AIM LCS scenarios development

AIM
LCS scenarios
development
1. If we cannot go to LCS,…
2. LCS offers higher QOL with
less energy demand and
lower-carbon energy supply
3. LCS needs good design,
early action, and innovations
Designed by Hajime Sakai
Junichi FUJINO
On behalf of AIM team
NIES (National Institute for Environmental Studies), Japan
IGES side event
COP20/CMP10, Dec 8
1
AIM Chronology and
Japanese Climate Change Policy
AIM mitigation scenarios
Japanese PM’s Decision
1990
AIM start
1997
15% cut in 2010
6% cut in 2010 by PM Hashimoto
2007
70% cut in 2050
Cool Earth 50 by PM Abe
2008
12 actions towards LCS
60-80% cut in 2050 by PM Fukuda
2009
7/15/25 % cut in 2020
8% cut in 2020 by PM Aso
2011
Now
East Japan Earthquake and Fukushima Accident
2030 target
AIM members support IPCC as CLAs, LAs, and REs since the FAR.
AIM provides RCPs (Representative Concentration Pathways).
What is AIM?
- Asia-Pacific Integrated Model AIM is Simulation Model
- Technology Bottom-up model
including more than 400 options
- Economic Top-down model
to evaluate economic impact
AIM is Human Network
- Start international collaboration
since 1994 and we have the 20th
annual int.ws in Jan 2015, Tsukuba
- Researchers and policy-makers
in China, India, Korea, Thailand,
- Detailed sector-wise model for
Indonesia, Malaysia, Vietnam,
population, residential, transport, Nepal, Cambodia, Bangladesh,
Industry, energy supply, etc
Taiwan, Australia, NZ, USA, EU,
etc and Japan.
•
•
•
•
•
•
Overall research procedure of our LC
development approach
Area
Base year
Target year
Covered sectors
Actors/Players
LCS target
Quantifications of
parameters:
• Population
• Final demand
• Transport parameters
• Energy service
demand generation
• Energy device share
• Power supply
assumptions
Setting framework
Qualification of Socioeconomic Vision
Quantification of Socioeconomic Visions and
GHG emission
Try and error to keep
consistency and unity
among SocioEconomic policies and
LCD targets
Analysis of Alternative
LCD scenarios and
measures
Design LCD Actions
and Roadmaps from
the analysis
•
•
•
•
•
•
•
•
Demography
Lifestyle
Economy
Transport
Building
Resource
efficiency
Energy strategy
Power supply
Evaluation of Scenarios /
measures:
• Transportation system
• Energy service demand
generation
• Energy device share
• Power supply options
• Renewable energy
• Carbon sink
• etc.
4
Analysis by AIM/Enduse in Japan
Final energy consumption in 2030 (low growth case)
400
413
387
359
369
350
328
309
300
298
250
Trans
port
Com
merci
al
200
150
50
'90 '05 '10
5
2030
High
Medium
Low
0
・EV/HV: 70 to 90% of new car sales
・About 40% improvement of freight vehicle
efficiency
・Eco-driving in practice : 15 to 40%(passenger),
25 to 55%(freight)
Resid
ential
・Ensure all newly built homes and buildings use
advanced insulation and energy saving
designs/features
・High-efficiency water heater: 75 to 90% in
households, 40 to 90% in commercial building
・Home/Building energy management system
・PV power: 28 Mil. kW in households, 38 to 73
Mil. kW in commercial building
Indust
ry
・Commercialization and popularization of bestavailable-technology
・Fuel conversion to natural gases
100
Fixed
Final Energy Consumption
(Million kL of Oil Equivalent)
450
第2部 小委員会等での議論を踏まえたエネルギー消費量・温室効果ガス排出量等の見
通しの試算
(2)我が国のエネルギー消費量・温室効果ガス排出量の見通
し
200,000
削減費用(円/tCO2)
削減費用(円/tCO2)
6
削減費用と削減量との関係(3)・2030年
高位ケース
Mitigation cost
curve in Japan
・ 政策による後押しなどによって長期の回収年で投資が行われるようにすると、削減費用は大きく変化する。
to
take aggressive emissions
・ 各主体が短期での投資回収のみを目指して投資を行う場合には、家庭部門や運輸部門の対策は削減費用が
高い(投資回収年数が産業部門、家庭部門、業務部門、運輸部門で原則3年、再生可能エネルギー発電で10年
reductions
options by 2030
の場合)。
[業務] 照明照度低減
[運輸]貨物車単体対策
[産業]業種横断的技術
[業務] 高効率空調
[家庭] 高効率家電
[業務] 高効率動力等
160,000
[運輸]乗用車単体対策
[家庭] HEMS
[業務] 外皮性能向上
[電力]太陽光発電(住宅)
[業務] BEMS
[業務] 高効率給湯
120,000
[家庭] 高効率照明
[業務] 高効率照明
[電力]地熱発電
[産業]エネ多消費産業固有技術
[電力]太陽光発電(非住宅)
Longer-term
investment
80,000
40,000
200,000
[業務] 照明照度低減
[運輸]貨物車単体対策
[業務] 高効率空調
[業務] 外皮性能向上
160,000
[電力]太陽光発電(住宅)
[産業]エネ多消費産業固有技術
[電力]地熱発電
[業務] 高効率動力等
[産業]業種横断的技術
[運輸]乗用車単体対策
120,000
[電力]太陽光発電(非住宅)
[電力]バイオマス・廃棄物発電
[電力]風力発電
[家庭] 高効率家電
[業務] BEMS
80,000
[電力]中小水力
Shorter-term
investment
40,000
[家庭] 外皮性能向上
[家庭] 高効率給湯
[家庭] 高効率空調
[家庭] 高効率照明
[業務] 高効率照明
[家庭] HEMS
[業務] 高効率給湯
[家庭] 外皮性能向上
[家庭] 高効率給湯
[家庭] 高効率空調
[電力]バイオマス・廃棄物発電
[電力]中小水力
[電力]風力発電
0
40,000
80,000
120,000
160,000
200,000
240,000
280,000
320,000
360,000
400,000
削減量(千トンCO2)
0
40,000
80,000
120,000
160,000
200,000
240,000
280,000
320,000
360,000
400,000
削減量(千トンCO2)
産業部門・投資回収年数 3年/10年
運輸部門・投資回収年数 5年
産業部門・投資回収年数 12~15
運輸部門・投資回収年数 8年
(*1)
年
再エネ発電等・投資回収年数 10年
再エネ発電・投資回収年数 12年
家庭部門・投資回収年数 3年(*1)
家庭部門・投資回収年数 8年
*1 素材産業製造プラント・住宅・建築物は
(*2)
*2 住宅は17年,*3 建築物は15年
業務部門・投資回収年数 3年(*1)
10年
業務部門・投資回収年数 8年
※ 上記グラフが示す削減量は固定ケースと対策ケースの差である。本試算に用いたモデル内では、固定ケースと対策ケースでは原子力発電電力量を同等とし、対策ケースにおいて電力消費量が低減した
(*3)
場合には、火力発電の発電電力量が低減すると想定した。そのため、火力発電の排出係数として0.54kgCO2/kWh(使用端)を仮に用いて電力削減によるCO2削減効果を算出した。ただし、現実の電力
設備の運用では電力需要の動向に応じてあらゆる電源で対応することから、全電源平均の係数を用いて電力削減によるCO2削減効果を算定する方法もあるため、実際の削減量はモデルの試算とは必
ずしも一致しないことに留意が必要である。
The result by
AIM/Enduse[Japan]
Analysis by AIM/Enduse in Japan
(Discount rate 3%) The results of cost analysis (by 2030)
200
Cost (trillion Yen)
150
100
50
0
-50
-100
70兆円
98兆円
120兆円
54兆円
31兆円
79兆円
93兆円
46兆円
-150
54兆円
-200
-250
Low
case
低位
7
Medium
中位 case
High
case
高位
Additional
Investment
2030年までの
(-2030
cumulative)
累積投資額
2030年までの
Energy
cost reduction
(-2030
cumulative)
省エネメリット
Energy
cost reduction
2031年以降の
(cumulative
after 2030)
省エネメリット
Simulation results provided in June 2012
For discussion on future energy and mitigation plan after accident at Fukushima
dai-ichi nuclear power plant of TEPCO.
Energy
0
Industry
-50
Commercial
-100
Transportation
-150
Residential
2010-2020
high
middle
low
high
middle
low
-200
2010-2030
Cumulative additional investment
by 2020 and 2030
[Results from Enduse]
middle
50
middle
Others
middle
100
Final
consumption
Capital
formation
GDP
high
energy saving
high
150
3
2
1
0
-1
-2
-3
% compared to reference case
Tri. Yen
200
mitigation
options
0% 0%* 15% 20% 25% share of nuclear
0%*: Nuclear will be 0% in 2020.
Macro economic impact compared to
reference case in 2030,
Low economic growth case
[Results from CGE]
CGE can use any values as parameters, but by using Enduse results,
more realistic values are available.
8
第2部 小委員会等での議論を踏まえたエネルギー消費量・温室効果ガス排出量等の見通し
の試算
(3)各部門における省エネ・CO2削減の効果
Examples of QOL improvement
Effect to prevent disease
Effect to temperature level
25
rate (%)
before
after
アレルギー性鼻炎
28.9
21.0
アレルギー性結膜炎
13.8
9.3
アトピー性皮膚炎
8.6
3.6
気管支喘息
7.0
2.1
高血圧性疾患
6.7
4.5
関節炎
3.9
1.3
肺炎
3.2
1.2
糖尿病
2.6
0.8
心疾患
2.0
0.4
※アンケート調査等に基づくものであり、医学的検証は必ずしも十分でな
い
(出典)伊香賀俊治、江口里佳、村上周三、岩前篤、星旦二ほか:健康維
持がもたらす間接的便益(NEB)を考慮した住宅断熱の投資評価、
日本建築学会環境系論文集、Vol.76、No.666、pp.735-740、
2011.8
このスライドは住宅・建築物WGとりまとめ資料を元に作成
20
アンケート回答の室温(℃)
disease
9
15
10
5
H11年基準
以上
H11年基準
(Ⅱ・Ⅲ地域)
H11年基準
未満
0
0
0.5
1
1.5
2
2.5
3
3.5
熱損失係数Q (W/m2・K)
※1:アンケート結果一覧をもとに作成。室温の回答に幅がある場合は、平均値を採用。なお、
H11年基準未満の住宅のQ値は、H4年基準レベルと仮定。
※2:青森、岩手、宮城の3県において、3月に実施した調査の結果。グラフには、調査戸数54
件のうち、停電後1~5日間の室温に関して定量的な回答があったもののみを記載。な
おアンケート回答より、外気温は-5~8℃程度と推測
(出典) 南雄三,(2011),「ライフラインが断たれた時の暖房と室温低下の実態
調査」,(財)建築環境・省エネルギー機構 CASBEE-健康チェックリスト
委員会資料 より作成
Co-benefit of countermeasures in transport sector (2)
Eco-driving: improve fuel mileage
and reduce traffic accident
fuel mileage
improvement
Car-sharing: reduce vehicle
distance and increase available
space
Traffic accident
reduction
(出典)自動車WGとりまとめ資料より引用
(出典)自動車WGとりまとめ資料より引用
10
GHG emissions per capita
How to reach to Low Carbon Society in Asia ?
High
Carbon
Locked in
Society
Low
Carbon
Locked in
Society
High Carbon
Locked-in type
Development
Climate
catastrophe:
Significant
Damage to
Economy and
Eco- System
LeapfrogDevelopment
Low Carbon
Society
Time
Backcasting
Development of Asia LCS Scenarios
(1) Depicting narrative scenarios for LCS
(2) Quantifying future LCS visions
(3) Developing robust roadmaps by backcasting
Policy Packages for Asia LCS
Funded by Ministry of Environment, Japan
(GERF, S-6) and NIES
LOW CARBON SOCIETY SCENARIOS
VIETNAM 2030
• Institute of Strategy and Policy on Natural
Resources and Environment, Vietnam
(ISPONRE): Nguyen Hoang Minh, Nguyen Tung
Lam, Nguyen Van Tai
• Kyoto University, Japan (KU): Nguyen Thai Hoa,
Yuzuru Matsuoka
• E-KONZAL: Tomoki Ehara, Yuki Ochi
• National Institute for Environmental Studies,
Japan (NIES): Kei Gomi, Junichi Fujino, Toshihiko
Masui
• Institute for Global Environmental Strategies,
Japan (IGES): Shuzo Nishioka, Tomoko Ishikawa
• MIZUHO Information and Research Institute,
Japan (MHIR): Go Hibino, Kazuya Fujiwara
August 19th, 2014
12
Methodology used in this brochure
• ExSS : Extended Snapshot tool for projecting
socio-economic activities, GHG emissions from
energy and waste sectors, and their mitigation
• AFOLUA : AFOLU Activity model for projecting
land use and AFOLU activity
• AFOLUB : AFOLU bottom-up model for
projecting GHG emissions from AFOLU sectors,
and their mitigation.
13
•
Table 2. GHG emission in energy sector
MtCO2eq
Commercial
Energy saving behavior
4.3
Fuel shift & Natural energy
11.3
Energy efficiency improvement
12.8
Energy saving behavior
1.7
Fuel shift & Natural energy
3.1
Energy efficiency improvement
5.2
Energy saving
Industry
•
Energy consumption of industrial and
transport sectors should be highlighted in
Vietnam’s energy sector in future, because of
continued trends of industrialization and
increasing travel demand per person.
GHG emission in 2030BaU will be 521.9
MtCO2eq (6.4 times compared to 2005), and
in 2030CM, will be 343.4 MtCO2eq (30%
reduction)
Energy efficiency improvement and fuel shift
in the power sectors shares largest
proportion of reductions, 38.7 MtCO2
10.9
Fuel shift
15.7
Energy efficiency improvement
23.5
Biofuel
Passenger
Transport
•
Residential
Energy Scenario
0.3
Energy efficient vehicle
13.4
Publilc transport
9.6
2005
2030BaU 2030CM
2030BaU 2030CM 2030CM/
/2005
/2005 2030BaU
Z ĞƐŝĚĞŶƟĂů
14.8
110.2
68.2
7.4
4.6
0.6
Commercial
6.2
41.3
27.9
6.7
4.5
0.7
Industry
38.8
256.5
185.4
6.6
4.8
0.7
Passenger transport 10.0
46.5
23.1
4.7
2.3
0.5
Freight transport
11.3
67.3
37.8
6.0
3.4
0.6
0
Total
81.0
521.9
342.4
6.4
4.2
0.7
Contribution of low carbon measures
in energy sector
Power
sector Freight Transport
Sector
Biofuel
1.1
Energy efficient vehicle
23.9
Modal shift
4.0
Energy efficiency and fuel shift
38.7
10
20
30
40
50
14
Agriculture, Forestry and
Other Land Use (AFOLU) Scenario
140
• A package of mitigation
countermeasures less than the cost of
10 US$/tCO2eq have high mitigation
potential as well as some economic
efficiencies in AFOLU sectors (42.7
MtCO2eq).
• Rice cultivation management has largest
contribution in the agricultural sector
60
Rice cultivations
100
GHG emission (MtCO2eq)
• GHG emissions in AFOLU in 2030 will be
78.8 MtCO2eq (agriculture: 84.5
MtCO2eq, LULUCF: -5.7 MtCO2eq)
80
Emission and removals from
soils
Forest and grassland
conversion
Managed soils
120
40
Manure management
20
Enteric fermentation
0
Changes in forest and other
woody biomass stocks
-20
-40
-60
Total
2000 2005 2010 2015 2020 2030
GHG emissions in AFOLU sector in 2030
60
GHG emission reduction (MtCO2eq)
• Based on the information from National
Statistical Yearbook, MARD, 2nd National
communication, the draft report of
Vietnam Inventory in 2005, and also
FAO, etc.
50
Forest and land
use management
Soil management
40
30
Rice cultivation
management
Livestock manure
management
Livestock enteric
fermentation
20
10
0
<0
<10
<100
For any cost
Allowable Additional Costs for mitigations [US$/tCO 2eq]
GHG mitigation potential
15
Low Carbon Scenarios for
HCMC, Vietnam 2030
Research team:
JAPAN
VIETNAM
•
Kyoto University (KU):
•
HCMC Department of Science and Technology
(DOST):
TRAN Thanh Tu, Yuzuru MATSUOKA
NGUYEN Ky Phung, TRAN Xuan Hoang
•
E-konzal:
•
HCMC University of Natural Resources and
Yuki OCHI, Tomoki EHARA
Environment (U.NRE):
•
National Institute for Environmental Studies, Japan (NIES)
NGUYEN Dinh Tuan
Center for Social and Environmental Systems Research:
Kei GOMI, Junichi FUJINO, Toshihiko MASUI
•
Institute for Global Environmental Strategies (IGES) – LoCARNet:
Shuzo NISHIOKA, Tomoko ISHIKAWA
•
Mizuho Information and Research Institute (MHIR):
Go HIBINO, Kazuya FUJIWARA
August, 2014
Political background
Decision no. 1474/QD-TTg
(Oct. 5, 2012)
“Publishing National Climate
Change Action Plan (CCAP)
for the Period 2012-2020”
Decision no. 2484/QD-UBND
(May 15, 2013)
“Issuing Programs for
Implementing Climate Change
Action Plans of HCMC by 2015”
Decision no. 2631/QD-TTg
(Dec. 31, 2013)
“Approval of Master Plan for Socioeconomic Development of HCMC till
2020 with vision to 2025”
- Annual GDP growth: 10-10.5% (2011-2015), 9.5-10%
(2016-2020), 8.5-9% (2021-2025)
- Population (mil.): 8.2 (2015), 9.2 (2020), 10 (2025)
- Ratio of electricity consumption growth and GDP
growth: 1, try to below 0.8 (more than 20% reduction)
1
7
Decision no. 1393/QD-TTg (Sep. 25, 2012)
“Approval of National Green Growth Strategy for Vietnam”
- The period 2011-2020: Reduce the intensity of GHG emissions by 8-10% as compared to the
2010 level; reduce energy consumption per unit of GDP by 1-1.5% per year. Reduce GHG
emissions from energy activities by 10% to 20% compared to BaU
- Orientation towards 2030: Reduce annual GHG emissions by at least 1.5-2%; reduce GHG in
energy activities by 20 to 30% compared to BaU
Proposal for “Climate
Change Action
Plan in the 2016-2020 period, with
a vision towards 2030”
Decision no. 568/QD-TTg
(Apr 8, 2013)
“Approval of Master plan for
Transportation development for HCMC
by 2020 with vision beyond 2020”
Share of transport mode:
- 2020: public (20-25%), private (72-77%), others
- 2030: public (35-45%), private (51-61%), others
- Beyond 2030: public (50-60%), private (35-45%), others
Decision no.
2305/QDUBND
(May 5, 2012)
“Approval of
Green Energy
Program for
HCMC by
2015”
One Socio-Economic vision and Two mitigation scenarios
 The Socio-economic Vision is mainly followed after Decision 2631/QD-TTg
Population
No. of households
GDP per capita
GDP
Passenger transport demand
Freight transport demand
Unit
persons
households
mil. Dongs
bil. Dongs
mil.per.km
mil.ton.km
2011
2030
2030/2011
7,590,138 10,869,565
1.4
1,789,630 3,623,188
2.0
67
256
3.8
509,334 2,783,178
5.5
68,339
145,121
2.1
73,485
350,944
4.8
 Two scenarios are developed for the analysis
Scenario
Characteristics
Business
as Usual
(BaU)
- Socio-economic assumptions in the above table
- Share of public transport mode complies with Decision 568/QG-TTg with the
assumption that only 50% of the urban public transport is constructed
- Energy intensity (Energy/GDP reduction) reduction more than 20% in 2030
compared with 2011 following after
Counter
Measure
(CM)
- Socio-economic assumptions in the above table
- Share of public transport mode complies with Decision 568/QG-TTg with the
assumption of 100% implementation
- Additional measures are implemented to achieve the CO2 emission reduction
more than 20% reduction compared with 2030BaU
1
8
Final energy consumption and CO2 emission
 Rapid growth of driving forces (GDP, population, transport
demand) leads to the increasing consumption of energy and
CO2 emission.
2011 2030BaU BaU/2011
Final energy consumption (ktoe) 9,404
37,894
4.0
CO2 emission (ktCO 2)
35,649 161,818
4.5
Industry is the main energy consumer (52%) and CO2 emitter
(55%)
 Energy intensity in 2030BaU reduces 26% compared with 2011,
which complies with Decision 2631/QD-TTg (20%) and Decision
1393/QD-TTg (17 %)
2011 2030BaU 2030CM
Energy intensity (toe/bil. Dongs)
18.5
13.6
10.8
CO2 emission per GDP (tCO 2/bil. Dongs)
70.0
58.1
41.4
CO2 emission per capita (tCO 2)
4.7
14.9
10.6
1
9
CO2 emission and its reduction
2
0
• By the 2030 CM scenario, the direct CO2
emission reduction is expected to 21% of total
emission of Business as Usual (2030BaU)
• In 180
addition to it, 8% reduction
expected
Grid
power
Gridis
power
(12.3) 8%from
Freight transport
transport (5.0)
the160mitigation of grid powerFreight
140
Passenger transport
transport (3.8)
Passenger
MtCO2
120
Residential (7.3)
Residential
100
Commercial (8.8)
Commercial
162
80
60
115
40
20
36
0
2011 2030BaU 2030CM
Industry (9.3)
Industry
(34.2 MtCO2)
21%
Agriculture (0.007)
Agriculture
CO2 emission
CO2
emission (115.4)
Proposal of Mitigation Actions and their Impacts
2
1
To realize this 21% reduction, FIVE actions are proposed
Sector
Low carbon actions
Action 1.
Green agriculture and industry
(Energy efficient equipment, fuel shift)
Action 2.
Green house and building
(Energy efficient equipment, fuel shift)
Action 3.
Diffusion of energy saving behavior
(Appropriate use of energy device)
Action 4.
Smart transportation system
(Energy efficient vehicle, modal shift)
Action 5.
Growth of renewable energy
(Solar, biofuel, CNG)
Total (ktCO 2)
Reduction share
Agriculture
Passenger Freight Total Reduction
and
Commercial Residential
transport transport (ktCO2)
share
Industry
9,309
0
0
0
0
9,309
27%
0
6,578
4,910
0
0
11,489
34%
0
2,181
2,339
0
0
4,520
13%
0
0
0
3,597
4,870
8,467
25%
0
25
24
163
159
370
1%
9,309
27%
8,784
26%
7,273
21%
3,760
11%
5,029
15%
34,155
100%
100%
Conclusion and discussion
2
2
 FIVE mitigation actions are proposed to reduce 21% of CO2 emission in energy-
use activities (Agriculture and Industry, Commercial, Residential, Transport)
 With mitigations analyzed in this brochure, most of the targets prescribed in
“decisions” will be complied, except national GHG emission (less than 2 times
compared with 2010). Further actions must be searched, especially in the field of
LULUCF, such as with s collaboration with Mekong Delta region)
Comparison of the Actions’ performance and related targets prescribed in “Decisions”
Numbers in the table denote the multiplication factors compared with base years
Index
Performance of the
Quantified GHG emission objectives
proposed Scenarios in
and related targets based on
Most are in the allowable
2030
Decisions
ranges except the first row
Reference
CM
BaU
2020
2030
GHG emission
3.2(1)
4.5(1)
2.3 - 2.4(2)
2.0(2)
Decision No.1393/QD-TTg
Decision No.2631/QD-TTg
GHG emission
intensity
0.59(1)
0.83(1)
0.90 - 0.92(2)
-
Decision No.1393/QD-TTg
GHG emission from
energy activity
compared with BaU
0.79
1.00
0.80(3) - 0.90(4)
GDP
5.5 (5)
5.5 (5)
2.5 - 2.7(6)
5.7 - 6.3(6)
Decision No.2631/ QD-TTg
Energy Intensity
0.58(5)
0.74(5)
0.80(6)
-
Decision No.1393/ QD-TTg
0.70(3) - 0.80(4) Decision No.1393/QD-TTg
(1) compared with 2011, and only consider the CO 2 emission from energy-use activities
(2) compare with 2010, with the assumption that HCMC adopts the same intensity target as national one
(3) compare with 2010, with the assumption that HCMC adopts the same target as national one, and with voluntary and additional international supports
(4) compare with 2010, with the assumption that HCMC adopts the same target as national one, and with a voluntary effort
(5) compare with 2011
(6) compare with 2010
23
Low Carbon Society Scenarios for Iskandar Malaysia
Project Background
Site: Iskandar Malaysia
(Iskandar Regional Development Authority)
Objective:
i. To draw up key policies and strategies in guiding the development of Iskandar Malaysia
in mitigating carbon emission. Transforming Iskandar Malaysia into a sustainable low
carbon metropolis by adopting green growth strategies/roadmap.
ii. To respond to the nation’s aspiration for ensuring climate-resilient development for
sustainability.
Target Year: 2025 (2005 – 2025)
Research: AIM model apply to Iskandar Malaysia Region
to identify Potential Mitigation Options
Mitigation Options
Green Economy
Action 1 Integrated Green Transportation
Action 2 Green Industry
Green
Economy 59%
Action 3 Low Carbon Urban Governance**
Action 4 Green Building and Construction
Green
Community 21% Action 5 Green Energy System and Renewable Energy
Green
Environment 20%
Green Community
Action 6 Low Carbon Lifestyle
Action 7 Community Engagement and Consensus
Building**
Green Environment
Action 8 Walkable, Safe and Livable City Design
Action 9 Smart Urban Growth
Action 10 Green and Blue Infrastructure and Rural
Resources
Action 11 Sustainable Waste Management
Action 12 Clean Air Environment**
Total
“Development of Low Carbon Society Scenarios for Asian Regions”
In the case of “Iskandar Malaysia”
Japanese experience on
Low Carbon Scenarios & Roadmaps
+
Malaysian challenge on
Implementation of Low Carbon Visions
Premier of Malaysia provided
permission in the 13th IRDA
Steering Committee to start
the Iskandar Low Carbon
Society planning
(December 11th, 2012)
SATREPS
26
Research to Policy: Policymakers launch LCS implementation plan
based on scientific scenario study using AIM model
The LCSBPIM Booklet: “Actions for a Low Carbon Future”
1. Mobile
Manage
ment
System
2. Green
Economy
Guidelines
3. Eco-Life
Challenge
Project for
Schools
4.
Portal
on Green
Technolo
gy
5. Trees for
Urban
Parks/Forests
6. Responsible
Tourism and
Biodiversity
Conservation
7. Bukit Batu
EcoCommunity
8. GAIA –
Green Accord
Initiative
Award
9. Low Carbon
Village FELDA
Taib Andak
10. Special Feature: Smart City –
Pasir Gudang ‘NAFAS BARU’: CLEAN
AND HEALTHY CITY
The LCSBPIM Actions for Low
carbon
Future
is
a
implementation report. This plan
select 10 priority projects from a
total of 281 programs to be
implemented for the 2011-2015.
Apart from Triple Base line
actions, 3 special projects are
also identified- Bkt batu Ec0Community, LC Village FELDA Taib
Andak and Pasir gudang Nafas
27
baru
こどもエコライフチャレンジの経緯
History of Eco Life Challenge
• 2005年度より協働でスタート
– 京都青年会議所との協働事業として、小学校で地球温暖化・エコライフ
についての学習会を開催。
• 2010年から京都市との協働で全校実施へ!
All public primary schools join!
全校実施
3
1
2005年
2006年
11
2007年
50
2008年
101
2009年
177
2010年~
28
Workbook for pupils
29
Kyoto Shimbun
May 2013
Kyoto ELC implement to Malaysia
Iskandar Malaysia Ecolife Challenge
2013
Workbook designed by UTM
•
• 23 schools (2800 Y6 students)
• 1 months to complete individually
& groups (October 2013)
• Final presentation
• No of workbooks distributed –
3790
• No of workbooks returned –
1807
• Return rate – 47.68%
• Low rate because low
awareness among teachers and
lack of monitoring at the district
level.
To be “RCE”
(Regional Centers
of Expertise
on ESD),
UNU program
23
• 23 schools as pioneering batch for ASPnet (Unesco) primary
category in Malaysia
• Initial stage (2013) in competition format as a study platform
• To be scaled up by incorporating ELC as lesson component in
all planned 198 ASPnet (UNESCO Schools) primary schools
32
in Iskandar Malaysia.
Iskandar Malaysia Ecolife Challenge
2014
• Workbook designed by
UTM in Malay
• 80 schools (15623 Y6
students)
• 1 months to complete
individually & groups
(October 2014)
• Final presentation for 15
schools – 10 Nov 2014
• Judges from Malaysia &
Japan
Final Presentation
10th Nov, 2014
11th Nov, 2014, New Strait Times
International Forum on the “FutureCity” Initiative
by Regional Revitalization Office, Cabinet Secretariat, Government of Japan
The First Forum, Feb 21, 2012@Tokyo
10 名の海外招聘者をはじめ、JICA 主催の研修プロ
グラムで参加されたアジア諸国等のオピニオンリー
ダー43 名の他、国内参加者を含め、合計約600 名
の参加。
The Second Forum, Feb 16, 2013
@Shimokawa, Hokkaido
坂本内閣府副大臣を始め、9名の海外招へい者、
JICA 主催の研修プログラムに参加したアジア諸国
等のオピニオンリーダー39 名、その他、国内参加
者を含め、合計27 か国、約300 名の方々が参加。
2月17日に森林サイドイベントを実施、
藤野が鼎談のモデレーターを担当
The Third Forum, Oct 19, 2013
@Kitakyushu
関口内閣府副大臣を始め、11名の海外招へい者、
JICA主催の研修プログラムに参加したアジア諸国
等のオピニオンリーダー51名、その他、国内参加
者を含め、合計43の国と地域から、約400名の参
加。藤野がポスターセッション担当。
Prof. Ho and Mr. Boyd joined
as experts of JICA FCI courses.
Then 2-3 experts join
contiuously.
Dato’ Ismail joined “econmy”
panel discussion
Dr. Zaleha (JPBD) joined
“evaluation” panel discussion.
The mayor of MBJB joined at
Asia Mayor Summit.
The fourth forum will be held
in Higashi-matsushima, Japan
in 6th Dec 2014. Cabinet
office organize the first form
outside Japan in 8-9th Feb
2015 in JB, Malaysia.
https://www.kantei.go.jp/jp/singi/tiiki/kankyo/en/event/index.html
The 6th High Level Seminar on Environmentally Sustainable Cities
will be held in Johor Bahru on 9th and 10th Feb 2015
(mainly sponsored by Ministry of the Environment Japan (MOEJ))
http://www.hls-esc.org/
Low-Carbon Society Scenarios in Asia using AIM
Japan
Guangzhou
China
Iskandar
Malaysia
Japan
Shiga
Japan
Ahmedabad
India
India
Putrajaya
Malaysia
Cyberjaya
Malaysia
Shiga
Japan
Kyoto
Japan
Jilin
China
Bhopal
India
Thailand
Indonesia
What
is
NEXT???
Vietnam Bangladesh
http://2050.nies.go.jp
37
Sustainable
Low-Carbon Asia
comes from
design,
imagination
and
co-working…
Let’s work together!
[email protected]
38