乞掲示 ’11 年度 第 4 回目 東京都市大 数理科学セミナー 開催のお知らせ 今回は名古屋大学の Lars Hesselholt 氏に real Wardhausen construction により定義されるある G 同変スペクトラムのホモトピー型と real Algebraic K-group の構成と性質に関する話題を、また加 藤諒氏に奇素数 p における Hesselholt-Madsen の理論の p = 2 の場合への応用に関する話題につい て、それぞれ御講演いただきます, 関係領域の方々への御周知及び談話会への御参加をどうぞ宜しく御願い申し上げます. 日程と場所 平成 24 年 1 月 11 日(水) 東京都市大学世田谷キャンパス 147 教室(1 号館 4 階) 講演予定とタイトル 14:30 – 15:30 Lars Hesselholt 氏(名古屋大学) Algebraic K-theory and reality 15:50 – 16:50 加藤 諒 氏(名古屋大学) The algebraic K-theory of local number fields (The abstract of the 1st talk) This is joint work with Ib Madsen. Let G = Gal(C/R). Atiyah’s real K-theory gives rise to a G-equivariant spectrum KR whose underlying non-equivariant spectrum is equivalent to KU and whose spectrum of G-fixed points is equivalent to KO. By analogy with this construction, we associate to a pointed exact category with strict duality (C , T, 0) a G-equivariant spectrum KR(C , T, 0) that we call the real algebraic K-theory of (C , T, 0). The underlying non-equivariant spectrum is equivalent to Quillen’s algebraic K-theory spectrum K(C , 0), and the spectrum of G-fixed points is equivalent to the hermitian K-theory of (C , T, 0). The construction of KR(C , T, 0) is based on a new variant of Waldhausen’s S-construction that we call the real Waldhausen construction. To understand the G-equivariant homotopy type of KR(C , T, 0), we also introduce a G-equivariant spectrum KR⊕ (C , T, 0) that we call the real direct sum Ktheory of (C , T, 0). The construction uses a variant of Segal’s Γ -category construction that we call the real Γ -category construction. A theorem of Shimakawa identifies the underlying G-infinite loop space of KR⊕ (C , T, 0) with the equivariant group-completion of the classifying pointed Gspace B(iC , T, 0) of the pointed category with strict duality (iC , T, 0) given by the subcategory of isomorphisms. Our main theorem states that if C is split-exact, then there is a canonical weak equivalence of G-spectra ∼ KR⊕ (C , T, 0) − → KR(C , T, 0). We define the real algebraic K-groups of (C , T, 0) to be the bi-graded family of equivariant homotopy groups KRp,q (C , T, 0) = [S p,q , KR(C , T, 0)]G where S p,q is the (virtual) G-equivariant sphere S R p−q q ∧ S iR . If (A, L, α) is a ring with antistruc- ture, and if (C , T, 0) is the category finitely generated projective right A-modules with the induced duality structure, then the main theorem together with the theorem of Shimakawa identifies the groups KRp,0 (C , T, 0) with the hermitian K-groups of (A, L, α) defined by Karoubi. (The abstract of the 2nd talk) Hesselholt-Madsen の仕事により, 剰余体が標数 p の完全体と なる標数 0 の完備離散付値体の代数的 K 理論は p > 2 において深く解析された. 局所代数体は Qp の有限次拡大体として定義され, 上の条件を満たす重要な例である. Hesselholt-Madsen は, これら の p-adic な代数的 K 理論を, 位相的巡回ホモロジーへの円分跡写像を用いて解析した. 本講演では, 彼らの仕事の p = 2 でのアナロジーにおいて生じる問題点とその解決方針等を紹介する. Hesselholt-Madsen deeply analyzed the algebraic K-thery of a complete discrete valuations field of characteristic 0 with perfect residue field of chracteristic p > 2. A local number field is defined to be a finite extension of Qp , and it is an important example of fields above. HesselholtMadsen evaluated the p-adic algebraic K-theory of such fields by using the cyclotomic trace map to topological cyclic homology. In this talk, I introduce problems in analogy to their work at the prime 2, and propose methods for their solution. なお,本学の最寄駅は 尾山台駅(東急大井町線)です.詳細な交通案内および本セミナーの他の スケジュールは以下に掲載されていますので御参照下さい. http://www.comm.tcu.ac.jp/~math/seminar/index.html 住所: 〒 158-8557 東京都世田谷区玉堤 1-28-1 電話: 03-5707-0104 (代表) 世話人: 東京都市大学・知識工学部・自然科学科 吉野邦生([email protected]) 橋本義武([email protected]) 中井洋史([email protected])
© Copyright 2024 ExpyDoc