On Cut-Approach

Muroran-IT Academic Resources Archive
Title
Author(s)
Citation
Issue Date
URL
On Cut-Approach
Kinokuniya, Yoshio
室蘭工業大学研究報告. Vol.5 No.2, pp.929-934, 1966
1966-08-25
http://hdl.handle.net/10258/3287
Rights
Type
Journal Article
See also Muroran-IT Academic Resources Archive Copyright Policy
Muroran Institute of Technology
O n Cut~Approach
*
nd
v
d
n
・
1
u
tk
o
n
'I
K
QU
O
O
1
n
Y
A
b
s
t
r
a
c
t
Ap
a
i
ro
fm
u
t
u
a
l
l
y cut-ωnjugate p
r
o
p
e
r
t
i
e
s,w
h
iじha
r
et
ob
ee
x
c
l
u
s
i
v
e
l
yd
i
s
t
i
n
g
u
i
s
h
e
do
na
n
y
r
e五r
s
t
l
yd
e
f
i
n
e
c
l
. Byt
h
e
s
ep
r
o
p
e
r
t
i
e
saf
u
n
c
l
a
m
e
n
l
a
i
ι
h
e
o
r
e
mi
si
n
c
l
u
c
e
da
n
c
lt
h
e
n
s
e
to
fp
o
i
n
t
s,a
s
o
m
ei
m
p
o
r
t
a
n
ti
n
v
e
s
t
i
g
a
t
i
o
n
sa
r
cc
l
e
v
e
l
o
p
e
c
lo
v
e
ru
l
l
r
a
f
u
n
c
t
i
o
n
so
f乱 s
e
t
.
1
. Set1
ヲ
unction
I
nt
h
i
spaper byas
e
tj
i
m
c
t
i
o
nwemean anonn
e
g
a
t
i
v
ea
d
d
i
t
i
v
ef
u
n
c
t
i
o
no
f
as
e
t
;i
.
e
.i
ffi
sas
e
tf
u
n
c
t
i
o
nフ f
o
r any two s
e
t
s ]陛1 and ]U~ o
fp
o
i
n
t
si
na
talways e
f
f
e
c
t
st
h
a
t
f
i
n
i
t
e
d
i
m
e
n
s
i
o
n
a
le
u
c
l
i
d
i
a
ns
p
a
c
e E,i
ヲ
四
。
J
P
l
;
U.
:
.
1
'
12)= f
(
l
t
L
J+
f(
既)-f(~~11 n1
1
1
2) •
C
:
:
I
fa s
e
tf
u
n
c
t
i
o
nfr
n
a
y,f
o
rany s
u
b
s
e
t p'c及
巴 beexpressedi
nt
h
eform
0f(P)
f(F)= !
(
1
.1
)
PEP
fi
sa
η
a
p
p
l
i
c
αt
i
o
ni
n!
J
!
;o
r,i
fnotan a
p
p
l
i
c
a
t
i
o
n,an u
l
t
r
aて{
u
n
c
t
i
o
n
.
J
In t
h
ep
r
e
v
i
o
u
s paper1
t
h
ep
r
e
s
e
n
ta
u
t
h
o
rs
t
a
t
e
d aboutt
h
ee
m
p
i
r
i
c
i
s
tview
e
tf
u
n
c
t
i
o
n
s may be o
b
s
e
r
v
e
c
li
n new w
a
y
s
.I
nt
h
e
o
fa
n
a
l
y
s
i
s throughwhich s
e
m
p
i
r
i
c
i
s
tt
h
e
o
r
yo
fa
n
a
l
y
s
i
s i
ft
h
er
e
l
a
t
i
o
n(
1
.1
) were t
obe t
r
u
e, i
tml
叫, f
o
r
anye
n
u
r
n
e
r
a
b
l
ep
a
r
t
i
t
i
o
n (.:.1'Ikh~l ム・ of J
1
'
/
, bet
h
a
t
ラ
ラ
f(
1
t
l
)= J
:
f(
凪)ヲ
which c
l
i
r
e
c
t
l
yr
n
e
a
n
st
h
a
tfi
sc
o
m
p
l
e
t
e
l
ya
d
d
i
t
i
v
ei
nJ
t
L Thεrefore t
h
a
ta s
e
t
f
u
n
c
t
i
o
nfi
s an u
l
t
r
a
f
u
n
c
t
i
o
ni
se
q
u
i
v
a
l
e
n
tt
oi
tt
h
a
tfi
sn
o
t everywhere c
o
r
n
p
l
e
t
e
l
ya
d
d
i
t
i
v
e(
i
nJ
Y
I
)
. Inthefollowing,ar
e
c
o
n
s
t
r
u
c
t
i
v
es
t
u
c
l
yo
fu
l
t
r
af
u
n
c
t
i
o
n
s
w
i
t
h some r
e
s
u
l
t
s、
w
i
l
lbe s
t
a
t
e
d
.
ラ
同
幽
z
. Prindple of Cut-Approach
For ag
i
v
e
np
r
o
p
e
r
t
yTt
obe t
e
s
t
e
df
o
ra s
e
仁 i
f
(V~lJIr,
NCE)((..M~N & Nct)[
>M c.
t
)
Ti
ss
a
i
c
lt
obep
r
o
g
r
e
s
s
i
v
e
,andi
f
(v
J
t
I
, NCE) ((J1'I~JY & .
.
'
1
'
Ic.
t
)[
>.Nct),
,
r
t
obe r
e
g
r
e
s
s
i
v
e
. I
fi
ti
s,f
o
rany s
e
t1
. i
n E,n
e
c
e
s
s
a
r
yt
h
a
t
持組関谷芳雄
(
4
2
3
)
Yo
s
h
i
oKinokuη'ya
930
MctVMctj
andi
ft
h
er
e
l
a
t
i
o
n
s及CctandM c q cannot s
i
m
u
l
t
a
n
e
o
u
s
l
y be o
b
s
e
r
v
e
d t
h
e
nT
and qa
r
es
a
i
dt
obem
u
t
u
a
l
l
yc
u
t
c
o
n
j
u
g
a
t
e
. Then t
h
ef
o
l
l
o
w
i
n
gf
a
c
ti
sd
i
r
e
c
t
l
y
五n
i
t
i
o
n
:
o
b
t
a
i
n
e
dby t
h
ede
Proposition2
.1
. 1
fTω1
dqarec
u
t
c
o
n
j
u
g
a
t
epr
.
ψe
r
t
i
e
sandT i
sr
e
g
r
e
s
s
i
v
e(
r
e
s
p
.p
r
o
g
r
e
s
s
i
v
e
)t
h
e
n qi
sα1りr
o
g
r
e
s
s
i
v
e(何学・ r
e
g
r
・
'
e
s
s
i
v
e
)ρr
o
p
e
r
t
y
.
I
f Ti
sr
e
g
r
e
s
s
i
v
e and q i
sp
r
o
g
r
ε
s
s
i
v
e,making up a p
a
i
ro
fc
u
tc
o
n
j
u
g
a
t
e
p
r
o
p
e
r
t
i
e
s andi
f
ラ
ラ
開
ラ
c及r
andM c q
B)ct,B,
ラ
t
h
e
nt
h
e
r
emay e
x
i
s
ttwo s
e
q
u
e
n
c
e
so
fs
e
t
s (Bk) and (Ak) such t
h
a
t
R)CB2C .
園 CA
二
及f
2CA)C
ラ
Bkct and Akcq ん
(=1,
2,.
一
).
I
nt
h
i
sc
a
s
ei
fi
ti
sn
o
tt
h
a
t
ラ
B =UB/ c =
nAk=A
we have
o
i
d
.
A - B手 v
(
2
.
1
)
h
a
t
When Bcq,wemaychoose such t
A2= A3= ・・・ = B
s
ot
h
a
t A =B. When Act,wemaychoose sucht
h
a
t
B2= B
3= ・一 = A
s
ot
h
a
t A=B. T
h
e
r
e
f
o
r
e wemay,f
o
rt
h
ec
a
s
eo
f(
2
.1
)s
u
p
p
o
s
et
h
a
t
ラ
ラ
Bct and Acq.
(
2
.
2
)
I
nc
a
s
eo
f(
2
.
2
),as
e
tcanbe i
n
s
e
巾 db
etween A and B and i
t,o
fc
o
u
r
s
e,has
. Thisb
e
i
n
gs
o,at
r
a
n
s
i
n
d
u
c
t
i
v
e modemay bede
五ned
onep
r
o
p
e
r
t
yo
f Tandq
t
or
e
a
c
h ac
o
n
s
t
r
u
c
t
i
o
n such t
h
a
t
(
V
C
ε I) (B,
ct) (Ii
sas
i
m
p
l
e
o
r
d
e
r
e
ds
e
to
fi
n
d
i
c
e
s
),
(
V
C,KεI) (c<K!>B,
CB<),
(
V
A
εA
)(
ム cq) (
Ai
sas
i
m
p
l
e
o
r
d
e
r
e
ds
e
to
fi
n
d
i
c
e
s
),
(VA,μ
εA
) (A<μi
)A,
:
:
;
2Aμ
)
ラ
andi
f B = UB,and A ニ
nA" thenwehaveoneofthecases
r(
i
i
) Bct,Acq and(VG)(BcG[
>Gcq).
(
i
) B ニム o
Thec
a
s
e(
i
i
)canr
e
a
d
i
l
ybet
u
r
n
e
di
n
t
ot
h
ec
a
s
e(
i
)
. I
na
d
d
i
t
i
o
n
,i
nt
h
ee
m
p
i
r
i
c
i
s
t
t
h
e
r
emuste
x
i
s
tenumerable s
u
b
s
e
t
so
fi
n
d
i
c
e
s(
C
k
)and(
ん
)sucht
h
a
t
t
h
e
o
r
y,
B ニ UBι k and A= nA.ik ・
(
4
2
4
)
9
3
1
OnC
u
t
A
p
p
r
o
a
c
h
Thuswehave:
Proposition 2
.
2
.(
P
r
i
n
c
争l
eofC
u
t
A
p
p
r
o
a
c
h
)
. 1fTαnd q aJで c
u
t
c
o
j
u
r
t
i
e
sand1
:
1i
sr
e
g
アe
s
s
i
v
e
,andi
fM 亡 q,thenthereexistt
日 oe
numerable
g
a
t
e戸 ゆe
s
e
q
u
e
n
c
e
st
:
:
?
戸
、 s
u
b
s
e
t
s(B1.) and(Ak
)s
u
c
ht
h
a
t
B1C B
...cA2c A1c M
,
2C
Bkctand A"cq ん
(=1,
2,.
一
),
ωl
dond
e
n
o
t
i
n
gαsB =U BkandA =nA,
o weh
aveA=B.
The s
e
tB o
b
t
a
i
n
e
di
nt
h
eabove,i
sc
a
l
l
e
da Tc
u
to
ft
h
es
e
tJ
t
I
, and t
hen
,
)i
sc
a
l
l
e
da c
u
t
a
l
ゆr
o
a
c
hfrombelow and(A,
,
) ac
u
t
a
p
ρroach
t
h
es
e
q
u
e
n
c
e
s (B,
fromabovewith r
e
s
p
e
c
tt
o T(
o
rq
)
.
回
3
. Cut-Amosphere
When
。
<c<f(Jt
r
)
l
e
tu
s de
五neT andqsuch t
h
a
t
(Fcþ) 三 (f(F)~c)
and (Fcq)三 (
f
(F)>c),
t
h
e
nTand q a
r
ea
p
p
a
r
e
n
t
i
yc
u
t
c
o
n
j
u
g
a
t
e and T(
r
e
s
p
.q
)i
sar
e
g
r
e
s
s
i
v
e(
r
e
s
p
.
p
r
o
g
r
e
s
s
i
v
e
)p
r
o
p
e
r
t
y
. So a
p
p
l
y
i
n
gt
h
ep
r
i
n
c
i
p
l
eo
fc
u
t
a
p
p
r
o
a
c
h wemayh
a
v
e
,
)a
nd(Ak) s
u
c
ht
h
a
t
c
u
t
a
p
p
r
o
a
c
h
e
s(B,
ラ
ラ
BjCBzC.
‘ CA
C
;
;
:
;A1C]
J
;
I
z
f(B1.)ミ
ミ f(B止 1
)~ c<f(Ak
+
l
)<f(Ak
)ん
(=1,
2,
…)
(
3
.
1
)
x
p
e
c
tt
h
a
t Bニ A. I
nt
h
i
sc
a
s
e i
fl
i
m
andi
fB U B
kand A nA", wecan e
f(81.) sandl
i
mf(Ak)=α,we have
二
ラ
二
二
(
3
.
2
)
ß~c ミミ α
and i
n
v
e
r
s
e
l
yi
fci
san a
r
b
i
t
r
a
r
yv
a
l
u
e found i
nt
h
er
e
l
a
t
i
o
n(
3
.
2
),t
h
er
e
l
a
t
i
o
n
,
)and(A
,
,
)
. T
herefore whens
手仏
(
3
.
1
)i
st
oh
o
l
donf
o
rt
h
esames
e
q
u
e
n
c
e
s(B,
t
h
es
t
a
t
eo
b
s
e
r
v
e
dthrought
h
el
i
m
i
t
i
n
gp
r
o
c
e
d
u
r
e
ラ
ラ
(Ak-Bj) ム
( j→∞)
(
3
.
3
)
mustg
i
v
e an a
t
m
o
s
p
h
e
r
i
cs
t
a
t
ei
np
o
i
n
tt
h
a
tt
h
el
i
m
i
t
i
n
gv
a
l
u
eo
ff(Ak- Bj
)i
s
e
s
p
i
t
eo
ft
h
ef
a
c
t
t
obecounteda
se
q
u
a
lt
ot
h
ep
o
s
i
t
i
v
enumberα sd
l
i
m(A,,-Bj)= v
o
i
d
.
Sot
h
es
t
a
t
ei
n
d
i
c
a
t
e
dby (
3
.3
)i
sc
a
l
l
e
da c
u
t
-αtmo
ゅ
んe
r
ewhens*
α
.
I
fr
Q
J<f(P)くむ(三 i
n
f
i
n
i
t
e
s
i
m
a
l
)f
o
re
v
e
r
yp
o
i
n
tP i
nM
, fi
ss
a
i
dt
o be
ρowdelッ i
n]
J
f
. I
fwedemands=αin (
3
.
2
),i
tmustbet
h
a
tt
h
es
e
q
u
e
n
c
e
s(Bk
)
and (Ak) a
r
ed
e
x
t
e
r
o
u
s
l
y chosen t
os
a
t
i
s
f
yt
h
ec
o
n
d
i
t
i
o
n
. For t
h
i
sp
u
r
p
o
s
e,i
t
mightbe h
e
l
p
f
u
lt
os
u
p
p
o
s
et
h
a
t,i
nc
a
s
eo
fapowderyf
u
n
c
t
i
o
n,
f themassvalue
(
4
2
5
)
yo
s
h
i
oK
i
n
o
k
u
n
i
y
a
9
3
2
0 shou
lda
tanyr
a
t
ebe thoughta
sanaccumulationo
fi
n
f
i
n
i
t
e
s
i
m
a
lq
u
a
t
i
f
C
2
J
I
)>
t
i
e
sf
(P) (PE.
1
J
1
)
. Then,i
ff(N)>
f(
I
l
'
),by t
r
a
n
s
f
e
r
r
i
n
gp
o
i
n
t
s from _1
yt
o]
1
'
,
t
h
ed
i
f
f
e
r
e
n
c
eo
ff
v
a
l
u
e might be d
e
c
r
e
a
s
e
du
n
t
i
li
tv
a
n
i
s
h
e
s
. Suchap
r
i
n
c
i
p
l
e
o
ft
r
a
n
s
f
e
r
r
i
n
gmaybea
s
s
e
r
t
e
da
s ag
e
n
e
r
a
l
i
z
a
t
i
o
no
ft
h
earchimedianp
r
i
n
c
i
p
l
ei
n
h
i
sp
r
i
n
c
i
p
l
e may s
e
r
v
ea
s amodal
a
r
i
t
h
m
e
t
i
c
. In l
o
g
i
c
a
l view o
ft
h
em
a
t
t
e
r,t
m
e
d
i
a
t
i
o
n betweent
h
eindependent d
e
s
c
r
i
p
t
i
o
n
s
: (
1
) (VPεM)(
f
(P)=O) and (
2
)
(vFC}
j
/
[
)(
f
(J
i
'
)
?
;
;
O
)& f
C
2
J
I
)
>
O
. Ine
f
f
e
c
t,a
sl
o
n
ga
s(
1
) and (
2
)a
r
et
h
eo
n
l
y
t seems a
l
m
o
s
ti
m
p
o
s
s
i
b
l
et
oi
n
d
u
c
e any o
ft
h
ef
o
l
l
o
w
i
n
gf
a
c
t
swhich
p
r
e
m
i
s
ε
s,i
(1
Y
I
)=∞
, t
h
e
r
ee
x
i
s
t
s as
u
b
s
e
tF o
fM such
a
r
everyn
a
t
u
r
a
l
l
ye
x
p
e
c
t
e
d
:(
i
)i
ff
t
h
a
t
閑
ラ
0くf
(
I
I
'
)<∞ ;
(
i
i
)i
nc
a
s
eo
f 0<f(班)<∞, f
o
r any n
a
t
u
r
a
li
n
t
e
g
e
r n,t
h
e
r
ee
x
i
s
t
sap
a
r
t
i
t
i
o
n
{
.
2
J
1
,
~l'
l
;
,
.
,
.
1
l
'
I
n
}
o
f
1
Y
l
s
u
c
h
t
h
a
t
1
f
(
.
2
J
I
,
)= f(~)
f
(
.
l
J
I
)
二… = f(JJI~) ェ一五一.
However i
fweapplytheabove-mentionedp
r
i
n
c
i
p
l
eo
rt
r
a
n
s
f
e
r
r
i
n
g,t
h
es
t
a
t
emay
.
l Consequently wemightexpectt
h
ef
o
l
l
o
w
i
n
gpro
t
u
r
no
u
tt
o be verγhopefu
p
o
s
i
t
i
o
nt
obea
s
s
e
r
t
i
v
e
l
yo
b
t
a
i
n
e
d,e
x
c
e
p
tt
h
ea
c
c
u
r
a
c
yo
fr
e
a
s
o
n
i
n
g
.
.(
P
r
i
n
c
伊l
eofContinuousA
c
c
u
r
n
u
l
a
t
i
o
n
)
. 1ff i
s
α pow
Proposition3
.1
derys
e
tf
u
n
c
t
i
o
n and
ラ
ラ
圃
司
。く cく f(M)
哩
誌記'
r
ec
x
i
s
t
sα s
u
b
s
e
tC of班 sucht
h叫
f(C)=c.
(
3
.
4
)
The s
u
b
s
e
tC s
a
t
i
s
f
y
i
n
g(
3
.
4
)i
sc
a
l
l
e
dac
c
u
to
ft
h
es
e
tJ
r
Iwithr
e
s
p
e
c
tt
of
.
4
. Cut-Probabilism
o
ranypowdery s
e
tf
u
n
c
t
i
o
nフ wemay
By P
r
o
p
o
s
i
t
i
o
n3
.1we i
n
s
i
s
t
e
dt
h
a
t,f
have a
tl
e
a
s
tone c
c
u
tf
o
rany i
n
t
e
r
m
e
d
i
a
t
ev
a
l
u
eo
f cf
o
ranys
e
tl
J
I
. However,
t
h
i
sf
a
c
tmaynotmeant
h
a
tanypowderys
e
tf
u
n
c
t
i
o
ni
sc
o
m
p
l
e
t
e
l
ya
d
d
i
t
i
v
e
. For
i
n
s
t
a
n
c
e,l
e
tust
a
k
er
e
a
lnumbersa
l
lt
obee
q
u
i
p
r
o
b
a
b
l
et
oo
c
c
u
ri
nt
h
er
e
a
la
x
i
s
五net
h
ea
l
e
a
t
o
r
yv
a
r
i
a
b
l
ex a
st
h
eo
c
c
u
r
r
e
n
c
eo
far
e
a
l numberx i
nt
h
i
s
and de
p
r
o
b
a
b
i
l
i
s
t
i
cc
o
n
s
t
r
u
c
t
i
o
n,thent
h
es
e
tf
u
n
c
t
i
o
n
π(
.
1
J
'
I
)d
e
f
i
n
e
dby
斑)= P
r
o
b
.(
xEM)
π
(
cannotbec
o
m
p
l
e
t
e
l
ya
d
d
i
t
i
v
eヲ whilef
o
ranyv
a
l
u
e csuch t
h
a
t0<
c
<1a set及Z
maybemadee
x
i
s
t
e
n
tt
os
a
t
i
s
f
yt
h
er
e
l
a
t
i
o
n
π
(斑 ) =c
.
I
ne
f
f
e
c
t,i
fM i
st
h
esumo
ft
h
ei
n
t
e
r
v
a
l
s
(
4
2
6
)
9
3
3
OnCut-Approach
(
7
1フ 刀 十 c
)(
7
1= 0,土 1,土丸…)
i
tmay n
a
t
u
r
a
l
l
ybea
d
m
i
t
t
e
dt
h
a
t
π(
l
l
1
}=c.
I
ffi
s apowdery s
e
tf
u
n
c
t
i
o
nand i
f
及1;cM
.
.C 及Iand U~, = J
j
I,
2c .
c一
畑
山も一、、
fJ一
川
M一
t
h
e
n,ona c
c
u
tC o
ft
h
es
e
tl
,
r
t we aretemptedt
o supposet
h
a
t
l
i
t
i
,
But,i
np
o
i
n
to
ff
a
c
t,t
h
i
sr
e
l
a
t
i
o
ni
snotalways e
旺e
c
t
e
de
s
p
e
c
i
a
l
l
y depending on
whether
n(C-M
k) =
v
o
i
d
.
fwei
n
s
i
s
tonanya
s
y
m
p
t
o
t
i
capproach,wes
h
a
l
lworka
tt
h
e
o
rn
o
t
. Therefore,i
(
c一民), andin effectwe findalight in this partフ accompanied
r
e
s
i
d
u
a
lp
a
r
tn
by anew modeo
fr
e
c
o
n
s
t
r
u
c
t
i
o
n
.
ラ
f
If
o
rany s
u
b
s
e
t]
1
'o
fM
, ther
e
l
a
t
i
o
n
l
i
mf(竺二!!!~)_ニ lim (
l
i
m点字自些j三里川
1
c
f(M-Jt
I,
,
)
k
f
(Jt
I;-M
k)
¥ j
}
i
sr
e
c
k
o
n
e
d
.a
st
r
u
e,Jt
Ii
ss
a
i
dt
obe r
e
g
r
e
s
s
i
v
e
l
y cut~ρrobabilistic i
nr
e
s
p
e
c
tt
of
Whenfi
sapowderys
e
tf
u
n
c
t
i
o
nd
e
f
i
n
e
df
o
ranys
e
t1
Tsucht
h
a
t(
3
k
)(FCM
k)
t
h
e
n,f
o
r any numberb such t
h
a
t
ヲ
ラ
(
l
t
1
.
<b,
l
i
m!
k) = s
fmaybeextendedthroughtheadditionaldennition
}(F)ニ l
i
mf(F nJt
Ik)十 (
b
-s
)l
i
m(lim 五!, n(~三JE-L
j
f(M
/
j一 風)
ハ
F being ana
r
b
i
t
r
a
r
ys
u
b
s
e
to
f及
r
.I
tI
sr
e
a
d
i
l
ys
e
e
nt
h
a
tM i
sr
e
g
r
e
s
s
i
¥e
l
yc
u
ι
ァ
h
a
t
p
r
o
b
a
b
i
l
i
s
t
i
ci
nr
e
s
p
e
c
tt
ofand t
f
("
/
I
'
)= f
(
E
'
)
(
4
.
1
)
*
v
v
h
e
n
e
v
e
r (計)(
1
1
'
CM;
J However i
t must be n
o
t
e
dt
h
a
taf
u
n
c
t
i
o
n,
f which
五e
s(
4
.1
),I
snotu
n
i
q
u
e
l
yd
e
t
e
r
m
i
n
a
b
l
e ont
h
es
i
n
g
l
ec
o
n
d
i
t
i
o
n
s
a
t
i
s
ラ
f
(
M)=b.
So f
o
rt
h
ep
r
e
s
叩 t
,we s
h
a
l
lr
e
s
t
r
a
i
no
u
r
s
e
l
v
e
s from s
u
p
p
o
s
i
n
gt
h
a
t any (
n
o
n
n
e
g
a
t
i
v
ァe
)s
e
tf
u
n
c
t
i
o
nmaybe foundt
oconform t
oc
u
tp
r
o
b
a
b
i
l
i
s
m
.
ラ
国
1
'
v
1
a
t
h
eηw
t
i
c
a
lSe
羽 は 札 山 ‘ れ1 t
h
e1
M
z
ぇγoγα抗 1
孔s
t
.T
e
c
h
.,Hokkaido
(
R
e
c
e
i
刊
(
4
2
7
)
934
Yoshio Kinokuniya
References
1
) Kinokuniya,Y.: Mem. Muroran l
n
s
t
. Tech. 5(
1
),341-347(
1
9
6
5
)
.
As ap
r
e
l
i
m
i
n
a
r
y guide:
Kinokuniya,Y.: Mem. MuroranI
n
s
t
. Tech. 4(
2
),491-496(
1
9
6
3
)
(
4
2
8
)