KURENAI : Kyoto University Research Information Repository

KURENAI : Kyoto University Research Information Repository
Title
表紙・目次
Author(s)
Citation
Issue Date
URL
数理解析研究所講究録 (2007), 1569
2007-09
http://hdl.handle.net/2433/81258
Right
Type
Textversion
Others
publisher
Kyoto University
ISSN 1880 − 2818
エ 数理解析研究所講究録 1569
変換群の理論と/そトの応用
り J・
京都・大学・数理解祈研究所
づ 2 00 7 年づ 9 月
RZMS ’ 陥吻如幼 7 M 9
771 e功・E?θりハげかαη加z 7 附z汝・z 79 頁 4 z/フ, s ’
,7 z・jな, 写¥逍cαZ沁心
, S励ze・
・er,2 卯 7 犬
丿咄・eαΓ(:;/L/z・1, s・血心面z・顛 7 必e房・cα/ 5 凶Elzlc 6
硲c助び油・e・印, 蜀ポa。ノゆn
This is a report of research done at Research lnstitute for Mathematical
Sciences, Kyoto university. The papers contained herein are in final form
and Will not be submitted for publication elsewhere.
変換群の理論とその応用
The theory of trans拓rmation groups and its applications
RIMS研究集会報告集 犬
2 0 0 7 年 5 月 28 日∼6 月 1 日 レ
研究代表者 長崎 生光(lkumitsu Nagasaki)
副代表者 黒木 慎太郎(Shintar 6 Kuroki)
づ 日 次
1 ● 強デフアイナプル(::?(;ベクトノレ束 −皿ミ皿−皿−−−−皿− −− −
ミ皿− −−皿−皿−= 皿− 皿−−−−皿− 皿 〃 皿−−−− −− 1
和歌山大・教育(Wakayima U.) 川上智博(Tomohiro Kawakgmi)
2 ● ト−リツク多様体のK理論と凸多面体 =
= ミ=== = −= − −− 皿−−= −= =
−−−−−−
= 四=−皿−−ミ−−−−皿
8
摂南大・教育センター(SetsunanU.) 酉村保三(Yasuzo Nishimura)
3, 同変コホモロジーとChevalley−Koszul複体 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 13
阪大・理学(Osaka U.) ニ 山崎 啓太(Keita Yamasaki)
4.0 n existence of isovariant maps under Bosuk−Ulam lype inequalities 京都府立医大・医学
皿−−−−−− − −−−− − 28
(Kyoto Prefeetural U. Medicine) 長崎 生光(lklimitsu Nagasakl)
京産大・理(Kyoto Sangy(iU。) 牛廓文宏(Fuinihiro Uぬitaki)
5. 連続関手と一般ホモロジー −−−−−−−−−−。−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 35
岡山大・自然科学(Okay 9 −a U.) 島川 和久(Kazuhisa Shimakawa)
6. The Sm池lsomorphism Question: A review aild new results −−−−−−−−−−−−−−−−−−−−−−−−−− 43
岡山大・自然科学(Okayama U.) 鞠 先孟(xianMeng J司
7 . Construction of smooth actions on spheres for Smith equivalent representations −−−−−−−− 52
岡山大・自然科学(Okayama U.) 森本雅拾(Masaharu Morimoto)
8 ● Asselllbly in SIJrller)r −ミ== =−=−皿−= − ミ− = ミ −−−= −−− −−−四−−−−−−−−四四−w−−−−四=−−四−−−−−−−−−−−四−−−−− −−−■ 59
岡山理大・理(Okayama U. Sci.) 山崎正之(Masayuki Yamasaki)
9 ● 不動点定理と一数点定理 −−− −−−−−−ミ −ミ−−−−−−皿−ミ皿−−−−=〃−−= −−==−−−= =∼===−−−− −−−−
− −−
−皿 63
阪大・理学(Osaka U。) 原 靖浩(Yasuhiro Hazla)
1 0 . BO 5 uk−Ulam Theorems fbr Set−valued Mappings −−−−−−−−−−−−−−−−−−−−−−−−−−−−−一軸−−−−− 69
二 明治大・敦治経済(Meiji U.) 四反田 義美(Yoshimi Shitanda)
1 1 . 0 n 8 −manifolds with Sび(3)−actions 一一−−−−−−−−−−−−−−−−−−−−−−−−−¬−−−−−−−−−−−−−−−−−−−−−−−− 81
大阪市大・数学研(Osaka City U.) 黒木 慎太郎(Shintar 6 Kuroki)
12.0 N LOCAL TORUS ACTIONS MODELED ON THE STANDARD
I 111 PI 111 SElsirllj 4 TI()ISJ騨騨舞一陶軸一曝−−−一軸一縛傭−−−−−−−−一囃−−一幽楠−一塵一幽一麟囃輪翻−一曙−■−−一傭一馳鸚軸 一糖−−−−−− −−−−−−−■−−− − 94
東大・数理科学(U. Tokyo) 吉田 尚彦(Takahiko Yoshida)
− i −
1 3 . A combinatorial realization of the Heisenberg action on the space of
COnfOrmal blOCkS −−−−−−−−−−−−−−−−−− 4.。−. −−−−。. −。. −−−.。。−?“ −−ssF゛−−sss゛s−一舞−−−−−−−■−−−−゜““ ss一東“ s`s− 107
東大・数理科学(U. Tokyo) 藤田 玄(Hajime F 1!jita)
1 4 . Bundle l ’heorem for measure preserving homeomorphisms in 2 −Manifolds −・−−−−−−− 116
京都工繊大・工芸科学(Kyoto lnst. Tec!1.) 矢ケ崎達彦(Tatsuhiko Yagsaki)
1 5 . The homotopy approximation of spaces of algebraic maps between
algebraic varieties 一−−−−−一一−−−−−−−−一一−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 123
電気通信大・電気通價
(U. Electm−Communications) 山口 耕平(Koh 1!ei Yamaguchi)
16. 余次元 1 軌道を持つG一多様体の同変リプシッツ昧鮮の構造−−−−・−−−−−−−−−−−−−−−−− 132
信州大・理(Shinshu U.) 阿部 孝順(K 6 jun Abe)
\ 1 7 . 0 n the geometry of the orbits of , y−represen叫ions − −−−−皿−−−−− −w −− −−−−四−−
− −−−− 138
大阪市大・理学(Osaka City U.) 酒井 高司(Takaihi Sakal)
1 8 . Non−existence of fi ’ee SI −actions on Kervalre spheres II −−−−−−−−−−−−−−−−−−−−−−−−−−−− 153
横浜国大・工学(Yokohama Nat. U.)∧ 北田泰彦(Yasuhiko Kitada)
19.0 N THE G−ISOVARIANCE UNDER THE GAP HYPOTHESIS −−−−−−−−−−−−−−−−−−−−−− 162
京大・数理研(Kyoto JU.) 永田雅嗣(Masatsugu Nagata)
2 0 . FINITE GROUPS POSSESSING SMITH EQUIVALENT,
NONISOMORPHIC REPRESENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 170
九大・芸術工学(!Cyushu U.) 角 俊雄(Toshio Sumi)
−L−