SM criticality & Higgs inflation Kin-ya Oda (Osaka) ! with ! ✦ Yuta Hamada ✦ YH, HK & Seong ✦ & Hikaru Kawai Chan Park Masatoshi Yamada ✦ YH & Fuminobu (Kyoto), PRD(2013), PTEP(2014) & JHEP(2014). (Sungkyunkwan), PRL(2014) & arXiv:1408. (Kanazawa), in progress. Takahashi (Tohoku), appearing tomorrow. Higgs discovery (2012) [Picture from NY Times] Higgs discovery (2012) ※ pictures from web [Picture from NY Times] Higgs discovery (2012) ※ pictures from web [Picture from NY Times] http://seiga.nicovideo.jp/seiga/im4010102 T IME AND M ATTER 2013 C ONFERENCE Very much SM-ish ✦ If SM Higgs, ✴ Source for all particlesʼ’ mass: ✤ ✴ ✦ coupling/mass = VEV (const.) On dashed line. It is being so in two orders. ✴ Not only with gauge bosons. ✴ But also with quarks & lepton. [CMS, 1309.0721] e plane of reduced vector boson coupling Great Victory of SM! picture from web Outline 1. Criticality: We live right on the edge of vacuum instability. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. Outline 1. Already Criticality: We live right on the by edge covered of vacuum instability. Nobuchika s review. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. Outline 1. Already Criticality: We live right on the by edge covered of vacuum instability. Nobuchika s review. 2. Indicates new principle beyond ordinary QFT? 3. Already Higgs, the only covered single sole ever by observed elementary scalar field, can Nobuchika serve as inflaton. s review. Main findings 1. Bare Higgs mass also points to a “criticality”. • Hamada, Kawai, KO, PRD(2013). 3. SM criticality allows Higgs inflation with large r〜~0.1 with ξ〜~10−100. • ✦ Hamada, Kawai, KO, Park, PRL(2014). SM criticality may be explained by eternal topological Higgs inflation. (※Different one from above.) • Hamada, KO, Takahashi, appearing tomorrow. Outline 1. Criticality: We live right on the edge of vacuum instability. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. nd corresponds to 95% CL deviation of Mt ; see Eq. (10). Vacuum (in)stability Mt =171.39294 GeV 1¥1068 Mt =171.39314 GeV 4 V @GeV D Mt =171.39334 GeV 5¥1067 0 -5¥10 17 Mt =171.39354 GeV 67 0 1¥10 18 18 j @GeVD 2¥10 (mt numbers given just to show amount of tuning) 3¥10 18 4¥10 18 [Hamada, Kawai, KO, 2014] We are put on the edge 3.0 150 ty 10 i l i tab 8 9 s ta e 7 M 6 5 4 LI =10 GeV 100 12 14 16 19 Stability 50 0 0 50 100 150 Higgs pole mass Mh in GeV 200 Planck-scale107 Instability dominated 2.5 178 2.0 176 108 109 Meta-stability Instability Non-perturbativity Top pole mass Mt in GeV 200 180 Yukawa coupling yt HM L och. Pl Cf. 1σ bTop y ATop lekhin, DM jouadi & M pole mass in GeV t 6 8 10 1010 1011 1012 1013 Instability Stability 1.5 174 Meta-stability 1016 1,2,3 s 1.0 172 1019 0.5 170 SM 1018 1014 0.0 168 120 -2 17 10 No EW vacuum 122 -1 124 Stability 126 128 Higgs coupling lHMPl L 0 1 130 132 2 Higgs pole mass Mh in GeV [Buttazzo et al. 1307.3536] Figure 3: Left: SM phase diagram in terms of Higgs and top pole masses. The plane is Figure 4: Left: SM of phase diagram in terms of qu divided into regions of absolute stability, meta-stability, instability the SM vacuum, and nonat the becomes Planck non-perturbative scale. The regio yt renormalised perturbativity of the Higgs quartic coupling. The top Yukawa coupling On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. On the edge ※ Pictures from web. Criticality in bare mass ✦ Bare mass becomes small too for Planck scale cutoff. ! ! ! ! ✦ [Hamada, Kawai, KO, 2013] Triple coincidence: λ, βλ & mB2 all become small at Planck scale! Backup: Quadratic divergence ✦ 2 2 2 2 mR = mB + (λ/16π +…) Λ + δm . renʼ’d ✦ 2 bare radiative corrections Mass independent renormalization scheme: Skippable I. II. Choose mB2 such that mR2 =0 for δm2 =0. ✤ Subtractive renormalization of Λ2. ✤ This step automatic in dim. reg. Include δm2 perturbatively. ✤ ✦ Multiplicative renormalization of log Λ. 2 2 Dominant is not running mass δm , but bare mass mB . Veltman condition ! ✦ 2 2 2 2 mR = mB + (λ/16π +…) Λ + δm . renʼ’d ! bare radiative corrections =0. ! ✦ 2 ”This mass-‐‑‒relation, implying a certain cancellation between bosonic and fermionic effects, would in this view be due to an underlying supersymmetry. While quite speculative, the relation has the virtue of being verifiable in the not too distant future.” Veltman (1981) ✴ Different from MSSM cancellation, in Veltmanʼ’s view. ✴ This is indeed verified after 30 years. ✴ Taken literally, indicates SUSY breaking at Planck scale. Just to show how it looks Skippable igure 1: Nonvanishing two-loop Feynman diagrams. Arrows are omitted. The dash olid, wavy, and dotted lines represent the scalar, fermion, gauge, and ghost propagat spectively. at ⇤ becomes9 m2B, 2-loop Figure 1: Nonvanishing two-loop Feynman diagrams. Arrows are omitted. The dashed, solid, wavy, and dotted lines represent the scalar, fermion, gauge, and ghost propagators, respectively. ⇢ 4 at ⇤ becomes 9ytB = 9 m2B, 2-loop 2 +⇢ytB = 4 9ytB 87 4 gY B 16 + ✓ 2 ytB 87 4 g 16 Y B + B 7 2 9 2 2 gY B + g2B 16g3B 12 4 63 4 15 2 2 g2B gY B g2B 16 8 ✓ 7 2 9 2 2 gY B + g2B 16g3B 12 4 63 4 15 2 2 g2B g g 16 8 Y B 2B 2 2 18ytB + 3gY2 B + 9g2B 12 ◆ 2 B I2 . ◆ (15) This is one of our main results. Note that Eqs. (14) and (15) are minus the 9 As mentioned in Ref. [14], while at the one-loop level, only a restricted set of particles participates; on the two-loop level, all kinds of particles up to the Planck mass enter in the discussion. We assume that there appear only SM degrees of freedom up to the UV cuto↵ scale. + B 2 2 18ytB + 3gY2 B + 9g2B 7 12 2 B I2 . (15) Note ✦ ✦ We did it in Landau gauge in D=4 symmetric phase. Skippable Coincides with Al-‐‑‒sarhi, Jack & Jone (1992). ✴ ✦ Read off from d=3 residue in dimensional reduction in background Feynman gauge. A non-‐‑‒trivial consistency check. All in all, there MUST be something at Planck scale. Outline 1. Criticality: We live right on the edge of vacuum instability. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. A principle: Something that you CANNOT explain but postulates, hoping to serve as a stepping stone for future theoretical progress. Era of principles back! ✦ “Multiple point criticality principle” (MPP) [Nielsen et al. 1996,2001,2012] → next slides ✦ “Asymptotic safety” [Shaposhnikov & Wetterlich 2010; Weinberg originates?] ✴ ✦ Rule of game: Find UV fixed point including gravity. Our work in progress with Yamada. ”Classical scale invariance” [Meissner & Nicolai, 2007,2008; Iso, Orikasa & friends, 2009,2009,2012,2013; Kannike, Racioppi & Raaidal, 2014; Guo & Kang, 2014; …] ✴ Quadratic divergence can be subtracted once and for all. [Bardeen, 1995] 2 ✴ ✦ ”Maximum entropy principle” [Hamada, Kawana & Kawai, 2014] ✴ ✦ ✦ Assume that running mass becomes zero at UV cutoff: δm = 0. A version of MPP, assuming maximization of total entropy of Universe. “Hidden duality” [Kawamura, 2013,2013] ✴ Without much understanding, I said “something like S-‐‑‒duality” at PPP2014. ✴ He sent no: Rather point-‐‑‒particle version of modular invariance (on string world sheet). “Eternal topological Higgs inflation” [Hamada, KO & Takahashi, appearing tomorrow] ✴ Not a principle but more concrete explanation. Read tomorrow. MPP review C. Froggatt, H. B. Nielsen Phys.Lett. B368 (1996) (This part based on Hikaruʼ’s slides) QFT vs statistical mechanics ✦ In QFT, path integral is most fundamental concept: Z ! ✦ [d'] e S['] In statistical mechanics, ✴ Most fundamental concept is micro-‐‑‒canonical ensemble. ✴ Canonical ensemble follows from thermodynamic limit: ! ✴ Z [d'] (H['] E) =) Z [d'] e H['] Total energy E comes first, then comes temperature T = β−1. is determined as a result. Example: Water under Example: Water molecules in a cylinder with a fixed pressure. fixed pressure p vapor water T T* vapor water + vapor water E ✦ Under co-‐‑‒existing two phases, is wide automatically T is automatically tuned to T* Tfor range of E. tuned to T* for wide range of E. T corresponds to coupling constants in field theory. ✦ T corresponds to coupling constant (mass) in QFT. Micro-canonical-like QFT ✦ God first fixes field value to I0 (corresponding to fixed E). ! Z= iS['] [d'] e ✓Z 4 d x |'| 2 I0 ◆ Skippable ! ! ✦ Z = Z iS['] [d'] e Z 2 im 2 (I0 dm e R d4 x |'|2 ) Analogy with statistical mechanics: ✴ 2 After integrating out φ, one value of m dominates (corresponding to a chosen T*): Z= Z 2 2 iV F (m ) dm e Origin of criticality dm 2 Z d m2 d 4 x exp i S Z dm d exp i S Assume that the Veff effective potential for S Assume that the has two minima. effective potential for S ✦ Assume Veff has two minima: has two minima. There is some critical There is some critical value for . value for . 2 ✦ m2 d 4 x † m2 I0 † m2 I0 2 Veff1 2 2 1 2 22 2 2 2 Critical value for m : m2 ! mc 2 m2 2 2 1 2 2 ! ✴ m2 mc 2 m2 2 2 2 2 2 1 mc 2 m2 2 2 mc 2 2 2 2 mc 2 2 2 2 1 m2 mc 2 2 2 1 2 If m 〜~ mc , coexistence of two phases allow satisfying micro-‐‑‒canonical 2 2 constraint for a given I0 ∈ (Vφ1 , Vφ2 ) (corresponding to a fixed E): ! ✴ ✦ 2 ⌧Z 4 d x |'| 2 = I0 2 m wants to take critical value mc . 2 To allow some natural value I0 〜~ MP , second minimum must be φ2 〜~ MP. Generalization of MPP The micro canonical like path integral can be generalized to 4 ✦ † [arXiv:1212.5716] PREdicted exp i S the Higgs Mass H. B. Nielsen 2 Z d d x M 2 May even put arbitrary weight w(m ): Z Z 2 2 dm w m d exp i S 2 (I0 R m 2 4 d x2 4 † ) Skippable ! ✴ ! ✴ ✦ iS['] Z= [d'] e 2 2 2 2 m dominate: mc dominates Some m =Again mc would 2 2 Z= Z Z 2 2 22 dm 2 w exp m 2 miV F (m2 )iV iIF m 0 if 1 M 2 2 2 . Coexisting phases would be preferred. 2 S(m ). in the RHS dm w(m ) e 2 d x |'| dm w(m M ) ePlanck scale is natural Can further assume extremizing any ✴ im M M 2m 2 2 F 2 m , 2 2 slope IM 0/V 2 1 mc 2 →Maximum entropy principle [Hamada, Kawai & Kawana, 2014] m 2 m2 potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower) Note: Degenerate or flat? bands are the beta function times ten 10 ⇥ d e↵ /d ln µ evaluated at the tree and 1-loop levels, respectively. We take MH = 125.9 GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt ; see Eq. (10). Mt =171.39294 GeV 1¥1068 Two c1.0¥10 riticality principles: Mt =171.34294 GeV Mt =171.34314 GeV Mt =171.34334 GeV Mt =171.34354 GeV 65 5.0¥1064 Mt =171.39354 GeV 5¥1067 Skippable ✴ 0 ”Appearance of plateau” -1.0¥1065 ✴ 2¥1017 4¥1017 6¥1017 “Degenerate vacua” j @GeVD 0 0 -5¥1067 -5.0¥1064 ✦ Mt =171.39314 GeV Mt =171.39334 GeV V @GeV4 D 1.5¥10 V @GeV4 D ✦ 65 8¥1017 0 1¥1018 2¥1018 3¥1018 j @GeVD 4¥1018 FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs Both are Here parametrically the ame: potential. we take M = 125.9 GeV and ↵ =s0.1185. H ✴ s Phenomenologically, assuming either one ives 10(17–18 almost) CMS value. Then, the tree and one-loop Higgs potential becomes flatgaround GeV as shown in Fig. 2. the same result as another, in constraining e.g. Mt . Let us expand the e↵ective potential of the Higgs field Ve↵ (') on the flat space-time background ✦ Sometimes they are used interchangeably. ✓ 1 X around its minimum: V (') = e↵ (µ 4 = ') 4 ' , e↵ (µ) = min + n (16⇡ 2 )n ln µ µmin ◆2 , (11) Outline 1. Criticality: We live right on the edge of vacuum instability. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. le Higgs inflation from SM criticality 0.00 10¥dleff êd lnm -0.05 Log10 m @GeVD 5 10 15 20 FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of e↵ (µ) from the tree level potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower) ✦ Already covered by Nobuchikaʼ’ s lecture and by Yutaʼ’s poster. We take M = 125.9 GeV and ↵ = 0.1185. The band corresponds to 95% CL deviation of M ; see Eq. (10). ✦ To summarize: bands are the beta function times ten 10 ⇥ d H s t 1.5¥1065 1¥1068 Mt =171.34294 GeV Mt =171.34314 GeV Mt =171.34334 GeV Mt =171.34354 GeV V @GeV4 D 1.0¥1065 5.0¥1064 0 0 2¥1017 4¥1017 6¥1017 j @GeVD Can earn e-‐‑‒folding at plateau. Mt =171.39354 GeV 5¥1067 0 -5¥1067 64 -1.0¥1065 Mt =171.39314 GeV Mt =171.39334 GeV Flatness required by (strong) principle. -5.0¥10 ✤ evaluated at the tree and 1-loop levels, respectively. Mt =171.39294 GeV V @GeV4 D ✴ e↵ /d ln µ 8¥1017 1¥1018 0 2¥1018 3¥1018 j @GeVD 4¥1018 FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs potential. Here we take MH = 125.9 GeV and ↵s =-90.1185. 6.¥10 ✤ Only need milder ξ〜~10. 5.¥10-9 U @MP 4 D CMS value. Then, the tree and one-loop4.¥10 Higgs -9 potential becomes flat around 1017–18 GeV as shown in Fig. 2. ✴ Let ussexpand the e↵ective potential of the Higgs field V 2.¥10 Milder ξ〜~10 gives larger lope. -9 V (') = e↵ (') on the flat space-time background 1.¥10-9 around its minimum: ✴ 3.¥10-9 e↵ (µ = ') 4 ' , Larger slope can give larger r=16ε 〜~ 0.2. 4 0 e↵ (µ) = 0.0 min + 1 X 0.5n=2 ✓ n ln (16⇡ 2 )n1.0 j @M D µ ◆2 , µmin 1.5 (11) 2.0 where the overall factor '4 is put to make the expansion well-bahaved. InPthe potential analysis Furthermore, Adding anything that couples to Higgs at intermediate scale affects the result. Higgs portal DM, right-‐‑‒handed neutrino, etc. etc. → Talk by Haba-‐‑‒san. It s easy, fun, important & TESTABLE! Come together. Summary 1. Criticality: We live right on the edge of vacuum instability. 2. Indicates new principle beyond ordinary QFT? 3. Higgs, the only single sole ever observed elementary scalar field, can serve as inflaton. Thank you! Backup Table 5. Best-fit values and 68% confidence limits tional nuisance parameters for “highL” data sets are (Planck Collaboration 2013b). インフレーション・パラダイムの確立 Planck Collaboration: Cosmological parameters Planck+WP Parameter ⌦b h2 . . . . . . . . . . B 0.0 1.04119 1.04131 ± 0.00063 1. 0.0925 0.089+0.012 0.014 0 ns . . . . . . . . . . . 0.9619 0 ln(1010 As ) . . . . . . . 3.0980 0.9603 ± 0.0073 APS 100 . . . . . . . . . . 152 APS 143 . . . . . . . . . . 63.3 100✓MC . . . . . . . . ⌧ . . . . . . . . . . . . Planck T T power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB m computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and d include beam uncertainties and uncertainties in the foreground model parameters. ✦ 68% limits 0.022032 0.02205 ± 0.00028 ⌦ c h2 . . . . . . . . . . ✦ Best fit 0.12038 0.1199 ± 0.0027 3.089+0.024 0.027 54 ± 10 標準宇宙論論の6個 ACIB 143 . . . . . . . . . . で、70点ほどをばっちりフィット。 ACIB 217 . . . . . . . . . . 27.2 29+69 AtSZ 143 . . . . . . . . . . 6.80 ... のパラメタ 107+20 10 < 10.7 0.916 > 0.850 「インフレーションの他にこれができる理理論論を知らない」 CIB r143⇥217 . . . . . . . . 0.406 0.42 ± 0.22 サトカツ先⽣生談@本研究会。 CIB . . . . . . . . . . 0.601 0.53+0.13 0.12 PS r143⇥217 . . . . . . . . Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from ⇤CDM Planck+WP+highL model, which is fitted to the TT data only. ⇠ tSZ⇥CIB . . . . . . . . 0.03 3 171 ± 60 PS A 117.0 217 . . . . . . . . . . (うち2個がインフレーション由来) 0.0 0. ... 0 1 0 0 BICEP2前後 Outline 1. Higgs potential becomes flat at string scale. ビフォー 2. Top mass & UV cutoff scale constrained from Higgs ✦ φ2 chaotic 瀕死 inflation. ヒッグス・ 3. Playing with BICEP2 インフレーション ⼤大勝利利 ✦ BICEP2前後 アフター ✦ ✦ 2 φ chaotic ⼤大勝利利 ヒッグス・ インフレーション 瀕死 (Issues については⽻羽澄さんのトーク) まずは普通の ヒッグス・ インフレーション [Bezrukov & Shaposhnikov (2008)…] 一般のヒッグス・重力作用 S= Z 4 d x p g "✓ 2 ◆ 2 MP ' R 1 + ⇠ 2 + ··· MP 2 # ◆ ✓ 2 4 (@') ' + ··· 4 ✦ R 〜~ g..g..g..∂.g..∂.g.. ∝ (g..)−1 ✦ √−g ∝ (g..)2 S= Z 4 d x p g "✓ ◆ 2 ' R 1 + ⇠ 2 + ··· MP 2 ◆# ✓ 2 4 (@') ' + ··· 4 ✦ R 〜~ g..g..g..∂.g..∂.g.. ∝ (g..)−1 ✦ よって次でアインシュタイン枠に移れる: ✓ 2 2 MP ' 1 + ⇠ 2 + ··· MP ◆ ✦ √−g ∝ (g..)2 gµ⌫ ! E gµ⌫ S= Z ✓ 4 d x p 2 g ' 1 + ⇠ 2 + ··· MP ✦ "✓ ◆ ポテンシャルの変換: ✓ 4 4 ' + ··· ◆ 2 2 MP ' R 1 + ⇠ 2 + ··· MP 2 ◆# ✓ 2 4 (@') ' + ··· 4 gµ⌫ ! ◆ ✦ E gµ⌫ √−g ∝ (g..) 4 !⇣ ' + · · · 4 1+ '2 ⇠ M2 P + ··· ⌘2 2 平らなポテンシャル ✦ ポテンシャルの変換: ✓ 4 4 ' + ··· 704 ◆ 4 ' + · · · 4 !⇣ 1+ + ··· F. Bezrukov, M. Shaposhnikov / Physics Letters B 659 (2008) 703–706 MP = (8πGN )−1/2 = 2.4 × 1018 GeV. This model has “good” particle physics phenomenology but gives “bad” inflation since the self-coupling of the Higgs field is too large and matter fluctuations are many orders of magnitude larger than those observed. Another extreme is to put M to zero and consider the “induced” gravity [10–14], in which the electroweak symmetry√breaking √ generates the Planck mass [15–17]. This happens if ξ ∼ 1/( GN MW ) ∼ 1017 , where MW ∼ 100 GeV is the electroweak scale. This model may give “good” inflation [12– 14,18–20] even if the scalar self-coupling is of the order of one, but most probably fails to describe particle physics experiments. Indeed, the Higgs field in this case almost completely decouples from other fields of the SM2 [15–17], which corresponds formally to the infinite Higgs mass mH . This is in conflict with the precision tests of the electroweak theory which tell that m must be below 285 GeV [21] or even 200 GeV [22] ✦ φ ≫ MP/√ξ で定数ポテンシャルに。 ✦ ξ 〜~ 105 でちょうどいい揺らぎを与 える。 '2 ⇠ M2 P ⌘2 Bezrukov & Shaposhnikov Fig. 1. Effective potential in the Einstein frame.(2008) (4), respectively. The dark red (upper) and blue (lower) ま要は n µ evaluated at the tree and 1-loop levels, respectively. 7 Mt =171.39294 GeV 1¥1068 Mt =171.39314 GeV Mt =171.39334 GeV 5¥10 Mt =171.39354 GeV 67 6.¥10-9 5.¥10-9 0 U @MP 4 D V @GeV4 D nd corresponds to 95% CL deviation of Mt ; see Eq. (10). 4.¥10-9 3.¥10-9 2.¥10-9 1.¥10-9 -5¥10 0 0.0 67 j @MP D 0.5 1.0 1.5 2.0 参考: ξ=10 の絵。 FIG. 4: SM Higgs potential in the prescription I with ⇠ = 10 and c = 1, corresponding to 1017 GeV, and with min 0 1¥1018 2¥1018 3¥1018 j @GeVD 4¥1018 = 2 c, c, and 2 = 0.56. The red (upper), green (center) and purple (lower) lines ar c /2, respectively. The values of min =2 c and c /2 are chosen just fo Each line roughly corresponds to the one with the same color in Fig. 2. B. Prediction We expanded the e↵ective potential of the Higgs field Ve↵ on the flat space-time around its minimum as in Eq. (11): V = e↵ (µ) 4 '4 , 1 X ✓ µ ◆2 ✦ ポテンシャルの φ > 部分をニョーンと横に引き伸ばして平らに function of Higgs field '. MRight: one-loop Higgs P/√ξ のThe するようなかんじ。 0.1185. e↵ (µ) = min + n=2 n (16⇡ 2 )n ln µmin . The choice of scale (27) and (28) correspond to the prescription I and II, respect Section II, we can safely neglect the higher order terms with n 3, and we wil hereafter in this section. The higher order terms in Eq. (16) are ignored for the mom C. Prescription I ありうる問題点 ✦ ユニタリティ。 ✴ E > MP/ξ の散乱はマズイ。 ✴ が、インフレーション模型としては問題ない。 ✤ ✴ 散乱エネルギー E がでかいのと、場の値 φ がでかいのは別概念念。 けど素粒粒⼦子屋としてはちょっちキモイよね。 インフレーションおさらい (詳しくは、⾼高橋(史)トークとか) 予⾔言値は V(φ) が決まると完全に決まる。 ✴ 与えられた l(k*)に対応する位置 φ* において、 10 Planck Collaboration: Constraints on inflation ⇤CDM + tensor 縦軸: テンソル・スカラー⽐比は傾きから、 r=16ε 〜~ 8(Vʼ’/V)2、ここで ε = (Vʼ’/V)2 /2。 横軸: スペクトラル指数は凸具合から、 0.2 ✤ Planck 0.960 Co nv Co ex nca ve 0.1 0.94 0.96 0.98 Primordial Tilt (ns ) 0.94 0.96 ns 0.98 1.00 1.00 Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in com the theoretical predictions of selected inflationary models. reheating priors allowing N⇤ < 50 could reconcile this model with the Planck data. Exponential potential and power law inflation Inflation with an exponential potential V( ) = ⇤4 exp 2 Planck+WP+lensing 0.9653 ± 0.0069 < 0.13 0 0.3 0.0 ✴ Planck+WP 0.9624 ± 0.0075 < 0.12 0 Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model f The constraints are given at the pivot scale k⇤ = 0.002 Mpc 1 . 0.00 ✤ Parameter ns r0.002 2 ln Lmax 0.25 ✴ Planck+WP+highL Planck+WP+highL+BICEP2 0.4 Model r0.002 ✦ この計算⾃自体はアホでもできる。 Tensor-to-Scalar Ratio (r0.002 ) 0.05 0.10 0.15 0.20 ✦ Mpl ! (35) is called power law inflation (Lucchin & Matarrese, 1985), because the exact solution for the scale factor is given by 2 a(t) / t2/ . This model is incomplete, since inflation would not end without an additional mechanism to stop it. Assuming such a mechanism exists and leaves predictions for cosmological perturbations unmodified, this class of models predicts r = 8(ns 1) and is now outside the joint 99.7% CL contour. ns=1+2η−6ε = 1 +2Vʼ’ʼ’/V −3(Vʼ’/V) 、ここで η = Vʼ’ʼ’/V。 Inverse power law potential Intermediate models (Barrow, 1990; Muslimov, 1990) with inverse power law potentials 4 ! lead to inflation with where f = 4/(4 + ) is no natural end to the inflationary pred modified, this class o (Barrow & Liddle, 1 joint 95% CL contou Hill-top models In another interesting from an unstable equi els (Albrecht & Stein V where the ellipsis ind inflation, but needed later on. An exponen inflationary model a 2 r ⇡ 32 2⇤ Mpl /µ4 . Th ment with Planck+W Planckian values of µ Models with p Backup: 観測 対 理論 Observation vs Theory (高橋(史)スライドのコピペ) Scalar mode Tensor mode V : the inflaton potential 10¥dleff êd lnm -0.05 我々の立場(BICEP2前から書いてる) Log10 m @GeVD 5 10 15 20 FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of e↵ (µ) from the tree level [Hamada, Kawai, KO (2014)] potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower) ✦ bands are the beta function times ten 10 ⇥ d e↵ /d ln µ evaluated at the tree and 1-loop levels, respectively. 実験事実の外挿: ヒッグス・ポテンシャルはプランク・スケールで平坦。 We take MH = 125.9 GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt ; see Eq. (10). Mt =171.39294 GeV ! ✦ Mt =171.34294 GeV Mt =171.34314 GeV Mt =171.34334 GeV Mt =171.34354 GeV 1.0¥1065 5.0¥1064 0 1¥10 Mt =171.39354 GeV 5¥1067 0 -5¥1067 -5.0¥1064 -1.0¥1065 Mt =171.39314 GeV Mt =171.39334 GeV V @GeV4 D ただし第0近似ではこの図のどれでも「平坦」→ V @GeV4 D ✴ 1.5¥1065 68 0 2¥1017 4¥1017 6¥1017 j @GeVD 8¥1017 1¥1018 0 2¥1018 3¥1018 j @GeVD 4¥1018 この「平坦」性は、前述のような(場の理理論論をちょっと越えた)原理理により、 要請される。 FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs potential. Here we take MH = 125.9 GeV and ↵s = 0.1185. CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18 GeV as shown in Fig. 2. ✴ us expand the e↵ective potential of the Higgs field V (') on the flat space-time background ので標準模型の紫外切切断 Λ よLetり上ではポテンシャルは平坦になっているであろう。 e↵ around its minimum: V (') = ✴ e↵ (µ なお緑の場合をそのままは使えない。 4 = ') 4 ' , e↵ (µ) = min + 1 X n=2 n (16⇡ 2 )n ✓ ln µ µmin ◆2 , (11) where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis around the minimum, we can safely neglect the higher order terms with n ✤ N 〜~ 50 を稼ごうとすると ε <<< 1、 ✤ V は決まっているので、 ✤ ゆらぎの⼤大きさ ∝ V/ε がでかくなりすぎる。 3, and we will omit Const この立場からくる制限 Constraint 拡大 [Hamada, Kawai, KO (2014)] 拡大すると ✦ ✦ 17GeV Λは最大でΛ 5 10 17 Figure 3: Left: Excluded region by Eq. (27) (red, and by GeV。 Eq. (26) (blue, right) in 標準模型の紫外切切断に上限: Λ < 5left) ×10 future scale? exclusion log10 (⇤/GeV) vs Mt plane. Right: Enlarged view for ⇤ vs Mt . Expected string limits within 95%CL: r < 10 2 and 10 3 are also presented by dashed and dot-dashed lines, respectively. 弦スケールがでてくるのはちょっと⾯面⽩白い。 Mt=173.3 2.8GeV[Djouadi et. al. 2012] 17 leff 0.00 この立場の、r=0.2 への応用 10¥dleff êd lnm -0.05 5 Log10 m @GeVD 10 15 20 (µ) from the tree level [Hamada, Kawai, KO, Park (2014)] FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of e↵ potential (3) and from the 1-loop e↵ective potential (4), respectively. The dark red (upper) and blue (lower) ✦ 普通のヒッグス・インフレーションは、我々の議論論では bands are the beta function times ten 10 ⇥ d e↵ /d ln µ evaluated at the tree and 1-loop levels, respectively. We take MH = 125.9 GeV and ↵s = 0.1185. The band corresponds to 95% CL deviation of Mt ; see Eq. (10). Λ=MP/√ξ に対応する。 1.5¥10 1.0¥10 65 Mt =171.34294 GeV Mt =171.34314 GeV Mt =171.34334 GeV Mt =171.34354 GeV Mt =171.39314 GeV Mt =171.39334 GeV 5.0¥1064 0 5¥10 Mt =171.39354 GeV 67 0 -5¥1067 -5.0¥1064 -1.0¥1065 0 2¥1017 4¥1017 6¥1017 j @GeVD 8¥1017 1¥1018 0 2¥1018 3¥1018 4¥1018 j @GeVD 強い意味の「原理理」により緑付近が選ばれたとせよ。 FIG. 2: Left: The tree level Higgs potential as a function of Higgs field '. Right: The one-loop Higgs potential. Here we take MH = 125.9 GeV and ↵s = 0.1185. CMS value. Then, the tree and one-loop Higgs potential becomes flat around 1017–18 GeV as shown ✴ 平らな領領域で e-‐‑‒folding を稼げば、ξ を⼤大きくしないでもよい。 in Fig. 2. Let us expand the e↵ective potential of the Higgs field Ve↵ (') on the flat space-time background around its minimum: -9 V (') = ✤ たとえば ξ=7 とかでもよい。 e↵ (µ = ') 4 4 ' , e↵ (µ) = min + 6.¥10 1 X -9 n 2 )n (16⇡ 4.¥10-9 n=2 3.¥10-9 5.¥10 U @MP 4 D ✦ 1¥1068 V @GeV4 D ✴ V @GeV4 D Mt =171.39294 GeV 65 ✓ ln µ µmin ◆2 , (11) where the overall factor '4 is put to make the expansion well-bahaved. In the potential analysis -9 2.¥10 1.¥10-9 with n around the minimum, we can safely neglect the higher order terms 0 0.0 3, and we will omit j @MP D 0.5 1.0 1.5 2.0 ξ が⼩小さいので、引き伸ばしが少なく、傾き ε が⼩小さすぎない。 FIG. 4: SM Higgs potential in the prescription I with ⇠ = 10 and c = 1, correspondin ✴ 1017 GeV, and with min = 2 c, c, and 2 = 0.56. The red (upper), green (center) and purple (lower) lin c /2, respectively. The values of min =2 c and c /2 are chosen j Each line roughly corresponds to the one with the same color in Fig. 2. B. ✴ 結果じゅうぶん⼤大きな r=16ε を実現可能。 Prediction We expanded the e↵ective potential of the Higgs field Ve↵ on the flat spacearound its minimum as in Eq. (11): V = e↵ (µ) = e↵ (µ) 4 min + '4 , 1 X n 2 n ✓ ln µ ◆2 . Backup [Hamada, Kawai, KO, Park (2014)] Lower V by ξ to get proper εV=10−3 1 ¥ 10 65 8 ¥ 10 4 V @GeV D 64 6 ¥ 1064 Earn N* at this plateau 5 Original ξ〜~10 gives too small εV 4 ¥ 10 64 ξ=7 is OK! 2 ¥ 10 64 0.0 0.2 0.4 0.6 h @MPD 0.8 1.0 詳細な予言 [Hamada, Kawai, KO, Park, to appear] ★ c = μmin / (MP/√ξ) としてこんなかんじ。 14 0.20 0.05 x=6 x=6 c=0.98 x=7 x=8 0.15 dns r 0.05 c=1 0.03 c=1.01 0.95 ns x=8 c=1.03 c=1.04 x=9 c=1.05 0.00 c=1.05 x=50 0.90 c=1.02 0.02 0.01 c=1.02 c=1.03 c=1.04 x=20 0.00 0.85 c=1 x=10 c=1.01 x=15 c=0.99 x=7 x=9 0.10 c=0.98 0.04 c=0.99 dlnk 0.25 1.00 x=50 x=10 x=15 -0.01 0.85 x=20 0.90 0.95 ns 1.00 途中でなんか入ったら? gauge singlet real scalar S to the SM. We further imp under which the SM fields are even and S is odd. This Z2 he decay of S into the SM particles, making it stable. The 例)Higgs portal DM [Hamada, Kawai, KO (2014)] 1 2 L = LSM + (@µ S) 2 1 2 2 mS S 2 r0=0, L=1017GeV 175 ⇢ 4 S 4! 2 † S H H. 2 r0=0.6, L=1017GeV 175 first see the behavior of S as the DM. The mass eigenva 174 monotonicity monotonicity 173 value of potential 172 2 mDM 171 170 200 400 600 800 mDM @GeVD = 1000 Mt @GeVD Mt @GeVD 174 173 172 2 mS 171 170 2 value of potential v , + 2 200 400 600 800 mDM @GeVD 1000 246 GeV is the Higgs vacuum expectation value (VEV). ★強い意味の「原理理」から平坦性が要請されるとす rt in the thermal bath of the SM sector through the coupl ると、m = 4 00-‐‑‒470 G eV、M =171.2GeV。 DM t er this interaction is frozen out, the abundance of S is fi Figure 6: The excluded regions in the Mt vs mDM plane from the monotonicity (upper-left, blue) and from the value of the potential (lower-right, red) in the Z2 scalar DM model to achieve the flat potential Higgs inflation. Left and right panels are for ⇢0 = 0 and 0.6, respectively. 1017 GeV.4 When we impose this flatness condition, the coupling , the DM mass mDM , and the top mass Mt are completely fixed as functions of ⇢0 : DM見えちゃう! 2 WIMP−nucleon cross section (cm ) for the interpre calibrat −44 10 6 8 −40 10 −45 10 −42 10 −44 10 1 10 2 m 10 WIMP 3 (GeV/c2) 10 10 12 LUX and 201 will est operatio electric backgro further Subsequ conduct improvi of WIM This Departm [from LUX (2014)] 等々 どんどん参入しましょう ★DM以外にも右巻きニュートリノ等々、ヒッグス の4点結合の⾛走りを変えるものがなんでも途中 にあれば、予⾔言が変わる。(Cf. ⾼高橋亮亮トーク) ★RGE も V, Vʼ’, Vʼ’ʼ’ → As, ns, r も計算は簡単。 ✴ dns/dlnk、dnt/dlnk 等々も同様に簡単に⾏行行ける。 ★こんごバンバン進歩する宇宙の観測で検証でき る(重要)。
© Copyright 2024 ExpyDoc