AIM LCS scenarios development 1. If we cannot go to LCS,… 2. LCS offers higher QOL with less energy demand and lower-carbon energy supply 3. LCS needs good design, early action, and innovations Designed by Hajime Sakai Junichi FUJINO On behalf of AIM team NIES (National Institute for Environmental Studies), Japan IGES side event COP20/CMP10, Dec 8 1 AIM Chronology and Japanese Climate Change Policy AIM mitigation scenarios Japanese PM’s Decision 1990 AIM start 1997 15% cut in 2010 6% cut in 2010 by PM Hashimoto 2007 70% cut in 2050 Cool Earth 50 by PM Abe 2008 12 actions towards LCS 60-80% cut in 2050 by PM Fukuda 2009 7/15/25 % cut in 2020 8% cut in 2020 by PM Aso 2011 Now East Japan Earthquake and Fukushima Accident 2030 target AIM members support IPCC as CLAs, LAs, and REs since the FAR. AIM provides RCPs (Representative Concentration Pathways). What is AIM? - Asia-Pacific Integrated Model AIM is Simulation Model - Technology Bottom-up model including more than 400 options - Economic Top-down model to evaluate economic impact AIM is Human Network - Start international collaboration since 1994 and we have the 20th annual int.ws in Jan 2015, Tsukuba - Researchers and policy-makers in China, India, Korea, Thailand, - Detailed sector-wise model for Indonesia, Malaysia, Vietnam, population, residential, transport, Nepal, Cambodia, Bangladesh, Industry, energy supply, etc Taiwan, Australia, NZ, USA, EU, etc and Japan. • • • • • • Overall research procedure of our LC development approach Area Base year Target year Covered sectors Actors/Players LCS target Quantifications of parameters: • Population • Final demand • Transport parameters • Energy service demand generation • Energy device share • Power supply assumptions Setting framework Qualification of Socioeconomic Vision Quantification of Socioeconomic Visions and GHG emission Try and error to keep consistency and unity among SocioEconomic policies and LCD targets Analysis of Alternative LCD scenarios and measures Design LCD Actions and Roadmaps from the analysis • • • • • • • • Demography Lifestyle Economy Transport Building Resource efficiency Energy strategy Power supply Evaluation of Scenarios / measures: • Transportation system • Energy service demand generation • Energy device share • Power supply options • Renewable energy • Carbon sink • etc. 4 Analysis by AIM/Enduse in Japan Final energy consumption in 2030 (low growth case) 400 413 387 359 369 350 328 309 300 298 250 Trans port Com merci al 200 150 50 '90 '05 '10 5 2030 High Medium Low 0 ・EV/HV: 70 to 90% of new car sales ・About 40% improvement of freight vehicle efficiency ・Eco-driving in practice : 15 to 40%(passenger), 25 to 55%(freight) Resid ential ・Ensure all newly built homes and buildings use advanced insulation and energy saving designs/features ・High-efficiency water heater: 75 to 90% in households, 40 to 90% in commercial building ・Home/Building energy management system ・PV power: 28 Mil. kW in households, 38 to 73 Mil. kW in commercial building Indust ry ・Commercialization and popularization of bestavailable-technology ・Fuel conversion to natural gases 100 Fixed Final Energy Consumption (Million kL of Oil Equivalent) 450 第2部 小委員会等での議論を踏まえたエネルギー消費量・温室効果ガス排出量等の見 通しの試算 (2)我が国のエネルギー消費量・温室効果ガス排出量の見通 し 200,000 削減費用(円/tCO2) 削減費用(円/tCO2) 6 削減費用と削減量との関係(3)・2030年 高位ケース Mitigation cost curve in Japan ・ 政策による後押しなどによって長期の回収年で投資が行われるようにすると、削減費用は大きく変化する。 to take aggressive emissions ・ 各主体が短期での投資回収のみを目指して投資を行う場合には、家庭部門や運輸部門の対策は削減費用が 高い(投資回収年数が産業部門、家庭部門、業務部門、運輸部門で原則3年、再生可能エネルギー発電で10年 reductions options by 2030 の場合)。 [業務] 照明照度低減 [運輸]貨物車単体対策 [産業]業種横断的技術 [業務] 高効率空調 [家庭] 高効率家電 [業務] 高効率動力等 160,000 [運輸]乗用車単体対策 [家庭] HEMS [業務] 外皮性能向上 [電力]太陽光発電(住宅) [業務] BEMS [業務] 高効率給湯 120,000 [家庭] 高効率照明 [業務] 高効率照明 [電力]地熱発電 [産業]エネ多消費産業固有技術 [電力]太陽光発電(非住宅) Longer-term investment 80,000 40,000 200,000 [業務] 照明照度低減 [運輸]貨物車単体対策 [業務] 高効率空調 [業務] 外皮性能向上 160,000 [電力]太陽光発電(住宅) [産業]エネ多消費産業固有技術 [電力]地熱発電 [業務] 高効率動力等 [産業]業種横断的技術 [運輸]乗用車単体対策 120,000 [電力]太陽光発電(非住宅) [電力]バイオマス・廃棄物発電 [電力]風力発電 [家庭] 高効率家電 [業務] BEMS 80,000 [電力]中小水力 Shorter-term investment 40,000 [家庭] 外皮性能向上 [家庭] 高効率給湯 [家庭] 高効率空調 [家庭] 高効率照明 [業務] 高効率照明 [家庭] HEMS [業務] 高効率給湯 [家庭] 外皮性能向上 [家庭] 高効率給湯 [家庭] 高効率空調 [電力]バイオマス・廃棄物発電 [電力]中小水力 [電力]風力発電 0 40,000 80,000 120,000 160,000 200,000 240,000 280,000 320,000 360,000 400,000 削減量(千トンCO2) 0 40,000 80,000 120,000 160,000 200,000 240,000 280,000 320,000 360,000 400,000 削減量(千トンCO2) 産業部門・投資回収年数 3年/10年 運輸部門・投資回収年数 5年 産業部門・投資回収年数 12~15 運輸部門・投資回収年数 8年 (*1) 年 再エネ発電等・投資回収年数 10年 再エネ発電・投資回収年数 12年 家庭部門・投資回収年数 3年(*1) 家庭部門・投資回収年数 8年 *1 素材産業製造プラント・住宅・建築物は (*2) *2 住宅は17年,*3 建築物は15年 業務部門・投資回収年数 3年(*1) 10年 業務部門・投資回収年数 8年 ※ 上記グラフが示す削減量は固定ケースと対策ケースの差である。本試算に用いたモデル内では、固定ケースと対策ケースでは原子力発電電力量を同等とし、対策ケースにおいて電力消費量が低減した (*3) 場合には、火力発電の発電電力量が低減すると想定した。そのため、火力発電の排出係数として0.54kgCO2/kWh(使用端)を仮に用いて電力削減によるCO2削減効果を算出した。ただし、現実の電力 設備の運用では電力需要の動向に応じてあらゆる電源で対応することから、全電源平均の係数を用いて電力削減によるCO2削減効果を算定する方法もあるため、実際の削減量はモデルの試算とは必 ずしも一致しないことに留意が必要である。 The result by AIM/Enduse[Japan] Analysis by AIM/Enduse in Japan (Discount rate 3%) The results of cost analysis (by 2030) 200 Cost (trillion Yen) 150 100 50 0 -50 -100 70兆円 98兆円 120兆円 54兆円 31兆円 79兆円 93兆円 46兆円 -150 54兆円 -200 -250 Low case 低位 7 Medium 中位 case High case 高位 Additional Investment 2030年までの (-2030 cumulative) 累積投資額 2030年までの Energy cost reduction (-2030 cumulative) 省エネメリット Energy cost reduction 2031年以降の (cumulative after 2030) 省エネメリット Simulation results provided in June 2012 For discussion on future energy and mitigation plan after accident at Fukushima dai-ichi nuclear power plant of TEPCO. Energy 0 Industry -50 Commercial -100 Transportation -150 Residential 2010-2020 high middle low high middle low -200 2010-2030 Cumulative additional investment by 2020 and 2030 [Results from Enduse] middle 50 middle Others middle 100 Final consumption Capital formation GDP high energy saving high 150 3 2 1 0 -1 -2 -3 % compared to reference case Tri. Yen 200 mitigation options 0% 0%* 15% 20% 25% share of nuclear 0%*: Nuclear will be 0% in 2020. Macro economic impact compared to reference case in 2030, Low economic growth case [Results from CGE] CGE can use any values as parameters, but by using Enduse results, more realistic values are available. 8 第2部 小委員会等での議論を踏まえたエネルギー消費量・温室効果ガス排出量等の見通し の試算 (3)各部門における省エネ・CO2削減の効果 Examples of QOL improvement Effect to prevent disease Effect to temperature level 25 rate (%) before after アレルギー性鼻炎 28.9 21.0 アレルギー性結膜炎 13.8 9.3 アトピー性皮膚炎 8.6 3.6 気管支喘息 7.0 2.1 高血圧性疾患 6.7 4.5 関節炎 3.9 1.3 肺炎 3.2 1.2 糖尿病 2.6 0.8 心疾患 2.0 0.4 ※アンケート調査等に基づくものであり、医学的検証は必ずしも十分でな い (出典)伊香賀俊治、江口里佳、村上周三、岩前篤、星旦二ほか:健康維 持がもたらす間接的便益(NEB)を考慮した住宅断熱の投資評価、 日本建築学会環境系論文集、Vol.76、No.666、pp.735-740、 2011.8 このスライドは住宅・建築物WGとりまとめ資料を元に作成 20 アンケート回答の室温(℃) disease 9 15 10 5 H11年基準 以上 H11年基準 (Ⅱ・Ⅲ地域) H11年基準 未満 0 0 0.5 1 1.5 2 2.5 3 3.5 熱損失係数Q (W/m2・K) ※1:アンケート結果一覧をもとに作成。室温の回答に幅がある場合は、平均値を採用。なお、 H11年基準未満の住宅のQ値は、H4年基準レベルと仮定。 ※2:青森、岩手、宮城の3県において、3月に実施した調査の結果。グラフには、調査戸数54 件のうち、停電後1~5日間の室温に関して定量的な回答があったもののみを記載。な おアンケート回答より、外気温は-5~8℃程度と推測 (出典) 南雄三,(2011),「ライフラインが断たれた時の暖房と室温低下の実態 調査」,(財)建築環境・省エネルギー機構 CASBEE-健康チェックリスト 委員会資料 より作成 Co-benefit of countermeasures in transport sector (2) Eco-driving: improve fuel mileage and reduce traffic accident fuel mileage improvement Car-sharing: reduce vehicle distance and increase available space Traffic accident reduction (出典)自動車WGとりまとめ資料より引用 (出典)自動車WGとりまとめ資料より引用 10 GHG emissions per capita How to reach to Low Carbon Society in Asia ? High Carbon Locked in Society Low Carbon Locked in Society High Carbon Locked-in type Development Climate catastrophe: Significant Damage to Economy and Eco- System LeapfrogDevelopment Low Carbon Society Time Backcasting Development of Asia LCS Scenarios (1) Depicting narrative scenarios for LCS (2) Quantifying future LCS visions (3) Developing robust roadmaps by backcasting Policy Packages for Asia LCS Funded by Ministry of Environment, Japan (GERF, S-6) and NIES LOW CARBON SOCIETY SCENARIOS VIETNAM 2030 • Institute of Strategy and Policy on Natural Resources and Environment, Vietnam (ISPONRE): Nguyen Hoang Minh, Nguyen Tung Lam, Nguyen Van Tai • Kyoto University, Japan (KU): Nguyen Thai Hoa, Yuzuru Matsuoka • E-KONZAL: Tomoki Ehara, Yuki Ochi • National Institute for Environmental Studies, Japan (NIES): Kei Gomi, Junichi Fujino, Toshihiko Masui • Institute for Global Environmental Strategies, Japan (IGES): Shuzo Nishioka, Tomoko Ishikawa • MIZUHO Information and Research Institute, Japan (MHIR): Go Hibino, Kazuya Fujiwara August 19th, 2014 12 Methodology used in this brochure • ExSS : Extended Snapshot tool for projecting socio-economic activities, GHG emissions from energy and waste sectors, and their mitigation • AFOLUA : AFOLU Activity model for projecting land use and AFOLU activity • AFOLUB : AFOLU bottom-up model for projecting GHG emissions from AFOLU sectors, and their mitigation. 13 • Table 2. GHG emission in energy sector MtCO2eq Commercial Energy saving behavior 4.3 Fuel shift & Natural energy 11.3 Energy efficiency improvement 12.8 Energy saving behavior 1.7 Fuel shift & Natural energy 3.1 Energy efficiency improvement 5.2 Energy saving Industry • Energy consumption of industrial and transport sectors should be highlighted in Vietnam’s energy sector in future, because of continued trends of industrialization and increasing travel demand per person. GHG emission in 2030BaU will be 521.9 MtCO2eq (6.4 times compared to 2005), and in 2030CM, will be 343.4 MtCO2eq (30% reduction) Energy efficiency improvement and fuel shift in the power sectors shares largest proportion of reductions, 38.7 MtCO2 10.9 Fuel shift 15.7 Energy efficiency improvement 23.5 Biofuel Passenger Transport • Residential Energy Scenario 0.3 Energy efficient vehicle 13.4 Publilc transport 9.6 2005 2030BaU 2030CM 2030BaU 2030CM 2030CM/ /2005 /2005 2030BaU Z ĞƐŝĚĞŶƟĂů 14.8 110.2 68.2 7.4 4.6 0.6 Commercial 6.2 41.3 27.9 6.7 4.5 0.7 Industry 38.8 256.5 185.4 6.6 4.8 0.7 Passenger transport 10.0 46.5 23.1 4.7 2.3 0.5 Freight transport 11.3 67.3 37.8 6.0 3.4 0.6 0 Total 81.0 521.9 342.4 6.4 4.2 0.7 Contribution of low carbon measures in energy sector Power sector Freight Transport Sector Biofuel 1.1 Energy efficient vehicle 23.9 Modal shift 4.0 Energy efficiency and fuel shift 38.7 10 20 30 40 50 14 Agriculture, Forestry and Other Land Use (AFOLU) Scenario 140 • A package of mitigation countermeasures less than the cost of 10 US$/tCO2eq have high mitigation potential as well as some economic efficiencies in AFOLU sectors (42.7 MtCO2eq). • Rice cultivation management has largest contribution in the agricultural sector 60 Rice cultivations 100 GHG emission (MtCO2eq) • GHG emissions in AFOLU in 2030 will be 78.8 MtCO2eq (agriculture: 84.5 MtCO2eq, LULUCF: -5.7 MtCO2eq) 80 Emission and removals from soils Forest and grassland conversion Managed soils 120 40 Manure management 20 Enteric fermentation 0 Changes in forest and other woody biomass stocks -20 -40 -60 Total 2000 2005 2010 2015 2020 2030 GHG emissions in AFOLU sector in 2030 60 GHG emission reduction (MtCO2eq) • Based on the information from National Statistical Yearbook, MARD, 2nd National communication, the draft report of Vietnam Inventory in 2005, and also FAO, etc. 50 Forest and land use management Soil management 40 30 Rice cultivation management Livestock manure management Livestock enteric fermentation 20 10 0 <0 <10 <100 For any cost Allowable Additional Costs for mitigations [US$/tCO 2eq] GHG mitigation potential 15 Low Carbon Scenarios for HCMC, Vietnam 2030 Research team: JAPAN VIETNAM • Kyoto University (KU): • HCMC Department of Science and Technology (DOST): TRAN Thanh Tu, Yuzuru MATSUOKA NGUYEN Ky Phung, TRAN Xuan Hoang • E-konzal: • HCMC University of Natural Resources and Yuki OCHI, Tomoki EHARA Environment (U.NRE): • National Institute for Environmental Studies, Japan (NIES) NGUYEN Dinh Tuan Center for Social and Environmental Systems Research: Kei GOMI, Junichi FUJINO, Toshihiko MASUI • Institute for Global Environmental Strategies (IGES) – LoCARNet: Shuzo NISHIOKA, Tomoko ISHIKAWA • Mizuho Information and Research Institute (MHIR): Go HIBINO, Kazuya FUJIWARA August, 2014 Political background Decision no. 1474/QD-TTg (Oct. 5, 2012) “Publishing National Climate Change Action Plan (CCAP) for the Period 2012-2020” Decision no. 2484/QD-UBND (May 15, 2013) “Issuing Programs for Implementing Climate Change Action Plans of HCMC by 2015” Decision no. 2631/QD-TTg (Dec. 31, 2013) “Approval of Master Plan for Socioeconomic Development of HCMC till 2020 with vision to 2025” - Annual GDP growth: 10-10.5% (2011-2015), 9.5-10% (2016-2020), 8.5-9% (2021-2025) - Population (mil.): 8.2 (2015), 9.2 (2020), 10 (2025) - Ratio of electricity consumption growth and GDP growth: 1, try to below 0.8 (more than 20% reduction) 1 7 Decision no. 1393/QD-TTg (Sep. 25, 2012) “Approval of National Green Growth Strategy for Vietnam” - The period 2011-2020: Reduce the intensity of GHG emissions by 8-10% as compared to the 2010 level; reduce energy consumption per unit of GDP by 1-1.5% per year. Reduce GHG emissions from energy activities by 10% to 20% compared to BaU - Orientation towards 2030: Reduce annual GHG emissions by at least 1.5-2%; reduce GHG in energy activities by 20 to 30% compared to BaU Proposal for “Climate Change Action Plan in the 2016-2020 period, with a vision towards 2030” Decision no. 568/QD-TTg (Apr 8, 2013) “Approval of Master plan for Transportation development for HCMC by 2020 with vision beyond 2020” Share of transport mode: - 2020: public (20-25%), private (72-77%), others - 2030: public (35-45%), private (51-61%), others - Beyond 2030: public (50-60%), private (35-45%), others Decision no. 2305/QDUBND (May 5, 2012) “Approval of Green Energy Program for HCMC by 2015” One Socio-Economic vision and Two mitigation scenarios The Socio-economic Vision is mainly followed after Decision 2631/QD-TTg Population No. of households GDP per capita GDP Passenger transport demand Freight transport demand Unit persons households mil. Dongs bil. Dongs mil.per.km mil.ton.km 2011 2030 2030/2011 7,590,138 10,869,565 1.4 1,789,630 3,623,188 2.0 67 256 3.8 509,334 2,783,178 5.5 68,339 145,121 2.1 73,485 350,944 4.8 Two scenarios are developed for the analysis Scenario Characteristics Business as Usual (BaU) - Socio-economic assumptions in the above table - Share of public transport mode complies with Decision 568/QG-TTg with the assumption that only 50% of the urban public transport is constructed - Energy intensity (Energy/GDP reduction) reduction more than 20% in 2030 compared with 2011 following after Counter Measure (CM) - Socio-economic assumptions in the above table - Share of public transport mode complies with Decision 568/QG-TTg with the assumption of 100% implementation - Additional measures are implemented to achieve the CO2 emission reduction more than 20% reduction compared with 2030BaU 1 8 Final energy consumption and CO2 emission Rapid growth of driving forces (GDP, population, transport demand) leads to the increasing consumption of energy and CO2 emission. 2011 2030BaU BaU/2011 Final energy consumption (ktoe) 9,404 37,894 4.0 CO2 emission (ktCO 2) 35,649 161,818 4.5 Industry is the main energy consumer (52%) and CO2 emitter (55%) Energy intensity in 2030BaU reduces 26% compared with 2011, which complies with Decision 2631/QD-TTg (20%) and Decision 1393/QD-TTg (17 %) 2011 2030BaU 2030CM Energy intensity (toe/bil. Dongs) 18.5 13.6 10.8 CO2 emission per GDP (tCO 2/bil. Dongs) 70.0 58.1 41.4 CO2 emission per capita (tCO 2) 4.7 14.9 10.6 1 9 CO2 emission and its reduction 2 0 • By the 2030 CM scenario, the direct CO2 emission reduction is expected to 21% of total emission of Business as Usual (2030BaU) • In 180 addition to it, 8% reduction expected Grid power Gridis power (12.3) 8%from Freight transport transport (5.0) the160mitigation of grid powerFreight 140 Passenger transport transport (3.8) Passenger MtCO2 120 Residential (7.3) Residential 100 Commercial (8.8) Commercial 162 80 60 115 40 20 36 0 2011 2030BaU 2030CM Industry (9.3) Industry (34.2 MtCO2) 21% Agriculture (0.007) Agriculture CO2 emission CO2 emission (115.4) Proposal of Mitigation Actions and their Impacts 2 1 To realize this 21% reduction, FIVE actions are proposed Sector Low carbon actions Action 1. Green agriculture and industry (Energy efficient equipment, fuel shift) Action 2. Green house and building (Energy efficient equipment, fuel shift) Action 3. Diffusion of energy saving behavior (Appropriate use of energy device) Action 4. Smart transportation system (Energy efficient vehicle, modal shift) Action 5. Growth of renewable energy (Solar, biofuel, CNG) Total (ktCO 2) Reduction share Agriculture Passenger Freight Total Reduction and Commercial Residential transport transport (ktCO2) share Industry 9,309 0 0 0 0 9,309 27% 0 6,578 4,910 0 0 11,489 34% 0 2,181 2,339 0 0 4,520 13% 0 0 0 3,597 4,870 8,467 25% 0 25 24 163 159 370 1% 9,309 27% 8,784 26% 7,273 21% 3,760 11% 5,029 15% 34,155 100% 100% Conclusion and discussion 2 2 FIVE mitigation actions are proposed to reduce 21% of CO2 emission in energy- use activities (Agriculture and Industry, Commercial, Residential, Transport) With mitigations analyzed in this brochure, most of the targets prescribed in “decisions” will be complied, except national GHG emission (less than 2 times compared with 2010). Further actions must be searched, especially in the field of LULUCF, such as with s collaboration with Mekong Delta region) Comparison of the Actions’ performance and related targets prescribed in “Decisions” Numbers in the table denote the multiplication factors compared with base years Index Performance of the Quantified GHG emission objectives proposed Scenarios in and related targets based on Most are in the allowable 2030 Decisions ranges except the first row Reference CM BaU 2020 2030 GHG emission 3.2(1) 4.5(1) 2.3 - 2.4(2) 2.0(2) Decision No.1393/QD-TTg Decision No.2631/QD-TTg GHG emission intensity 0.59(1) 0.83(1) 0.90 - 0.92(2) - Decision No.1393/QD-TTg GHG emission from energy activity compared with BaU 0.79 1.00 0.80(3) - 0.90(4) GDP 5.5 (5) 5.5 (5) 2.5 - 2.7(6) 5.7 - 6.3(6) Decision No.2631/ QD-TTg Energy Intensity 0.58(5) 0.74(5) 0.80(6) - Decision No.1393/ QD-TTg 0.70(3) - 0.80(4) Decision No.1393/QD-TTg (1) compared with 2011, and only consider the CO 2 emission from energy-use activities (2) compare with 2010, with the assumption that HCMC adopts the same intensity target as national one (3) compare with 2010, with the assumption that HCMC adopts the same target as national one, and with voluntary and additional international supports (4) compare with 2010, with the assumption that HCMC adopts the same target as national one, and with a voluntary effort (5) compare with 2011 (6) compare with 2010 23 Low Carbon Society Scenarios for Iskandar Malaysia Project Background Site: Iskandar Malaysia (Iskandar Regional Development Authority) Objective: i. To draw up key policies and strategies in guiding the development of Iskandar Malaysia in mitigating carbon emission. Transforming Iskandar Malaysia into a sustainable low carbon metropolis by adopting green growth strategies/roadmap. ii. To respond to the nation’s aspiration for ensuring climate-resilient development for sustainability. Target Year: 2025 (2005 – 2025) Research: AIM model apply to Iskandar Malaysia Region to identify Potential Mitigation Options Mitigation Options Green Economy Action 1 Integrated Green Transportation Action 2 Green Industry Green Economy 59% Action 3 Low Carbon Urban Governance** Action 4 Green Building and Construction Green Community 21% Action 5 Green Energy System and Renewable Energy Green Environment 20% Green Community Action 6 Low Carbon Lifestyle Action 7 Community Engagement and Consensus Building** Green Environment Action 8 Walkable, Safe and Livable City Design Action 9 Smart Urban Growth Action 10 Green and Blue Infrastructure and Rural Resources Action 11 Sustainable Waste Management Action 12 Clean Air Environment** Total “Development of Low Carbon Society Scenarios for Asian Regions” In the case of “Iskandar Malaysia” Japanese experience on Low Carbon Scenarios & Roadmaps + Malaysian challenge on Implementation of Low Carbon Visions Premier of Malaysia provided permission in the 13th IRDA Steering Committee to start the Iskandar Low Carbon Society planning (December 11th, 2012) SATREPS 26 Research to Policy: Policymakers launch LCS implementation plan based on scientific scenario study using AIM model The LCSBPIM Booklet: “Actions for a Low Carbon Future” 1. Mobile Manage ment System 2. Green Economy Guidelines 3. Eco-Life Challenge Project for Schools 4. Portal on Green Technolo gy 5. Trees for Urban Parks/Forests 6. Responsible Tourism and Biodiversity Conservation 7. Bukit Batu EcoCommunity 8. GAIA – Green Accord Initiative Award 9. Low Carbon Village FELDA Taib Andak 10. Special Feature: Smart City – Pasir Gudang ‘NAFAS BARU’: CLEAN AND HEALTHY CITY The LCSBPIM Actions for Low carbon Future is a implementation report. This plan select 10 priority projects from a total of 281 programs to be implemented for the 2011-2015. Apart from Triple Base line actions, 3 special projects are also identified- Bkt batu Ec0Community, LC Village FELDA Taib Andak and Pasir gudang Nafas 27 baru こどもエコライフチャレンジの経緯 History of Eco Life Challenge • 2005年度より協働でスタート – 京都青年会議所との協働事業として、小学校で地球温暖化・エコライフ についての学習会を開催。 • 2010年から京都市との協働で全校実施へ! All public primary schools join! 全校実施 3 1 2005年 2006年 11 2007年 50 2008年 101 2009年 177 2010年~ 28 Workbook for pupils 29 Kyoto Shimbun May 2013 Kyoto ELC implement to Malaysia Iskandar Malaysia Ecolife Challenge 2013 Workbook designed by UTM • • 23 schools (2800 Y6 students) • 1 months to complete individually & groups (October 2013) • Final presentation • No of workbooks distributed – 3790 • No of workbooks returned – 1807 • Return rate – 47.68% • Low rate because low awareness among teachers and lack of monitoring at the district level. To be “RCE” (Regional Centers of Expertise on ESD), UNU program 23 • 23 schools as pioneering batch for ASPnet (Unesco) primary category in Malaysia • Initial stage (2013) in competition format as a study platform • To be scaled up by incorporating ELC as lesson component in all planned 198 ASPnet (UNESCO Schools) primary schools 32 in Iskandar Malaysia. Iskandar Malaysia Ecolife Challenge 2014 • Workbook designed by UTM in Malay • 80 schools (15623 Y6 students) • 1 months to complete individually & groups (October 2014) • Final presentation for 15 schools – 10 Nov 2014 • Judges from Malaysia & Japan Final Presentation 10th Nov, 2014 11th Nov, 2014, New Strait Times International Forum on the “FutureCity” Initiative by Regional Revitalization Office, Cabinet Secretariat, Government of Japan The First Forum, Feb 21, 2012@Tokyo 10 名の海外招聘者をはじめ、JICA 主催の研修プロ グラムで参加されたアジア諸国等のオピニオンリー ダー43 名の他、国内参加者を含め、合計約600 名 の参加。 The Second Forum, Feb 16, 2013 @Shimokawa, Hokkaido 坂本内閣府副大臣を始め、9名の海外招へい者、 JICA 主催の研修プログラムに参加したアジア諸国 等のオピニオンリーダー39 名、その他、国内参加 者を含め、合計27 か国、約300 名の方々が参加。 2月17日に森林サイドイベントを実施、 藤野が鼎談のモデレーターを担当 The Third Forum, Oct 19, 2013 @Kitakyushu 関口内閣府副大臣を始め、11名の海外招へい者、 JICA主催の研修プログラムに参加したアジア諸国 等のオピニオンリーダー51名、その他、国内参加 者を含め、合計43の国と地域から、約400名の参 加。藤野がポスターセッション担当。 Prof. Ho and Mr. Boyd joined as experts of JICA FCI courses. Then 2-3 experts join contiuously. Dato’ Ismail joined “econmy” panel discussion Dr. Zaleha (JPBD) joined “evaluation” panel discussion. The mayor of MBJB joined at Asia Mayor Summit. The fourth forum will be held in Higashi-matsushima, Japan in 6th Dec 2014. Cabinet office organize the first form outside Japan in 8-9th Feb 2015 in JB, Malaysia. https://www.kantei.go.jp/jp/singi/tiiki/kankyo/en/event/index.html The 6th High Level Seminar on Environmentally Sustainable Cities will be held in Johor Bahru on 9th and 10th Feb 2015 (mainly sponsored by Ministry of the Environment Japan (MOEJ)) http://www.hls-esc.org/ Low-Carbon Society Scenarios in Asia using AIM Japan Guangzhou China Iskandar Malaysia Japan Shiga Japan Ahmedabad India India Putrajaya Malaysia Cyberjaya Malaysia Shiga Japan Kyoto Japan Jilin China Bhopal India Thailand Indonesia What is NEXT??? Vietnam Bangladesh http://2050.nies.go.jp 37 Sustainable Low-Carbon Asia comes from design, imagination and co-working… Let’s work together! [email protected] 38
© Copyright 2024 ExpyDoc