation flux 0.8 D1 0.6 C 0.4 D2 0.2 Depth, x 0 100 1000 Time (s) • At T = 570 K, good fit requires sum of two independent permeation curves with two different diffusivities. • The two diffusivities interpreted to be: Effective diffusivities reflecting trapping effects. 8 Difference only in the second diffusivity D2 between melted and normal specimen Frauenfelder’s value “true” volume diffusivity Melted surface -11 D1 = (7±1×10-8) exp (-0.55±0.02 eV/kT) D1 2 Diffusivity (m /s) 10 D2 = (1±1×10-9) exp (-0.40±0.05 eV/kT) -12 10 D2 = (3±1×10-8) exp (-0.59±0.03 eV/kT) -13 10 700 K D2 Normal surface -14 10 1.2 1.4 1.6 1.8 2.0 2.2 • The higher D2 for melted sample due to higher trap filling ratio due to higher solute D concentration. -1 1000/T (K ) 9 Summary of surface melt experiments • Surface melted layer on W permeation specimen and D-only irradiation experiments performed. • T ≥ 700 K, an increase in steady state flux for melted surface (×2). This indicates increase in solute concentration due to surface melting. • Two diffusivities provide good fit to transient permeation spectra. The higher solute concentration results in faster diffusion through the bulk (since traps are saturable). Ø The experiments clearly indicate that surface melting and morphology changes due to heat loads does change the D transport but its impact is modest (×2). Ø Effect of mixed irradiation (D+X (X = He, N, Ne, Ar)) unknown for melted layer. 10 重水素・Ne/Ar同時照射が 透過挙動に与える影響 11 Ne/Ar同時照射による 重水素定常透過フラックスへの影響 16 5x10 2 Permeation Flux(D/m s) D-only 10 16 l D+Ne照射:550K以上 の温度領域で透過フ ラックス減少 D+Ar l D+Ar照射:600K以上 の温度領域で透過フ ラックス減少 D+Ne 10 10 15 Ø NeやArと同時照射す ることで透過フラックス が減少する傾向が見 られた 14 500 600 700 800 900 1000 Temperature(K) 12 重水素のみの照射との比較 D solute concentration 10 D +N D +A r D+N D D+Ne/Ar l 窒素によって透過フラッ クスは増加 →表面にタングステンと窒 素の混合層が形成、表面 内部の重水素濃度が増加 1 N orm alized perm eation flux * (C /C at T < 780K ) D +N e 0.1 0.01 500 600 700 800 900 T em perature(K ) 1000 l Ne/Arとによって透過フ ラックスは減少 →表面状態が変化し、表 面内部の重水素濃度が減 少 13 各照射におけるラグタイムの比較 *G. Federici, D. Holland, and R. Matera, J. Nucl. Mater. 233-237 (1996) 741-746. 透過フラックスが定常状態にな るまでにかかる時間を重水素 のみ照射の場合と比較 1.0 0.8 T=550K D +A r l D+Ar同時照射:重水素の みの照射より定常状態に早 く達した 0.6 D +N e D -only 0.4 0.2 0.0 10 100 1000 N orm alized perm eation flux 1.2 When permeation simultaneous with sputtering* l D+Ne同時照射:重水素の みの照射より定常状態に達 するまで時間を要した →同じ希ガスの照射だが結 果に違いが現れた 10000 Tim e(s) 14 D+Ne/Ar 透過実験のまとめ l D+Ne、D+Ar照射を行い、Ne/Arが重水素の透過に与える影 響を調べた。 l Ne/Arとの同時照射で、大部分の温度領域で透過フラックスが 減少する結果となった。これは、Wの表面内部の重水素濃度 が減少したことによると考えられる。 l 透過フラックスが定常状態になるまでにかかる時間は、D+Ar 照射では重水素のみの照射より短かったが、D+Neではより長 い時間がかかった。Neの照射によってスパッタリング以外に拡 散に影響をおよぼす現象がある可能性が考えられる。 15 まとめ A) 表面溶融 B) Ne/Ar同時照射 C* Solute D concentration C* 表面溶融 (メカニズム?) D R L x Solute D concentration 窒素鵜の影響 (混合物) D R L x Ne/Arの影響 (スパタリング、Neの蓄積?) 16 17
© Copyright 2025 ExpyDoc