Muroran-IT Academic Resources Archive Title Author(s) Citation Issue Date URL On Cut-Approach Kinokuniya, Yoshio 室蘭工業大学研究報告. Vol.5 No.2, pp.929-934, 1966 1966-08-25 http://hdl.handle.net/10258/3287 Rights Type Journal Article See also Muroran-IT Academic Resources Archive Copyright Policy Muroran Institute of Technology O n Cut~Approach * nd v d n ・ 1 u tk o n 'I K QU O O 1 n Y A b s t r a c t Ap a i ro fm u t u a l l y cut-ωnjugate p r o p e r t i e s,w h iじha r et ob ee x c l u s i v e l yd i s t i n g u i s h e do na n y r e五r s t l yd e f i n e c l . Byt h e s ep r o p e r t i e saf u n c l a m e n l a i ι h e o r e mi si n c l u c e da n c lt h e n s e to fp o i n t s,a s o m ei m p o r t a n ti n v e s t i g a t i o n sa r cc l e v e l o p e c lo v e ru l l r a f u n c t i o n so f乱 s e t . 1 . Set1 ヲ unction I nt h i spaper byas e tj i m c t i o nwemean anonn e g a t i v ea d d i t i v ef u n c t i o no f as e t ;i . e .i ffi sas e tf u n c t i o nフ f o r any two s e t s ]陛1 and ]U~ o fp o i n t si na talways e f f e c t st h a t f i n i t e d i m e n s i o n a le u c l i d i a ns p a c e E,i ヲ 四 。 J P l ; U. : . 1 ' 12)= f ( l t L J+ f( 既)-f(~~11 n1 1 1 2) • C : : I fa s e tf u n c t i o nfr n a y,f o rany s u b s e t p'c及 巴 beexpressedi nt h eform 0f(P) f(F)= ! ( 1 .1 ) PEP fi sa η a p p l i c αt i o ni n! J ! ;o r,i fnotan a p p l i c a t i o n,an u l t r aて{ u n c t i o n . J In t h ep r e v i o u s paper1 t h ep r e s e n ta u t h o rs t a t e d aboutt h ee m p i r i c i s tview e tf u n c t i o n s may be o b s e r v e c li n new w a y s .I nt h e o fa n a l y s i s throughwhich s e m p i r i c i s tt h e o r yo fa n a l y s i s i ft h er e l a t i o n( 1 .1 ) were t obe t r u e, i tml 叫, f o r anye n u r n e r a b l ep a r t i t i o n (.:.1'Ikh~l ム・ of J 1 ' / , bet h a t ラ ラ f( 1 t l )= J : f( 凪)ヲ which c l i r e c t l yr n e a n st h a tfi sc o m p l e t e l ya d d i t i v ei nJ t L Thεrefore t h a ta s e t f u n c t i o nfi s an u l t r a f u n c t i o ni se q u i v a l e n tt oi tt h a tfi sn o t everywhere c o r n p l e t e l ya d d i t i v e( i nJ Y I ) . Inthefollowing,ar e c o n s t r u c t i v es t u c l yo fu l t r af u n c t i o n s w i t h some r e s u l t s、 w i l lbe s t a t e d . ラ 同 幽 z . Prindple of Cut-Approach For ag i v e np r o p e r t yTt obe t e s t e df o ra s e 仁 i f (V~lJIr, NCE)((..M~N & Nct)[ >M c. t ) Ti ss a i c lt obep r o g r e s s i v e ,andi f (v J t I , NCE) ((J1'I~JY & . . ' 1 ' Ic. t )[ >.Nct), , r t obe r e g r e s s i v e . I fi ti s,f o rany s e t1 . i n E,n e c e s s a r yt h a t 持組関谷芳雄 ( 4 2 3 ) Yo s h i oKinokuη'ya 930 MctVMctj andi ft h er e l a t i o n s及CctandM c q cannot s i m u l t a n e o u s l y be o b s e r v e d t h e nT and qa r es a i dt obem u t u a l l yc u t c o n j u g a t e . Then t h ef o l l o w i n gf a c ti sd i r e c t l y 五n i t i o n : o b t a i n e dby t h ede Proposition2 .1 . 1 fTω1 dqarec u t c o n j u g a t epr . ψe r t i e sandT i sr e g r e s s i v e( r e s p .p r o g r e s s i v e )t h e n qi sα1りr o g r e s s i v e(何学・ r e g r ・ ' e s s i v e )ρr o p e r t y . I f Ti sr e g r e s s i v e and q i sp r o g r ε s s i v e,making up a p a i ro fc u tc o n j u g a t e p r o p e r t i e s andi f ラ ラ 開 ラ c及r andM c q B)ct,B, ラ t h e nt h e r emay e x i s ttwo s e q u e n c e so fs e t s (Bk) and (Ak) such t h a t R)CB2C . 園 CA 二 及f 2CA)C ラ Bkct and Akcq ん (=1, 2,. 一 ). I nt h i sc a s ei fi ti sn o tt h a t ラ B =UB/ c = nAk=A we have o i d . A - B手 v ( 2 . 1 ) h a t When Bcq,wemaychoose such t A2= A3= ・・・ = B s ot h a t A =B. When Act,wemaychoose sucht h a t B2= B 3= ・一 = A s ot h a t A=B. T h e r e f o r e wemay,f o rt h ec a s eo f( 2 .1 )s u p p o s et h a t ラ ラ Bct and Acq. ( 2 . 2 ) I nc a s eo f( 2 . 2 ),as e tcanbe i n s e 巾 db etween A and B and i t,o fc o u r s e,has . Thisb e i n gs o,at r a n s i n d u c t i v e modemay bede 五ned onep r o p e r t yo f Tandq t or e a c h ac o n s t r u c t i o n such t h a t ( V C ε I) (B, ct) (Ii sas i m p l e o r d e r e ds e to fi n d i c e s ), ( V C,KεI) (c<K!>B, CB<), ( V A εA )( ム cq) ( Ai sas i m p l e o r d e r e ds e to fi n d i c e s ), (VA,μ εA ) (A<μi )A, : : ; 2Aμ ) ラ andi f B = UB,and A ニ nA" thenwehaveoneofthecases r( i i ) Bct,Acq and(VG)(BcG[ >Gcq). ( i ) B ニム o Thec a s e( i i )canr e a d i l ybet u r n e di n t ot h ec a s e( i ) . I na d d i t i o n ,i nt h ee m p i r i c i s t t h e r emuste x i s tenumerable s u b s e t so fi n d i c e s( C k )and( ん )sucht h a t t h e o r y, B ニ UBι k and A= nA.ik ・ ( 4 2 4 ) 9 3 1 OnC u t A p p r o a c h Thuswehave: Proposition 2 . 2 .( P r i n c 争l eofC u t A p p r o a c h ) . 1fTαnd q aJで c u t c o j u r t i e sand1 : 1i sr e g アe s s i v e ,andi fM 亡 q,thenthereexistt 日 oe numerable g a t e戸 ゆe s e q u e n c e st : : ? 戸 、 s u b s e t s(B1.) and(Ak )s u c ht h a t B1C B ...cA2c A1c M , 2C Bkctand A"cq ん (=1, 2,. 一 ), ωl dond e n o t i n gαsB =U BkandA =nA, o weh aveA=B. The s e tB o b t a i n e di nt h eabove,i sc a l l e da Tc u to ft h es e tJ t I , and t hen , )i sc a l l e da c u t a l ゆr o a c hfrombelow and(A, , ) ac u t a p ρroach t h es e q u e n c e s (B, fromabovewith r e s p e c tt o T( o rq ) . 回 3 . Cut-Amosphere When 。 <c<f(Jt r ) l e tu s de 五neT andqsuch t h a t (Fcþ) 三 (f(F)~c) and (Fcq)三 ( f (F)>c), t h e nTand q a r ea p p a r e n t i yc u t c o n j u g a t e and T( r e s p .q )i sar e g r e s s i v e( r e s p . p r o g r e s s i v e )p r o p e r t y . So a p p l y i n gt h ep r i n c i p l eo fc u t a p p r o a c h wemayh a v e , )a nd(Ak) s u c ht h a t c u t a p p r o a c h e s(B, ラ ラ BjCBzC. ‘ CA C ; ; : ;A1C] J ; I z f(B1.)ミ ミ f(B止 1 )~ c<f(Ak + l )<f(Ak )ん (=1, 2, …) ( 3 . 1 ) x p e c tt h a t Bニ A. I nt h i sc a s e i fl i m andi fB U B kand A nA", wecan e f(81.) sandl i mf(Ak)=α,we have 二 ラ 二 二 ( 3 . 2 ) ß~c ミミ α and i n v e r s e l yi fci san a r b i t r a r yv a l u e found i nt h er e l a t i o n( 3 . 2 ),t h er e l a t i o n , )and(A , , ) . T herefore whens 手仏 ( 3 . 1 )i st oh o l donf o rt h esames e q u e n c e s(B, t h es t a t eo b s e r v e dthrought h el i m i t i n gp r o c e d u r e ラ ラ (Ak-Bj) ム ( j→∞) ( 3 . 3 ) mustg i v e an a t m o s p h e r i cs t a t ei np o i n tt h a tt h el i m i t i n gv a l u eo ff(Ak- Bj )i s e s p i t eo ft h ef a c t t obecounteda se q u a lt ot h ep o s i t i v enumberα sd l i m(A,,-Bj)= v o i d . Sot h es t a t ei n d i c a t e dby ( 3 .3 )i sc a l l e da c u t -αtmo ゅ んe r ewhens* α . I fr Q J<f(P)くむ(三 i n f i n i t e s i m a l )f o re v e r yp o i n tP i nM , fi ss a i dt o be ρowdelッ i n] J f . I fwedemands=αin ( 3 . 2 ),i tmustbet h a tt h es e q u e n c e s(Bk ) and (Ak) a r ed e x t e r o u s l y chosen t os a t i s f yt h ec o n d i t i o n . For t h i sp u r p o s e,i t mightbe h e l p f u lt os u p p o s et h a t,i nc a s eo fapowderyf u n c t i o n, f themassvalue ( 4 2 5 ) yo s h i oK i n o k u n i y a 9 3 2 0 shou lda tanyr a t ebe thoughta sanaccumulationo fi n f i n i t e s i m a lq u a t i f C 2 J I )> t i e sf (P) (PE. 1 J 1 ) . Then,i ff(N)> f( I l ' ),by t r a n s f e r r i n gp o i n t s from _1 yt o] 1 ' , t h ed i f f e r e n c eo ff v a l u e might be d e c r e a s e du n t i li tv a n i s h e s . Suchap r i n c i p l e o ft r a n s f e r r i n gmaybea s s e r t e da s ag e n e r a l i z a t i o no ft h earchimedianp r i n c i p l ei n h i sp r i n c i p l e may s e r v ea s amodal a r i t h m e t i c . In l o g i c a l view o ft h em a t t e r,t m e d i a t i o n betweent h eindependent d e s c r i p t i o n s : ( 1 ) (VPεM)( f (P)=O) and ( 2 ) (vFC} j / [ )( f (J i ' ) ? ; ; O )& f C 2 J I ) > O . Ine f f e c t,a sl o n ga s( 1 ) and ( 2 )a r et h eo n l y t seems a l m o s ti m p o s s i b l et oi n d u c e any o ft h ef o l l o w i n gf a c t swhich p r e m i s ε s,i (1 Y I )=∞ , t h e r ee x i s t s as u b s e tF o fM such a r everyn a t u r a l l ye x p e c t e d :( i )i ff t h a t 閑 ラ 0くf ( I I ' )<∞ ; ( i i )i nc a s eo f 0<f(班)<∞, f o r any n a t u r a li n t e g e r n,t h e r ee x i s t sap a r t i t i o n { . 2 J 1 , ~l' l ; , . , . 1 l ' I n } o f 1 Y l s u c h t h a t 1 f ( . 2 J I , )= f(~) f ( . l J I ) 二… = f(JJI~) ェ一五一. However i fweapplytheabove-mentionedp r i n c i p l eo rt r a n s f e r r i n g,t h es t a t emay . l Consequently wemightexpectt h ef o l l o w i n gpro t u r no u tt o be verγhopefu p o s i t i o nt obea s s e r t i v e l yo b t a i n e d,e x c e p tt h ea c c u r a c yo fr e a s o n i n g . .( P r i n c 伊l eofContinuousA c c u r n u l a t i o n ) . 1ff i s α pow Proposition3 .1 derys e tf u n c t i o n and ラ ラ 圃 司 。く cく f(M) 哩 誌記' r ec x i s t sα s u b s e tC of班 sucht h叫 f(C)=c. ( 3 . 4 ) The s u b s e tC s a t i s f y i n g( 3 . 4 )i sc a l l e dac c u to ft h es e tJ r Iwithr e s p e c tt of . 4 . Cut-Probabilism o ranypowdery s e tf u n c t i o nフ wemay By P r o p o s i t i o n3 .1we i n s i s t e dt h a t,f have a tl e a s tone c c u tf o rany i n t e r m e d i a t ev a l u eo f cf o ranys e tl J I . However, t h i sf a c tmaynotmeant h a tanypowderys e tf u n c t i o ni sc o m p l e t e l ya d d i t i v e . For i n s t a n c e,l e tust a k er e a lnumbersa l lt obee q u i p r o b a b l et oo c c u ri nt h er e a la x i s 五net h ea l e a t o r yv a r i a b l ex a st h eo c c u r r e n c eo far e a l numberx i nt h i s and de p r o b a b i l i s t i cc o n s t r u c t i o n,thent h es e tf u n c t i o n π( . 1 J ' I )d e f i n e dby 斑)= P r o b .( xEM) π ( cannotbec o m p l e t e l ya d d i t i v eヲ whilef o ranyv a l u e csuch t h a t0< c <1a set及Z maybemadee x i s t e n tt os a t i s f yt h er e l a t i o n π (斑 ) =c . I ne f f e c t,i fM i st h esumo ft h ei n t e r v a l s ( 4 2 6 ) 9 3 3 OnCut-Approach ( 7 1フ 刀 十 c )( 7 1= 0,土 1,土丸…) i tmay n a t u r a l l ybea d m i t t e dt h a t π( l l 1 }=c. I ffi s apowdery s e tf u n c t i o nand i f 及1;cM . .C 及Iand U~, = J j I, 2c . c一 畑 山も一、、 fJ一 川 M一 t h e n,ona c c u tC o ft h es e tl , r t we aretemptedt o supposet h a t l i t i , But,i np o i n to ff a c t,t h i sr e l a t i o ni snotalways e 旺e c t e de s p e c i a l l y depending on whether n(C-M k) = v o i d . fwei n s i s tonanya s y m p t o t i capproach,wes h a l lworka tt h e o rn o t . Therefore,i ( c一民), andin effectwe findalight in this partフ accompanied r e s i d u a lp a r tn by anew modeo fr e c o n s t r u c t i o n . ラ f If o rany s u b s e t] 1 'o fM , ther e l a t i o n l i mf(竺二!!!~)_ニ lim ( l i m点字自些j三里川 1 c f(M-Jt I, , ) k f (Jt I;-M k) ¥ j } i sr e c k o n e d .a st r u e,Jt Ii ss a i dt obe r e g r e s s i v e l y cut~ρrobabilistic i nr e s p e c tt of Whenfi sapowderys e tf u n c t i o nd e f i n e df o ranys e t1 Tsucht h a t( 3 k )(FCM k) t h e n,f o r any numberb such t h a t ヲ ラ ( l t 1 . <b, l i m! k) = s fmaybeextendedthroughtheadditionaldennition }(F)ニ l i mf(F nJt Ik)十 ( b -s )l i m(lim 五!, n(~三JE-L j f(M / j一 風) ハ F being ana r b i t r a r ys u b s e to f及 r .I tI sr e a d i l ys e e nt h a tM i sr e g r e s s i ¥e l yc u ι ァ h a t p r o b a b i l i s t i ci nr e s p e c tt ofand t f (" / I ' )= f ( E ' ) ( 4 . 1 ) * v v h e n e v e r (計)( 1 1 ' CM; J However i t must be n o t e dt h a taf u n c t i o n, f which 五e s( 4 .1 ),I snotu n i q u e l yd e t e r m i n a b l e ont h es i n g l ec o n d i t i o n s a t i s ラ f ( M)=b. So f o rt h ep r e s 叩 t ,we s h a l lr e s t r a i no u r s e l v e s from s u p p o s i n gt h a t any ( n o n n e g a t i v ァe )s e tf u n c t i o nmaybe foundt oconform t oc u tp r o b a b i l i s m . ラ 国 1 ' v 1 a t h eηw t i c a lSe 羽 は 札 山 ‘ れ1 t h e1 M z ぇγoγα抗 1 孔s t .T e c h .,Hokkaido ( R e c e i 刊 ( 4 2 7 ) 934 Yoshio Kinokuniya References 1 ) Kinokuniya,Y.: Mem. Muroran l n s t . Tech. 5( 1 ),341-347( 1 9 6 5 ) . As ap r e l i m i n a r y guide: Kinokuniya,Y.: Mem. MuroranI n s t . Tech. 4( 2 ),491-496( 1 9 6 3 ) ( 4 2 8 )
© Copyright 2024 ExpyDoc