11 章 資料 引用文献 テーマ 1 Baldwin, M. P., and T. J. Dunkerton (1999), Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937-30946. Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm (1996), Overview of Arctic cloud and radiation characteristics, J. Climate, 9, 1731-1764. Derksen, C., and R. Brown(2012), Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections, Geophys. Res. Let., 39, L19504, doi:10.1029/2012GL053387. Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson (2008), Vertical structure of recent Arctic warming, Nature, 451, 53-56. Hall, A., and X. Qu (2006), Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33, doi:10.1029/2005GL025127. Hwang, Y.-T., D. M. W. Frierson, and J. E. Kay (2011), Coupling between Arctic feedback and changes in poleward energy transport, Geophys. Res. Lett., 38, L17704, doi: 10.1029/2011GL048546. Liu, Y., J. R. Key, Z. Liu, X. Wang, and S. J. Vavrus(2012), A cloudier Arctic expected with diminishing sea ice, Geophys. Res. Lett., 39, L050705, doi: 10.1029/ 2012GL051251. Manney, G. L., et al. (2011), Unprecedented Arctic ozone loss in 2011, Nature, 478, 469-475. O’ishi, R. and A. Abe-Ouchi (2011), Polar amplification in the mid‐Holocene derived from dynamical vegetation change with a GCM, Geophys. Res. Let., 38, L14702. Oort, A. H. (1971), The Observed Annual Cycle in the Meridional Transport of Atmospheric Energy. J. Atmos. Sci., 28, 325–339. Perovich, D.K., B. Light, H. Eicken, K.F. Jones, K. Runciman, and S.V. Nghiem (2007), Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005: Attribution and role in the ice-albedo feedback, Geophys. Res. Lett., 34, doi:10.1029/2007GL031480. Trenberth, K. E., and D. P. Stepaniak (2003a), Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales, J. Clim., 16, 3691–3705. Tucker, C. J., D. A. Slayback, J. E. Pinzon, S. O. Los, R. B. Myneni, and M. G. Taylor (2001), Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999, Int. J. Biometeorol., 45, 184-190. Yoshimori, M., A. Abe-Ouchi, M. Watanabe, A. Oka, and T. Ogura (2014), Robust seasonality of Arctic warming processes in two different versions of MIROC GCM. J. Climate, accepted. テーマ 2 Inoue, J., and M. Hori (2011), Arctic cyclogenesis at the marginal ice zone: A contributory mechanism for the temperature amplification?, Geophys. Res. Lett., 38, doi:10.1029/2011GL047696. Jackson, J. M., E. C. Carmack, F. A. McLaughlin, S. E. Allen, and R. G. Ingram (2010), Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008, J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265 McPhee, M. G. (2013), Intensification of geostrophic currents in the Canada Basin, Arctic Ocean, J. Clim., 26, 31303138. Overland, J. E., and M. Wang (2013), When will the summer Arctic be nearly sea ice free?, Geophys. Res. Lett., 40, 2097-2101, doi:10/1002/grl.50316. Rampal, P., J. Weiss, C. Dubois, and J.-M Campin (2011), IPCC climate models do not capture Arctic sea ice drift acceleration: Consequences in terms of projected sea ice thinning and decline, J. Geophys. Res., 116, doi:10.1029/2011JC007110. テーマ 3 Bates, N. R., and J. T. Mathis (2009), The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks, Biogeosciences, 6, 2433–2459. Frey, K. E., and J. W. McClelland (2009), Impacts of permafrost degradation on arctic river biogeochemistry, Hydrol. Process., 23, 169–182, doi: 10.1002/hyp.7196. Holmes, R. M., J. W. McClelland, B. J. Peterson, S. E. Tank, E. Bulygina, T. I. Eglinton, V. V. Gordeev, T. Y. Gurtovaya, P. A. Raymond, D. J. Repeta, R. Staples, R. G. Striegl, A. V. Zhulidov, and S. A. Zimov (2012), Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas, Estuaries and Coasts, 35, 369-382, doi: 10.1007/s12237-011-9386-6. 198 Intergovernmental Panel on Climate Change (IPCC) (2013a), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the IPCC, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge Univ. Press, Cambridge, U. K. and New York, NY, USA, 1535 pp. Intergovernmental Panel on Climate Change (IPCC) (2013b), Summary for Policymakers. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the IPCC, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge Univ. Press, Cambridge, U. K. and New York, NY, USA. Ise, T., A. L. Dunn, S. C. Wofsy, and P. R. Moorcroft (2008), High sensitivity of peat decomposition to climate change through water-table feedback, Nature Geoscience, 1, 763-766. Kirchman, D. L., X. A. G. Morán, and H. Ducklow (2009), Microbial growth in the polar oceans ― role of temperature and potential impact of climate change, Nature Reviews in Microbiology, 7, 451- 459. Lubin and Vogelmann (2010), Observational quantification of a total aerosol indirect effect in the Arctic, Tellus B, 62, 181–189. 森本真司、石戸谷重之、石島健太郎、八代 尚、梅澤 拓、橋田 元、菅原 敏、青木周司、中澤高清、山内 恭(2010),南 北両極域における大気中の温室効果気体と関連気体の変動, 南極資料, 54, 374-409. Quinn, P. K., G. Shaw, E. Andrew, E. G. Dutton, T. Ruoho-Airola, and S. L. Going (2007), Arctic haze: current trends and knowledge gaps, Tellus Series B-chemical and Physical Meteorology, 59B, 99–114. Shakhova, N., I. Semiletov, A. Salyuk, V. Joussupov, D. Kosmach, and Ö. Gustafssonet (2010), Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf, Science, 327, 1246-1250, doi: 10.1126/science.1182221. Suzuki, R., Y. Kim, R. Ishii (2013), Sensitivity of the backscatter intensity of ALOS/PALSAR to the above-ground biomass and other biophysical parameters of boreal forest in Alaska, Polar Science, 7, 100-112. Yamamoto-Kawai, M., F. McLaughlin, E. Carmack, S. Nishino, and K. Shimada (2009), Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt, Science, 326, 1098-1100. テーマ 4 Abe-Ouchi, A., et al. (2013), Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193. Brown, R.D. and P.W. Mote (2009), The response of northern hemisphere snow cover to a changing climate, Journal of Climate, 22, 2124-2145. Brutsaert, W., and T. Hiyama (2012), The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia, J. Geophys. Res., 117, D22110, doi:10.1029/2012JD018344. Ekström, G., M. Nettles, and V. C. Tsai (2006), Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311, 1756–1758. Gardner, A. S., et al. (2013), A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009, Science, 340(6134), 852–857, doi: 10.1126/science.1234532 Goodison, B. E., P. Y. T. Louie, and D. Yang (1998), WMO Solid Precipitation Measurement Intercomparison Final Report, Word Meteorological Organization Instruments and Observing Methods Report No. 67, 212. Hiyama T., K. Asai, A. B. Kolesnikov, L. A. Gagarin, and V. V. Shepelev (2013), Estimation of the residence time of permafrost groundwater in the middle of the Lena River basin, eastern Siberia, Environmental Research Letters, 8, 035034. Iijima, Y., T. Ohta, A. Kotani, A. N. Fedorov, Y. Kodama, and T. C. Maximov (2014), Sap flow changes in relation to permafrost degradation under increasing precipitation in an eastern Siberian larch forest, Ecohydrology, 7, doi: 10.1002/eco.1366 Jorgenson, M. T., Y. L. Shur, and E. R. Pullman (2006), Abrupt increase in permafrost degradation in Arctic Alaska, Geophysical Research Letters, 33, L02503. doi: 1029/2005GL024960 Lemke, P., J. Ren, R.B. Alley, I. Allison, J. Carrasco, G. Flato, Y. Fujii, G. Kaser, P. Mote, R.H. Thomas, and T. Zhang (2007), Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Matsumura, S., K. Yamazaki, and T. Tokioka (2010), Summertime land-atmosphere interactions in response to anomalous springtime snow cover in northern Eurasia, J. Geophys. Res., 115, D20107. Nitu R. (2013), Cold as SPICE, Meteorological Technology International, 148–150. 小川涼子, B. F. Chao, 日置幸介 (2010), シベリア永久凍土帯における重力の季節変化と経年変化, 月刊地球, 32, 234238. 199 Ohta, T., A. Kotani, Y. Iijima, T. C. Maximov, S. Ito, M. Hanamura, A. V. Kononov, and A. P. Maximov (2014), Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998 – 2011, Agric. For. Meteorol., 188, 64-75. Park H., J. Walsh, A. N. Fedorov, A. B. Sherstiukov, Y. Iijima, and T. Ohata (2013), The influence of climate and hydrological variables on opposite anomaly in active-layer thickness between Eurasian and North American watersheds, Cryosphere, 7, 631-645, doi:10.5194/tc-7-631-2013. Rasmussen, R., and Coauthors (2012), How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test Bed. Bull, Amer. Meteor. Soc., 93, 811–829. doi: http://dx.doi.org/10.1175/BAMS-D-1100052.1 Romanovsky, V. E., D. S. Drozdov, N. G. Oberman, et al. (2010), Thermal state of permafrost in Russia, Permafrost Periglac. Process., 21(2), 136–155, doi:10.1002/ppp.683. Shepherd, A., et al. (2012), A reconciled estimate of ice-sheet mass balance. Science, 338 (6111), 1183–1189, doi:10.1126/science.1228102 Shur, Y., K. M. Hinkel, and F. E. Nelson (2005), The Transient Layer: Implication for Geocryology and ClimateChange Science, Permafrost and Periglacial Processes, 16, 5-17. Sugiura, K., and T. Ohata (2008), Large-scale characteristics of the distribution of blowing snow sublimation, Annals of Glaciology, 49, 11-16. Suzuki, K., J. Kubota, Y. Zhang, T. Kadota, T. Ohata, and V. Vuglinsky (2006), Snow ablation in an open field and larch forest of the southern mountainous region of eastern Siberia, Hydrol. Sci. J., 51(3), 465–480, doi:10.1623/hysj.51.3.465. Takeuchi, N., S. Kohshima, and K. Seko (2001), Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier, Arctic, Antarctic, and Alpine Research, 33, 115–122. Toyokuni, G., M. Kanao, Y. Tono, T. Himeno, S. Tsuboi, D. Childs, K. Anderson, and H. Takenaka (2014), Japanese Contribution to the Greenland Ice Sheet Monitoring Network (GLISN), Antarctic Report, in press. Yallop, M. L., A. M. Anesio, R. G. Perkins, J.Cook, J. Telling, D. Fagan, J. MacFarlane, M. Stibal, G. Barker, C. Bellas, A. Hodson, M. Tranter, J. Whadhan, and N. W. Roberts (2012), Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet, The ISME journal, 6(12), 2302–2313. Yoshimori, M., and A. Abe-Ouchi (2012), Sources of spread in multi-model projections of the Greenland ice-sheet surface mass balance, J. Climate, 25(4), 1157–1175. Zhang K., J. Kimball, Q. Mu, L. A. Jones, S. J. Goetz, and S. W. Running (2009), Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. J. Hydrol., 379, 92–110, doi:10.1016/j.jhydrol.2009.09.047. Zhang, X., J. He, J. Zhang, I. Polaykov, R. Gerdes, J. Inoue, and P. Wu (2013), Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nature Climate Change, 3, 47-51, doi:10.1038/NCLIMATE1631. テーマ 5 Beare, R.J., M. K .Macvean, A. A. M. Holtslag, J. Cuxart, I. Esau, J.-C. Golatz, M. A. Jimenez, M. Khairoutidinov, B. Kosovic, D. Lewellen, T. S. Lund, J. K. Lundquist, A. Mccabe, A. F. Moene, Y. Noh, S. Raasch, and P. Sullivan (2006), An intercomparison of large-eddy simulations of the stable boundary layer, Boundary-Layer Meteor., 118, 247-272. Brown, R., C. Derksen, and L. Wang (2010), A multi-data set Analysis of Variability and Change in Arctic Spring snow Cover Extent, 1967-2008, J. Geophys. Res., 115, D16111, doi:10.1029/JD013975. Chapman, W.L., and J. E. Walsh (2007), Simulations of Arctic temperature and pressure by global coupled models, J. Clim., 20, 609-632, doi:10.1175/JCLI4026.1. Dickson, B., I. Yashayaev, J. Meincke, B. Turrel, S. Dye, and J. Holfort (2002), Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature, 416, 832-837. Fereday, D., J. R. Knight, A. A. Scaife, C. K. Folland, and A. Philipp (2008), Cluster analysis of North Atlantic European weather types, J. Clim., 21, 3687-3703. Groisman P. Y., and T. D. Davies (2001), Snow cover and the Climate System, In Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems, edited by H. G. Jones, et al., pp. 1-44, Cambridge University Press. Honda, M., J. Inoue, and S. Yamane (2009), Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters, Geophys. Res. Lett., 36, L08707, doi:10.1029/2008GL037079. Hu, A., G. A. Meehl, W. Han, A. Timmermann, B. Otto-Bliesner, Z. Liu, W. M. Washington, W. Large, A. Abe-Ouchi, M. Kimoto, K. Lambeck, and B. Wu (2012), Role of the Bering Strait on the hysteresis of the ocean conveyor belt circulation and glacial climate stability, PNAS, 109(17), 6417-6422. 200 Ineson, S., and A. A. Scaife (2009), The role of the stratosphere in the European climate response to El Niño, Nature Geoscience, 2, 32-36. Inoue, J., M. E. Hori, and K. Takaya (2012), The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly, J. Climate, 25, 2561–2568. doi:http://dx.doi.org/10.1175/JCLI-D-11-00449.1. Liston, G.E. (2004), Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, J. Clim., 17, 1381-1397. Steele, M., and W. Ermold (2007), Steric sea level change in the Northern Seas, J. Clim, 20(3), 403–417. Tape, K., M. Sturm, and C. Racine (2006), The evidence for shrub expansion in Northern Alaska and the PanArctic, Global Change Biology, 12, 686-702. Zhang, T. (2005), Influence of the Seasonal Snow Cover on the Ground Thermal Regime: An Overview, Rev. Geophys., 43, RG4002. doi: 10.1029/2004RG000157. テーマ 6 Abe-Ouchi, A., F. Saito, K. Kawamura, M. E. Raymo, J. Okuno, K. Takahashi, and H. Blatter (2013), Insolationdriven 100,000-year glacial cycles and hysteresis of ice-sheet volume, Nature, 500(7461), 190–193, doi:10.1038/nature12374. Bindschadler, R. A., S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W. H. Lipscomb, M. A. Martin, M. Morlighem, B. R. Parizek, D. Pollard, S. F. Price, D. Ren, F. Saito, T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker, and W. L. Wang (2013), Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59(214), 195–224, doi:10.3189/2013JoG12J125. de Vernal, A., C. Hillaire-Marcel, A. Rochon, B. Fréchette, M. Henry, S. Solignac, and S. Bonnet (2013), Dinocystbased reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean and its adjacent seas, Quat. Sci. Rev., 79, 111–121, doi:10.1016/j.quascirev.2013.07.006. Harrison, S. P., and C. I. Prentice (2003), Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations, Global Change Biology, 9(7), 983–1004, doi:10.1046/j.1365-2486.2003.00640.x. Iizuka, Y., R. Uemura, H. Motoyama, T. Suzuki, T. Miyake, M. Hirabayashi, and T. Hondoh (2012), Sulphate– climate coupling over the past 300,000 years in inland Antarctica, Nature, 490(7418), 81–84, doi:10.1038/nature11359. Intergovernmental Panel on Climate Change (IPCC) (2013), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the IPCC, edited by T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, Cambridge Univ. Press, Cambridge, U. K. and New York, NY, USA, 1535 pp. Joussaume, S., K. E. Taylor, P. Braconnot, J. F. B. Mitchell, J. E. Kutzbach, S. P. Harrison, I. C. Prentice, A. J. Broccoli, A. Abe-Ouchi, P. J. Bartlein, C. Bonfils, B. Dong, J. Guiot, K. Herterich, C. D. Hewitt, D. Jolly, J. W. Kim, A. Kislov, A. Kitoh, M. F. Loutre, V. Masson, B. McAvaney, N. McFarlane, N. de Noblet, W. R. Peltier, J. Y. Peterschmitt, D. Pollard, D. Rind, J. F. Royer, M. E. Schlesinger, J. Syktus, S. Thompson, P. Valdes, G. Vettoretti, R. S. Webb, and U. Wyputta (1999), Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP), Geophys Res Lett, 26(7), 859– 862, doi:10.1029/1999GL900126. Kobashi, T., D. T. Shindell, K. Kodera, J. E. Box, T. Nakaegawa, and K. Kawamura (2013), On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr, Clim. Past, 9(2), 583– 596, doi:10.5194/cp-9-583-2013. Lambert, F., J.-S. Kug, R. J. Park, N. Mahowald, G. Winckler, A. Abe-Ouchi, R. O’ishi, T. Takemura, and J.-H. Lee (2013), The role of mineral-dust aerosols in polar temperature amplification, Nature Climate Change, 3(5), 487–491, doi:10.1038/nclimate1785. Meyer, H., L. Schirrmeister, A. Andreev, D. Wagner, H.-W. Hubberten, K. Yoshikawa, A. Bobrov, S. Wetterich, T. Opel, E. Kandiano, and J. Brown (2010), Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska – Results from a buried ice-wedge system at Barrow, Quat. Sci. Rev., 29(27-28), 3720–3735, doi:10.1016/j.quascirev.2010.08.005. Moran, K., J. Backman, H. Brinkhuis, S. C. Clemens, T. Cronin, G. R. Dickens, F. Eynaud, J. Gattacceca, M. Jakobsson, R. W. Jordan, M. Kaminski, J. King, N. Koç, A. Krylov, N. Martinez, J. Matthiessen, D. McInroy, T. C. Moore, J. Onodera, M. O'Regan, H. Palike, B. Rea, D. Rio, T. Sakamoto, D. C. Smith, R. Stein, K. St John, I. Suto, N. Suzuki, K. Takahashi, M. Watanabe, M. Yamamoto, J. Farrell, M. Frank, P. Kubik, W. Jokat, and Y. Kristoffersen (2006), The Cenozoic palaeoenvironment of the Arctic Ocean, Nature, 441(7093), 601–605. 201 NEEM community members (2013), Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493(7433), 489–494, doi:10.1038/nature11789. O’ishi, R. and A. Abe-Ouchi (2011), Polar amplification in the mid-Holocene derived from dynamical vegetation change with a GCM, Geophys Res Lett, 38, L14702, doi:10.1029/2011GL048001. PALAEOSENS Project Members (2012), Making sense of palaeoclimate sensitivity, Nature, 491(7426), 683–691, doi:doi:10.1038/nature11574. Pollack, H. N. (2003), Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures, J. Geophys. Res., 108(B4), 2180, doi:10.1029/2002JB002154. Sigl. M., J. R. McConnell, M. Toohey, M. Curran, S.B. Das, R. Edwards, E. Isaksson, K. Kawamura, J. Kipfstuhl, K. Krüger, L. Layman, O.Maselli, Y. Motizuki, H. Motoyama, D. Pasteris, and M. Severi (2014), New insights from Antarctica on volcanic forcing during the Common Era, Nature Clim. Change, in press. Sueyoshi, T., R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, M. Abe, R. O’ishi, F. Saito, S. Watanabe, M. Kawamiya, and A. Abe-Ouchi (2013), Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM, Geoscientific Model Development, 6(3), 819–836, doi:10.5194/gmd-6-819-2013. Uemura, R., V. Masson-Delmotte, J. Jouzel, A. Landais, H. Motoyama, and B. Stenni (2012), Ranges of moisturesource temperature estimated from Antarctic ice cores stable isotope records over glacial–interglacial cycles, Clim. Past, 8(3), 1109–1125, doi:10.5194/cp-8-1109-2012. Yoshimura, K., T. Miyoshi, M. Kanamitsu (2014), Observation System Simulation Experiments using Water Vapor Isotope Information, J. Geophys. Res. Atmos., in press, doi:10.1029/2014JD021662. Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups (2001), Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 292(5), 686–693, doi:10.1126/science.1059412. テーマ 7 地球電磁気学・地球惑星圏学会(2013), 地球電磁気学・地球惑星圏科学の現状と将来、地球電磁気学・地球惑星圏学 会、2013 年 1 月 Kaeriyama, M., H. Seo, H. Kudo, and M. Nagata (2012), Perspectives on wild and hatchery salmon interactions at sea, potential climate effects on Japanese chum salmon, and the need for sustainable salmon fishery management reform in Japan, Environ. Biol. Fish., 94, 165-177. Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu (2013), Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years, PNAS, 110-32, 13055–13060. 北川弘光、小野延雄、山口一、泉山耕、亀崎和彦(2000), 北極海航路、シップ・アンド・オーシャン財団 Koshino, Y., H. Kudo, and M. Kaeriyama (2013), Stable isotope evidence indicates the incorporation of marinederived nutrients transported by spawning Pacific salmon to Japanese catchments. Freshwater Biology, 58, 1864-1877. Post, E., U. S. Bhatt, C.M. Bitz, J. F. Brodie, T. L. Fulton, M. Hebblewhite, J. Kerby, S. J. Kutz, I. Stirling, D. A. Walker (2013), Ecological Consequences of Sea-Ice Decline, Science, 341(6145), 519-524, doi:10.1126/science.1235225. SATREPS プロジェクト、http://www.jst.go.jp/global/kadai/h2004_indonesia.html. Steppuhn, H. (1981), Snow and Agriculture, Handbook of Snow, 60-125, Pergamon Press. Symon C., L. Arris, and B. Heal (Eds.) (2005), Arctic climate impact assessment, Cambridge Univ. Press, New York. 田中博(2008), 日本の異常気象と北極振動の関係, 2008 年度雪氷防災研究講演会報文集, 防災科学技術研究所、雪氷防災 研究センター. 1-6、http://air.geo.tsukuba.ac.jp/~tanaka/papers/paper220.pdf. Tsuboi, S., D. Komatitsch, C. Ji, and J. Tromp (2003), Broadband modeling of the 2002 Denali fault earthquake on the Earth Simulator, Physics of The Earth and Planetary Interiors, doi:10.1016/j.pepi.2003.09.012. Yamaguchi, H. (2013), Sea ice prediction and construction of an ice navigation support system for the Arctic sea routes, Proc. 22nd Intern. Conf. on Port and Ocean Eng. under Arctic Conditions (POAC’13), Espoo, Finland, June 9-13, 2013. テーマ 8 Cardinale B. (2012), Impacts of Biodiversity Loss, Science, 336, 552-553. Clymo R.S. (1983), Peat, In Ecosystems of the world, 4A Mires: swamp bog, fen and moor, general studies, edited by A. J. P. Gore, 159-224R, Elsevier, Amsterdam. Clymo, S., and P. M. Hayward (1982), The ecology of Sphagnum, In Bryophyte Ecology, edited by A. J. E. Smith, 229-289, Chapman and Hall, London, England. Elmqvist, T., C. Folke, M. Nyström, G. Peterson, J. Bengtsson, B. Walker, J. Norberg (2003), Response diversity, ecosystem change, and resilience, Frontiers in Ecology and the Environment, 1, 488-494. Ganter, B., A. J. Gaston (2013), Birds, In Arctic Biodiversity Assessment, edited by H. Meltofte, 142-181, The Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland. 202 Ise, T., H. Sato (2008), Representing subgrid-scale edaphic heterogeneity in a large-scale ecosystem model: A case study in the circumpolar boreal regions, Geophysical Research Letters, 35, L20407, doi:10.1029/2008GL035701. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, D. A. Wardle (2001), Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges, Science, 294, 804-808. Makila, M., M. Saarnisto, T. Kankainen (2001), Aapa mires as a carbon sink and source during the Holocene, Journal of Ecology, 89, 589-599. Mori, A. S., T. Furukawa, T. Sasaki (2013), Response diversity determines the resilience of ecosystems to environmental change, Biological Reviews, 88, 349-364. Post, E., U. S. Bhatt, C. M. Bitz, J. F. Brodie, T. L. Fulton, M. Hebblewhite, J. Kerby, S. J. Kutz, I. Stirling, D. A. Walker (2013), Ecological Consequences of Sea-Ice Decline, Science, 341, 519-524. Purves, D., J. P. W. Scharlemann, M. Harfoot, T. Newbold, D. P. Tittensor, J. Hutton, S. Emmott (2013), Ecosystems: Time to model all life on Earth, Nature, 493, 295-297. Tsuyuzaki, S., K. Kushida, Y. Kodama (2009), Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska, Climate Change, 93, 517-525. テーマ 9 Abdul-Aziz, O. I., N. J. Mantua, and K. W. Myers (2011), Potential climate change impacts on thermal habitats of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean and adjacent seas, Can. J. Fish. Aquat. Sci., 68, 1660-1680. AMAP(2009), Arctic Pollution 2009, Arctic Monitoring and Assessment Programme, Oslo. xi+83pp. AMAP (2013), AMAP Assessment 2013, Arctic Ocean Acidification. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. viii + 99 pp. Bluhm, B. A., A. V. Gebruk, R. Gradinger, R. R. Hopcroft, F. Huettmann, K. N. Kosobokova,B. I. Sirenko, and J. M. Weslawski (2011), Arctic marine biodiversity: An update of species richness and examples of biodiversity change, Oceanography, 24, 232–248. Boetius, A., S. Albrecht, K. Bakker, C. Bienhold, J. Felden, and others (2013), Export of algal biomass from the melting Arctic sea ice, Science, 339, 1430-1432. Buchholz, et al. (2012), Polar Biol., 35, 1273-1279. CAFF (2013), Life Linked to Ice: A guide to sea-ice-associated biodiversity in this time of rapid change, CAFF Assessment Series 10, p. 115. CoML (2012), First Census of Marne Life 2010, Highlights of a decade of discovery, edited by J. H. Ausubel, p. 64. Cooper et al. (2013), Deep-Sea Res. II, 94, 31-43. Grebmeier, et al. (2006), Progr Oceanogr., 71, 331-361. Honjo, S., R. A. Krishfield, T. I. Eglinton, S. J. Manganini, J. N. Kemp, K. Doherty, J. Hwang, T. K. McKee, T. Takizawa (2010), Biological pump processes I the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise, Progress in Oceanography, 85, 137-170. Kaeriyama, M. (2008), Ecosystem-based sustainable conservation and management of Pacific salmon, In Fisheries for Global Welfare and Environment, edited by K. Tsukamoto, T. Kawamura, T. Takeuchi, T. D. Beard, Jr., and M. J. Kaiser, 371-380, TERRAPUB, Tokyo. Kaeriyama, M., H. Seo, H. Kudo, and M. Nagata (2012), Perspectives on wild and hatchery salmon interactions at sea, potential climate effects on Japanese chum salmon, and the need for sustainable salmon fishery management reform in Japan, Environ. Biol. Fish., 94, 165-177. Kaeriyama, M., H. Seo, and Y. Qin (2014), Effect of global warming on the life history and population dynamics of Japanese chum salmon, Fisheries Sci., 80 (2), 251-260. Koshino, Y., H. Kudo, and M. Kaeriyama (2013), Stable isotope evidence indicates the incorporation of marinederived nutrients transported by spawning Pacific salmon to Japanese catchments, Freshwater Biology, 58, 1864-1877. McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. W. Macdonald (2012), The Arctic Ocean Estuary, Estuaries and Coasts, 35, 353-368. Mallory, and Braune (2012), Mar. Pollut. Bull., 64, 1475-1484. Matsuno, et al. (2011), Polar Biol., 34, 1349-1360. Michelutti et al. (2009), Proc. R. Soc. B, 276, 591-596. Orr, J.C., et al. (2005), Nature, 437, 681-686. Pabi, et al. (2008), JGR, doi:10.1029/2007JC004578. Tremblay, J.-É., and J. Gagnon (2009), The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change, 73-92, In Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions, edited by J. C. J. Nihoul, and A. G. Kostianoy, Springer, Dordrecht, Netherlands. 203 Uchimiya, M., H. Fukuda, S. Nishino, T. Kikuchi, H. Ogawa, T. Nagata (2011), Does freshening of surface water enhance heterotrophic prokaryote production in the western Arctic? Empirical evidence from the Canada Basin during September 2009, Journal of Oceanography, 67, 589–599. Wassmann, P.(1998), Retention versus export food chains: processes controlling sinking loss from marine pelagic systems, Hydrobiologia, 36, 29-57. Wassmann, P. (2011), Arctic marine ecosystems in an era of rapid climate change, Progress in Oceanography, 90, 117 テーマ 10 Baldwin, M. P., and T. J. Dunkerton (1999), Propagation of the Arctic Oscillation from the stratosphere to the troposphere, J. Geophys. Res., 104, 30937-30946. Chau, J. L., L. P. Goncharenko, B. G. Fejer, and H.L. Liu (2012), Equatorial and low latitude ionospheric effects during sudden stratospheric warming events, Space Sci Rev, 168, 385–417, DOI 10.1007/s11214-011-9797-5. 地球電磁気・地球惑星圏学会将来構想検討ワーキンググループ編 (2013), 地球電磁気学・地球惑星圏科学の現状と将来, 地球電磁気・地球惑星圏学会. Gray, L. J., J. Beer, M. Geller, J. D. Haigh, M. Lockwood, K. Matthes, U. Cubasch, D. Fleitmann, G. Harrison, L. Hood, J. Luterbacher, G. A. Meehl, D. Shindell, B. van Geel, and W. White (2010), Solar Influences on Climate, Reviews of Geophysics, 48, 1209/10/2009RG000282, 2010. Jackman, C. H., et al. (2001), Northern Hemisphere atmospheric effects due to the July 2000 solar proton event, Geophys. Res. Lett., 28, 2883-2886. Jin, H., Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, and A. Saito (2011), Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere‐ionosphere coupled model, J. Geophys. Res., 116, A01316, doi:10.1029/2010JA015925. Makela J. J., and Y. Otsuka (2012), Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale, Space Science Reviews, 168, 419-440. Manney, G. L., et al. (2011), Unprecedented Arctic ozone loss in 2011, Nature, 478, 469-475. Plumb, R. A., and K. Semeniuk (2003), Downward migration of extratropical zonal wind anomalies, J. Geophys. Res., 108, 4223, doi:10.1029/2002JD002773. Randall, C. E., V. L. Harvey, C. S. Singleton, S. M. Bailey, P. F. Bernath, M. Codrescu, H. Nakajima, and J. M. Russell (2007), Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 19922005, J. Geophys. Res., 112, D08308, doi:10.1029/2006JD007696. Rishbeth, H., and O. K. Garriott (1969), Introduction to ionospheric physics, International Geophysics Series, 14, Academic Press, New York. Roble, R. G., and R. E. Dickinson (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441-1444. Rozanov, E., et al. (2005), Atmospheric response to NOy source due to energetic electron precipitation, Geophys. Res. Lett., 32, L14811, doi:10.1029/2005GL023041. Shiota, D., S. Tsuneta, M. Shimojo, N. Sako, D. Orozco Suarez, and R. Ishikawa (2012), Polar Field Reversal as observed with Hinode, The Astrophysical Journal, arXiv:1205.2154 [astro-ph.SR]. Schunk, R. W., and A. F. Nagy (2000), Ionospheres: Physics, plasma physics, and chemistry, Cambridge University Press. Tsugawa, T., et al. (2011), Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth, Planets and Space, 63, 875-879. Turner, J., J. E. Overland, and J. E. Walsh (2012), An Arctic and Antarctic perspective on recent climate change, Int. J. Climatol., 27, 277-293. Vadas, S. L., and G. Crowley (2010), Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on 30 October 2007, J. Geophys. Res., 115, A07324, doi:10.1029/2009JA015053. テーマ 11 Alvey, A., C. Gaina, N. J. Kusznir, T. H. Torsvik (2008), Integrated crustal thickness mapping and plate reconstructions for the high Arctic, Earth Planet Sci. Lett., 274, 310–321. Backman, J., K. Moran, L. A. Mayer, D. B. McInroy, and the Expedition 302 Scientists (2006), Proceedings IODP, 302, College Station TX (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.104. Barletta, V., and A. Bordoni (2009), Clearing observed PGR in GRACE data aimed at global viscosity inversion: Weighted Mass Trends technique, Geophys. Res. Lett., 36, L02305, doi:10.1029/2008GL036429. Barnett, T. P. (1984), The Estimation of "Global" Sea Level Change' A Problem of Uniqueness, J. Geophys. Res., 89, C5, 7980-7988. 204 Bowring, S. A., I. S. Williams, W. Compston (1989), 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada, Geology, 17, 971-975. Carson, C. J., S. McLaren, A. L. Roberts, S. D. Boger, D. D. Blankenship (2014), Hot rocks in a cold place: high subglacial heat flow in East Antarctica, Journal of Geological Society of London, 171, doi.org/10.1144/jgs2013030. Edmonds, H. N. et al. (2003), Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean, Nature, 421, 252-256. Ekman, M., and J. Mäkinen (1996), Recent postglacial rebound, gravity change and mantle flow in Fennoscandia, Geophys. J. Int., 126, 229–234. Glebovsky, V. Y. , L. C. Kovacs, S. P. Maschenkov, J. M. Brozena (1998), Joint compilation of Russian and US Navy aeromagnetic data in the central Arctic seas, Roland, N., F. Tessesnsons (Eds.), ICAM III; Third International Conference on Arctic Margins, Polarforshungpp, 35–40. Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. W. Schenke, and P. Johnson (2008), An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses, Geophysical Research Letters, doi:10.1029/2008GL033520. Jokat, W. (2003), Seismic investigations along the western sector of Alpha Ridge, Central Arctic Ocean, Geophysical Journal International, 152 (1), 185-201. Lebedeva-Ivanova, N. N., Y. Ya. Zamansky, A. E. Langinen, and M. Yu. Sorokin (2006), Seismic profiling across the Mendeleev Ridge at 82°N: evidence of continental crust, Geophysical Journal International, 165, 527–544. doi: 10.1111/j.1365-246X.2006.02859.x Lorenz, H., D. G. Gee, A. N. Larionov, J. Majka (2012), The Grenville–Sveconorwegian orogen in the high Arctic, Geological Magazine, 149, 875-891. Michael, P. J. et al. (2003), Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 423, 956-961. Nutman, A. P., V. C. Bennett, C. R. L. Friend, K. Horie, H. Hidaka (2007), ~3850 Ma tonalites in the Nuuk region, Greenland: geochemistry and their reworking within an Eoarchaean gneiss complex, Contributions to Mineralogy and Petrology, 154, 385-408. Pedersen, R. B. et al. (2010), Discovery of a black smoker vent field and vent fauna at the Arctic mid-ocean ridge, Nature Communications, 1, http://dx.doi .org/10.1038/ncomms1124. Peltier, W. R.(2004), Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111-149. Sella, G., S. Stein, T. Dixon, M. Craymer, T. James, S. Mazzotti, and R. Dokka (2007), Observation of glacial isostatic adjustment in ‘‘stable’’ North America with GPS, Geophys. Res. Lett., 34, L02306, doi:10.1029/2006GL027081. Seton, M., R. D. Muller, S. Zahirovic, C. Gaina, T. Torsvik, G. Shephard, A. Talsma, M. Gurnis, M. Turner, S. Maus, M. Chandler (2012), Global continental and ocean basin reconstructions since 200 Ma, Earth-Science Reviews, 113, 212-270. Shank, T., J. Bailey, H. Edmonds, P. Forte, E. Helmke, et al. (2007), Biological and geological characteristics of the Gakkel Ridge, Eos Trans. AGU Fall Meeting Supplement, OS41C-08, 88. Sohn, R.A., et al. (2008), Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 453, 1236-1238. Vernikovsky, V. A., N. L.Dobretsov, D. V. Metelkin, N.Yu. Matushkin, I.Yu. Koukakov (2013), Concerning tectonics and the tectonic evolution of the Arctic, Russian Geology and Geophysics, 54, 838-858. Verhoef, J., W. R. Roest, R. Macnab, J. Arkani-Hamed (1996), Magnetic anomalies of the Arctic and North Atlantic oceans and adjacent land areas. Vogt, P. R., P. T. Taylor, L.C. Kovacs, and G. L. Johnson (1982), The Canada Basin; aeromagnetic constraints on structure and evolution, Tectonophysics, 89, 295–336. テーマ 12 Brown, J., O. J. Ferrians, Jr, J. A. Heginbottom, and E. S. Melnikov (1997), Circum-arctic map of permafrost and ground ice conditions. United States Geological Survey, published for the International Permafrost Association, Circum-Pacific Map Series, Map CP-45, scale 1:10,000,000. Brown, J., O. J. Ferrians, Jr., J. A. Heginbottom, and E. S. Melnikov (2002), Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2, National Snow and Ice Data Center, Boulder, Colorado USA. Francis, J. A., D. M. White, J. J. Cassano, W. J. Gutowski, Jr., L. D. Hinzman, M. M. Holland, M. A. Steele, and C. J. Vörösmarty (2009), An Arctic hydrologic system in transition: feedbacks and impacts on terrestrial, marine, and human life. Journal of Geophysical Research, 114, G04019. 石川守, 斉藤和之 (2006), 気候…水循環に関わる凍土研究 −現状と展望−, 雪氷, 68, 639-656. Ishikawa, M., N. Sharkhuu, Y. Jambaljav, G. Davaa, K. Yoshikawa, and T. Ohata (2012), Thermal states of Mongolian permafrost, 173-178, Proc, 10th Int. Conf. Permafrost, Salehard. 205 Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai (2011), Permafrost carbon-climate feedbacks accelerate global warming, Proc. Natl Acad. Sci., 108, 14769–74. Lachenbruch, A. H., and B. V. Marshall (1986), Changing climate: geothermal evidence from permafrost in the Alaskan Arctic, Science, 234, 689-696. 松岡憲知・池田敦 (2012), 周氷河地形プロセス研究最前線, 地学雑誌, 121(2), 269–305. Saito, K., T. Zhang, D. Yang, S. Marchenko, R. G. Barry, V. Romanovsky, and L. Hinzman (2013), Influence of the physical terrestrial Arctic in the eco-climate system, Ecological Applications, 23, 1778–1797. Schaefer, K., H. Lantuit, V. E. Romanovsky, and E. A. G. Schuur (2012), Policy Implications of Warming Permafrost, 31 pp., UNEP. Schirrmeister, L., D. Froese, V. Tumskoy, G. Grosse, and S. Wetterich (2013), Yedoma: Late Pleistocene Ice-Rich Syngenetic Permafrost of Beringia, in Encyclopedia of Quaternary Science (Second Edition), edited by S. A. Elias, pp. 542–552, Elsevier. Schuur, E.A.G., and B. Abbott (2011), High risk of permafrost thaw, Nature, 480(7375), 32-33. Shur, Y. L., and M. T. Jorgenson (2007), Patterns of permafrost formation and degradation in relation to climate and ecosystems, Permafrost and Periglacial Processes 18, 7–19. Singh, V. P., P. Singh and U. K. Haritashya (Eds.) (2011), Encyclopedia of Snow, Ice and Glaciers, 844, Springer, doi: 10.1007/978-90-481-2642-2. Slater and Lawrence (2013), Diagnosing Present and Future Permafrost from Climate Models, J. Clim., 26(15), 5608-5623, doi: 10.1175/JCLI-D-12-00341.1. Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova and S. Zimov (2009), Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles, 23, GB2023, doi:10.1029/2008GB003327. United Nations Environment Programme (2012), Policy implications of warming permafrost. Vonk, J. E., P. J. Mann, K. L. Dowdy, A. Davydova, S. P. Davydov, N. Zimov, R. G. M. Spencer, E. B. Bulygina, T. I. Eglinton, and R. M. Holmes (2013), Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw, Environ. Res. Lett., 8, 035023, doi:10.1088/1748-9326/8/3/035023. Zhang, T., R. G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown (1999), Statistical and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere, Polar Geogr., 23, 132-154. Zimov, S. A., E. A. G. Schuur, and F. S. Chapin III (2006), Permafrost and the global carbon budget, Science, 312, 1612-1613. テーマ A Bolch, T., et al. (2013), Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat data, Geophysical. Research Letters, 40, 875–881, doi:10.1002/grl.50270. Comiso, J. C., and F. Nishio (2008), Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data, J. Geophys. Res., 113, C02S07, doi:10.1029/2007JC004257. Fukuda, M. (1993), Genesis and occurrence of ice complex (Edoma) in lowland area along Arctic coast of east Siberia near Tiksi, In Proceedings of the First Symposium on Joint Siberian Permafrost Studies between Japan and Russia in 1992, 101-103. Grebmeier, J. M., Moore, S. E., Overland, J. E., Frey, K. E., and Gradinger, R. (2010), Biological Response to Recent Pacific Arctic Sea Ice Retreats, EOS Trans. AGU, 91(18), doi:10.1029/2010EO180001. Hori, M., T. Aoki, K. Stamnes, and W. Li (2007), ADEOS-II/GLI snow/ice products - part III: Retrieved results, Remote Sens. Environ., 111, 274−319, doi:10.1016/j.rse.2007.01.025. Kawamiya, M., T. Hajima, and T. Tokioka (2012), Foreseeing the forests: vegetation dynamics in an Earth system model, In Forest for people, Tudor Rose, Leicester, England, 291-294. Keeling, C. D., R. B. Bacastow, A. E. Bainbridge, C. A. Ekdahl, Jr., P. R. Guenther, L. S. Waterman, and J. F. S. Chin (1976), Atmospheric Carbon Dioxide Variations at Mauna Loa Observatory, Hawaii, Tellus, 28, 538-551. Key, J., M. Drinkwater, and J. Ukita (2007), Integrated Global Observing Strategy - Partnership (IGOS-P) Cryosphere Theme Report, World Meteorological Organization, 132 pp, Geneva. Moon T. et al. (2012), 21st-century evolution of Greenalnd outlet glacier velocities, Science 336(6081), 576–578, doi: 10.1126/science.1219985. Morimoto, S., S. Aoki, T. Nakazawa and T. Yamanouchi (2006), Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Ålesund, Svalbard from 1996 to 2004, Geophys. Res. Lett., 33, L01807, doi:10.1029/2005GL024648. Quinn, P. et al. (2007), Arctic haze: current trends and knowledge gaps, Tellus Series B-chemical and Physical Meteorology, doi:10.1111/j.1600-0889.2006.00238.x Serreze, M. C., A. P. Barrett, A. G. Slater, M. Steele, J. Zhang, and K. E. Trenberth (2007), The large-scale energy budget of the Arctic, J. Geophys. Res., 112, D11122, doi:10.1029/2006JD008230. Steffen, K., and J. E. Box (2001), Surface climatology of the Greenland ice sheet: Greenland climate network 19951999, J. Geophys. Res., 106 (D24), 33,951-33,964, doi:10.1029/2001JD900161. 206 鈴木力英 (2013), 北半球寒冷地域におけるリモートセンシングによる広域植生の最近の研究動向, 日本リモートセンシ ング学会誌, 33, 48-55. Tape, K., M. Sturm, and C. Racine (2006), The evidence for shrub expansion in Northern Alaska and the PanArctic, Global Change Biology, 12, 686-702. Ueyama, M., H. Iwata, and Y. Harazono (2014), Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement, Global Change Biology, 20, 1161-1173. Vaughan, D. G., J. C. Comiso, I. Allison, J. Carrasco, G. Kaser, R. Kwok, P. Mote, T. Murray, F. Paul, J. Ren, E. Rignot, O. Solomina, K. Steffen, and T. Zhang (2013), Observations: Cryosphere, In Climate Change 2013: The Physical Sci- ence Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F.Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley,. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Viereck, L. A., N. R. Werdin-Pfisterer, P. C. Adams, and K. Yoshikawa (2008), Effect of Wildfire and Fireline Construction on the Annual Depth of Thaw in a Black Spruce Permafrost Forest in Interior Alaska: A 36Year Record of Recovery, In Proceedings of the Ninth International Conference on Permafrost, 1845-1850, Fairbanks, Alaska. Wang, X., and J. Key (2005), Arctic Surface, Cloud, and Radiation Properties Based on the AVHRR Polar Pathfinder Dataset, Part II: Recent Trends, Journal of Climate, 18(14), 2575-2593. Wientjes, I. G. M., R. S. W. Van de Wal, G. J. Reichart, A. Sluijs, and J. Oerlemans (2007), Dust from the dark region in the western ablation zone of the Greenland ice sheet, The Cryosphere, 5, 589-601, doi:10.5194/tc-5589-2011. Yamanouchi, T. (2011), Early 20th century warming in the Arctic: A review, Polar Science, doi:10.1016/j.polar.2010.10.002 . テーマ B Bindschadler, R., S. Nowicki, A. Abe-Ouchi, A. Aschwanden, H. Choi, J. Fastook, G. Granzow, R. Greve, G. Gutowski, U. Herzfeld, C. Jackson, J. Johnson, C. Khroulev, A. Levermann, W. Lipscomb, M. Martin, M. Morlighem, B. Parizek, D. Pollard, S. Price, D. Ren, F. Saito, T. Sato, H. Seddik, H. Seroussi, K. Takahashi, R. Walker and W. L. Wang (2013), Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the {SeaRISE} project), J. Glaciol., 59, 195-224. De Boer, G., M. D. Shupe, P. M. Caldwell, S. E. Bauer, O. Persson, J. S., Boyle, M. Kelley, S. A. Klein, and M. Tjernstrom (2013), Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS): evaluation of reanalysis and global climate models, Atmos. Chem Phys., 14, 427-445, www.atmos-chem-phys.net/14/427/2014/ , doi:10.5194/acp-14-427-2014. Ise, T., A. L. Dunn, S. C. Wofsy, and P. R. Moorcroft (2008), High sensitivity of peat decomposition to climate change through water-table feedback, Nature Geoscience, 1, 763-766. Jahn et al. (2012), Late-twentieth-century simulation of Arctic sea ice and ocean properties in the CCSM4, J. Climate, 25, 1431-1452. Jakobsson, M., L. A. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B. Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H.-W. Schenke, Y. Zarayskaya A, D. Accettella, A. Armstrong, R. M. Anderson, P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K. Hall, B. Hell, O. B. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad, D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P. Weatherall, The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophysical Research Letters, doi: 10.1029/2012GL052219. O'ishi, R. and A. Abe-Ouchi (2009), Influence of dynamic vegetation on climate change arising from increasing CO2, Climate Dynamics, 33, 645-663. Proshutinsky, A., and Coauthors (2011), Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project, Oceanography, 24(3), 102-113. Proshutinsky, A., and Z. Kowalik (2007), Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) Studies and Results, J. Geophys. Res., 112, C04S01, doi:10.1029/2006JC004017. Satoh, M., T. Matsuno, H. Tomita, H. Miura, and T. Nasuno (2008), Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulation. J. Comp. Phys., 227, 3486-3514. Sueyoshi, T., R. Ohgaito, A. Yamamoto, M. O. Chikamoto, T. Hajima, H. Okajima, M. Yoshimori, M. Abe, R. O'ishi, F. Saito, S. Watanabe, M. Kawamiya and A. Abe-Ouchi (2013), Set-up of the PMIP3 paleoclimate experiments conducted using an Earth system model, MIROC-ESM, Geosci. Model Dev., 6, 819-836. Taylor, K. E., R. J. Stouffer, and G. a. Meehl (2012), An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485–498. Watanabe, M., and Coauthors (2010), Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity, J. Climate, 23, 6312-6355. 207 Yi, S. H., M. K. Woo and M. A. Arain (2007), Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett., 34(16), L16504. テーマ C 淡路敏之, 蒲池政文, 池田元美, 石川洋一編著 (2009), データ同化~観測・実験とモデルを融合するイノベーション~, 京都大学学術出版会, 284. Bourassa,et al. (2013), High-latitude ocean and sea-ice surface fluxes: Challenges for climate research, Bull. Amer. Meteor. Soc., 94(3), 403–423, doi:10.1175/BAMS-D-11-00244.1. Dameris, M. and P. Jöckel (2013), Numerical modelling of climate-chemistry connections: Recent developments and future challenges, Atmosphere, 4, 132-156, doi: 10.3390/atmos4020132. Goldberg, D. N., and P. Heimbach (2013), Parameter and state estimation with a time-dependent adjoint marine ice sheet model, The Cryosphere Discuss., 7, 2845-2890, doi:10.5194/tcd-7-2845-2013. Heimbach, P., and V. Bugnion (2009), Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model, Ann. Glaciol., 50, 67–80, doi:10.3189/172756409789624256. Inoue, J., T. Enomoto, and M. E. Hori (2013), The impact of radiosonde data over the ice-free Arctic Ocean on the atmosphere circulation in the Northern Hemisphere, Geophys. Res. Let., 40, 864-869. Jakobson, E., T. Vihma, T. Palo, L. Jakobson, H. Keernik, and J. Jaagus (2012), Validation of atmospheric reanalyses over the central Arctic Ocean, Geophys. Res. Lett., 39, L10802, doi:10.1029/2012GL051591. Kimball, J. S., L. A. Jones, K. Zhang, F. A. Heinsch, K. C. McDonald, and W. C. Oechel (2009), A satellite approach to estimate land-atmosphere CO2 exchange for Boreal and Arctic biomes using MODIS and AMSR-E, IEEE Transactions on Geoscience and Remote Sensing, 47(2), 569-587, 10.1109/TGRS.2008.2003248. Lindsay, R., C. Haas, S. Hendricks, P. Hunkeler, N. Kurtz, J. Paden, B. Panzer, J. Sonntag, J. Yungel, and J. Zhang (2012), Seasonal forecasts of Arctic sea ice initialized with observations of ice thickness, Geophys. Res. Lett., 39, L21502, doi:10.1029/2012GL053576. Popova et al. (2012), What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry, J. Geophys. Res., 117, doi:10.1029/2011JC007112. Toyoda et al. (2011), Impact of the assimilation of sea ice concentration data on an atmosphere-ocean-sea ice coupled simulation of the Arctic ocean climate, SOLA, 7, 37-40, doi:10.2151/sola.2011-010. Toyoda et al. (2013). Improved state estimations of lower trophic ecosystems in the global ocean based on a Green’s function approach, Prog. Oceanogr., 119, 90-107. 碓氷典久、今泉孝男、辻野博之 (2010), MOVE/MRI.COM への海氷密接度同化導入に向けて-オホーツク 海を 対象とした予備調査と簡易同化実験-, 測候時報 第 77 巻 特別号. Valsala, K. V. and S. Maksyutov (2010), Simulation and assimilation of global ocean pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model, Tellus, 62B, 821– 840, doi:10.1111/j.1600-0889.2010.00495.x. 208 北極環境研究の長期構想 発行: 北極環境研究コンソーシアム (JCAR, Japan Consortium for Arctic Environmental Research) 2014 年 9 月 連絡先: 北極環境研究コンソーシアム事務局 〒190-8518 東京都立川市緑町 10-3 国立極地研究所 内 E-mail: [email protected] ホームページ http://www.jcar.org/ 20140918 北極環境研究の長期構想 目 次 巻頭言 ................................................................................................................................................................. i 1章 報告書で目指すこと ............................................................................................................................... 2 2章 背景と内容 .............................................................................................................................................. 3 3章 北極環境の現在までと近い将来に起こりうる変化 ............................................................................... 4 4章 北極環境研究の歴史 ............................................................................................................................... 7 5章 「現在進行中の地球温暖化に伴う北極の急激な環境変化を解き明かす」研究テーマ ........................ 9 テーマ 1: 地球温暖化の北極域増幅 ..................................................................................................9 Q1:下層から上層の大気における水平・鉛直熱輸送は、北極温暖化増幅にどう影響するか?10 Q2:陸域積雪・凍土・植生・氷床の役割は重要か?................................................................ 12 Q3:季節変動をもつ海洋の熱蓄積と海氷アルベドの役割はどの程度か? ............................... 14 Q4:雲とエアロゾルがもつ役割を定量化できるか?................................................................ 16 Q5:北極温暖化増幅はなぜ起こっているのか? その予測と不確実性はどれほどか? 北極域における放射強制力とフィードバック・プロセスはどう変化するのか? ............. 17 テーマ 2: 海氷減少のメカニズムと影響 .........................................................................................19 Q1:風のパターンや海氷の流動性の変化は海氷減少を促進するか?....................................... 20 Q2:海氷の熱的減少はどのように進むのか? .......................................................................... 21 Q3:海氷減少が雲や低気圧に及ぼす影響は? .......................................................................... 23 Q4:海氷減少が海洋内部に及ぼす影響は? .............................................................................. 23 10~20 年後を見据えた戦略 ...................................................................................................... 24 テーマ 3: 物質循環と生態系変化 ....................................................................................................30 Q1:大気中の温室効果気体やエアロゾルなどの濃度はどう変化するか? ............................... 31 Q2:陸域生態系にかかわる物質循環はどう変わるのか? .......................................................... 34 Q3:陸から海への物質輸送の定量的解明には何が必要か? ....................................................... 36 Q4:海洋生態系にかかわる物質循環はどう変わるのか? .......................................................... 38 テーマ 4: 氷床・氷河、凍土、降積雪、水循環 ..............................................................................42 Q1:氷床・氷河の変化は加速するか? ..................................................................................... 42 Q2:永久凍土の変化は気候変動とどう連鎖するのか? ............................................................ 46 Q3:北極域の降積雪はどう変化しているか? .......................................................................... 48 Q4:環北極陸域の水文過程はどう変化するか? ....................................................................... 50 テーマ 5: 北極・全球相互作用........................................................................................................53 Q1:<大気の役割について> 北極振動などの大気変動は強まるか弱まるか?....................... 54 Q2:<海洋の役割について> 大西洋・太平洋間の海水循環は強まるか? 深層水形成は減るか? 中緯度海洋大循環は変わるか? ................................................. 56 ii Q3:<陸域の役割について> 植生と凍土の変化による炭素収支や物質循環への影響は? 積雪と植生の変動による広域エネルギー水循環への影響は? ........................................ 58 Q4:<超高層大気の役割について> 極域超高層大気が下層大気・超高層大気全球変動に 及ぼす影響は? ............................................................................................................... 60 Q5:<多圏相互作用について> 超高層大気、大気、陸面積雪と植生、海洋のどれを経由 する影響が大きいか?..................................................................................................... 61 テーマ 6: 古環境から探る北極環境の将来 .....................................................................................64 Q1:過去の北極温暖化増幅は現在とどれほど異なり、その要因は何か? ............................... 66 Q2:過去のグリーンランド及び大陸の氷床はどう変動し、その要因は何か? 気候変動 との関係と海面水位への寄与は? ................................................................................... 68 Q3:過去の北極海の環境はどのようなものであったか。とくに海氷と生物生産について ...... 70 Q4:過去の北極陸域環境は現在とどれほど異なり、大気組成や気候とどう関係したのか? ... 72 Q5:過去の北極において、数年~数百年スケールにおける自然変動の強度や時空間 パターンは現在と異なっていたか?そのメカニズムは何か? ........................................ 74 【ボックス 1 】古環境プロキシや年代推定手法の開発と解釈................................................. 76 テーマ 7: 北極環境変化の社会への影響 .........................................................................................77 Q1:地球温暖化も含めた気候変動による影響は? ................................................................... 78 Q2:地球温暖化に起因する陸域環境の変化による影響は? ..................................................... 82 Q3:地球温暖化に起因する海洋環境の変化による影響 ............................................................ 83 Q4:太陽活動と北極超高層大気の影響 ..................................................................................... 85 Q5:北極圏人間社会の対応 ....................................................................................................... 86 6章 「生物多様性を中心とする環境変化を解き明かす」研究テーマ ....................................................... 89 テーマ 8: 陸域生態系と生物多様性への影響 ..................................................................................89 Q1:人為的な要因で起こる環境変動は北極陸域生態系にどのような影響を及ぼすか? .......... 90 Q2:生物多様性はどのような影響を受けるか? ....................................................................... 93 【ボックス 2 】生物多様性とは? ........................................................................................... 93 【ボックス 3 】学名の不一致問題 ........................................................................................... 94 Q3:北極陸域生態系の変化が動物や気候に与える影響はどうなるか? ................................... 95 【ボックス 4 】トナカイの生息変化 ........................................................................................ 95 【ボックス 5 】水鳥のモニタリング ........................................................................................ 96 テーマ 9: 海洋生態系と生物多様性への影響 ..................................................................................97 Q1:陸域・大気の物質は北極海の生態系・多様性に大きな影響を与えるのか? ..................... 98 Q2:北極海の生物は物質をどのように輸送・変質しているのか? .......................................... 99 Q3:北極海の食物連鎖と生態系変化・多様性はどう関係しているか? ................................. 101 【ボックス 6 】表層-底層生態系のカップリング ................................................................ 102 【ボックス 7 】バイオロジカル・ホットスポット ................................................................ 102 Q4:成層化、脱窒、および海洋酸性化は北極海の生態系・多様性にどのような影響を 及ぼすのか? ................................................................................................................. 103 7章 「北極環境研究の広範な重要課題」研究テーマ ............................................................................... 105 テーマ 10: ジオスペース環境 .......................................................................................................105 Q1:ジオスペースからの超高層大気や、より下層の大気への影響は? ................................. 107 iii Q2:超高層大気が下層・中層大気に与える影響は?.............................................................. 108 Q3:下層・中層大気変動が超高層大気に与える影響は? ...................................................... 110 Q4:超高層大気を通した極域から中低緯度へのエネルギー流入は? ....................................... 112 テーマ 11: 表層環境変動と固体地球の相互作用 .......................................................................... 114 Q1:現在活動する北極海海嶺熱水系と海洋環境との相互作用は? ........................................ 115 Q2:氷床変動に伴い固体地球はどのように変形してきたか? ............................................... 117 Q3:北極海が形成されていく過程で、大気-氷床-海洋の相互作用がどのように変化 していったか? ............................................................................................................. 119 Q4:数千万年~数十億年といった時間スケールでの地球表層環境変動に北極海と周辺 大陸の発達過程はどのように影響を与えたか? ........................................................... 121 テーマ 12: 永久凍土の成立と変遷過程の基本的理解 ...................................................................124 【ボックス 8 】永久凍土の成立と変遷過程の基本的理解 ...................................................... 127 Q1:北極圏の永久凍土はどのような広がりと深さをもって存在しているのか? ................... 128 Q2:永久凍土を構成する物質はどのような分布を持ち、どの程度の不均一性があるか? .... 129 Q3:永久凍土はどのような様態・規模で昇温・融解するのか? ............................................ 130 Q4:永久凍土-大気-積雪-植生サブシステムはいかなる構造と挙動の特性をもつのか? . 133 8章 「環境研究のブレークスルーを可能にある手法の展開」テーマ ..................................................... 136 テーマ A: 持続するシームレスなモニタリング ...........................................................................136 海洋圏モニタリング ................................................................................................................. 137 雪氷圏モニタリング ................................................................................................................. 140 【ボックス 9 】氷河質量収支の観測 ...................................................................................... 142 大気圏モニタリング ................................................................................................................. 143 陸域圏モニタリング ................................................................................................................. 145 テーマ B: 複合分野をつなぐ地球システムモデリング.................................................................148 Q1:地球システムモデルについて開発課題は何か?.............................................................. 149 Q2:大気モデルについての開発課題は何か? ........................................................................ 153 Q3:海洋・海氷モデルについての開発課題は何か?.............................................................. 154 Q4:陸面・雪氷モデルについての開発課題は何か?.............................................................. 158 テーマ C: モニタリングとモデリングをつなぐデータ同化 .........................................................160 北極圏におけるデータ同化研究の現状 .................................................................................... 161 【ボックス 10 】データ同化技術の解説 ................................................................................ 162 データ同化を北極環境研究に展開する方針 ............................................................................. 164 北極圏データ同化研究の実現に向けた環境整備 ...................................................................... 169 9章 研究基盤の整備 ................................................................................................................................... 173 砕氷観測船 ............................................................................................................................... 173 衛星観測 ................................................................................................................................... 175 航空機 ...................................................................................................................................... 177 海外の研究・観測拠点 ............................................................................................................. 178 データおよびサンプルのアーカイブシステム.......................................................................... 181 人材育成 ................................................................................................................................... 183 研究推進体制............................................................................................................................ 185 iv 分野別研究機器等 .................................................................................................................... 187 10 章 長期にわたる方向性と取り組み体制のまとめ ................................................................................. 195 11 章 資料 ................................................................................................................................................... 198 引用文献 ................................................................................................................................... 198 執筆者等一覧............................................................................................................................ 209 v
© Copyright 2025 ExpyDoc