Title A remark on Galois cohomology groups of algebraic tori. Author(s) AMANO, Kazuo Citation [岐阜大学教養部研究報告] vol.[11] p.[159]-[160] Issue Date 1975 Rights Version 岐阜大学教養部 (Dep. of Math., Faculty of General Education, Gifu University) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/46005 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 159 A remark on Galois cohomology groups of algebraic tori. By K azuO A MANO Dep. oJ M ath・, F αc. oy` Ge71. £ dtxcj, G φ x び戒 む. ( Recelved Sept・, 30, 1975) L et K be an algebraic number field and K 1 Galois group G. 尺. the Galois eχtension of L£t T be an algebraic torus defined over 尺 which W e set χ= H om ( Gm, 7 ) , where Gm is the multiplicative group of paper , w e shal l g ive a pr oper ty of j ¯ 3 ( G, X ) w ith universal domain. ln my paper [ 1 1, we studied that the Galois cohom610gy 町 oup χ) had important r01e to the validity of Hassej K splits over 示 3( G・ norm theoi・em of T. ln this as an anal ogy to the r esul t as is well known to the case of χ = Z . 2. W e consider the fo110w ing situation : 尺 the union of the finite H ilbert class field tower, finite H ilbert p- class field tower, み say Case( H ) , say Case ( H , p) ; or the し the idele group of 尺; e夕 Cχ the idele class group of K びx the group of idele units;・ £ χ the group of units in 尺 ; C& the ideal class group of K ; 71 = χ(召 ) 尺)( the group of 尺-rational points of 刄 where K` is the multiplicative group of 尺 ; n 。 = χ(呂)み the adele group of T. By the follow ing eχact sequence; O→ 尺い み→ Cχ→ 0, we have the eχact sequence; O一 X⑧ 尺゛ →X⑧ み一 X⑧ Cこ → 0. T herefor6 we can identify χ ⑧ Cχ w ith TAoZ Tχ。 set Cg( T ) = 714. / 71 , the ad el e cl a s s g r oup of 71 二 F or the sake of simplicity, S ince χ is Z - f r ee m odul e, have χ(亘)£χ= χ⑧K゛nχ⑧ Uχ . We set n = χ⑧ Eχ , the unit group of T. By the follow ing eχact sequences; O→ O→ UgZEχ→ £ x→ Cχ→ UX→ Cな→ Uχ7ElC→ O 0, we have the eχact sequences; O一 X⑧( W /& ) 一 X⑧ G 一 X② Cなー→ O O一 X⑧ & 一 X⑧ 脆一 X②( W/& ) 一 〇. T herefore we have X⑧ Ctχさ X ② Cg/χ⑧ ( UXyEX) ゛ X③ み/X② r /X(8)UXIχ(8)& 1 卜 we we 160 Kazuo A M ANO = X⑧ み/( χ⑧ r ) ・ ( X⑧ UX)・ F or the sake of simplicity, THEOREM. C(1se( 珀 we set C & ( 7 ) = X ⑧ C な 尚a㎡ 71 . = χ ⑧ 脆 . £ d 尺 6e α71 aなe6r心c 71txm6eΓβeld a71d 尺/Å ; 疏e Galojs exle71sion oy or Case( H, p) 仙i仏 Galois group G. Then lj e hat Xe 硫e JoUo切ing iso- ・ oTph18・ JoT eueT!J k tegeT 71, Hil( G, TE。) 苫H71-3( G, X) ・ヽ - 籾/1ere H is T (l te- co/10m㎡ og!y grotxps. P R0 0 F. S ince 尺/ i is unramified, びg is cohomologically hence X ③ びg is also cohomologically trivia1. tr ivial mo(! ule and T herefore 万 ( G、T 、 ) = O and hence j -1(G, χ②( UXyEχ)) 包H11( G, TE。) for every integer 71. 0n the other hand, we have the follow ing eχact sequence; O- → TUoTχZTχ→ TAoyTχ→ ?11 TAoyTUoTχ- → O 11 TUoZTEo ?¦¦ C爪 T) C& ( 7) Passing to cohomology w e have - ‥‥‥- → H71¯2 ( G, C& ( 7) ) → → r ¯1( G, Cな( 7) ) → By N akayama- T atej _ 召 - 1( G, TUoyTE。) → 。 。 H゛ - 1( G, Cg( 77) ) ‥● ‥● theorem in class field theory, we have - ヽ 一 H71¯1( G, G ( T) ) き H -3( G, X) lf 尺μ is Case( H) , Ca = 1 and our theorem is trivial. lI K Zk i s Case( H , p) , C a is of order prime to p. conclude that C & is cohomologically trivia1. Since G is a p- group, wQ T herefore we obtain the follow ing isomorphism for every integer 7x; - ヽ 一 召 ( G, TE。) さ H゛ -3( G, X) R EFERENCE S 〔 1〕 ¥ K. Aman0, 0n the Galois cohomology groups of algebraic tori andHassei normtheorem, to appea r ・ 〔 2〕 K. lwasawa, A note on the group of units of an algebraic number appl. 35 ( 1956) , field, 189 - 192. 〔 3〕 J. - P. Serre, Corps locauχ, Herrnann Paris, 1962. 〔 4〕 J. - P. Serre, Cohomologie galoisienne, Springer Verlag, Berlin, 1964. 2 J. Math. pures
© Copyright 2024 ExpyDoc