TEXT - Cheiron School 2008 - SPring-8

X-ray fluorescence analysis
Tokyo University of Science
Department of Applied Chemistry
Izumi NAKAI
sample
Scattered
反跳電子 electron
物
Scattered X-ray
弾性散乱トムソン
(コンプトン
散乱 Thomson
X 線 非弾性散乱
コンプトン
(トムソン
Compton
X-ray
入射
X線
Transmitted
X-ray(Absorption)
透過 X 線 (吸収)
質
蛍光
X 線 X-ray
Fluorescent
Photoelectron
光電子,オージェ電子
Auger electron
熱
Heat
Interaction of X-ray with matter
sample
Transmitted
X-ray
Photoelectron
(XPS)
Fluorescent
X-ray
(XRF)
Auger
electron
(AES)
Thomson
scattering
(XRD)
Photoelectron
effect
Absorption
(XAFS)
Scattering
Compton
scattering
Interaction of X-ray with matter and X-ray analysis
Relationship between λ
and E
Particle :energy E [keV]
Wave : wavelength λ[Å]
E=hc/λ = 12.398/λ
Wavelength λ
[keV],
ex. 1Å= 12.398keV
λ = long
Energy = low
λ = short
Energy = high
photoelectron
光電子
蛍光 X 線(ΔE)
Fluorescence
(Kα線)
X-ray Kα
N
M
L
Kβ
K
Mα
Eb K
Kα1
Lα
Kα2
Lβ
core
原子核
入射 X 線(E)
X-ray
energy E
electron
電子
Eb K < E
X-ray energy E > Binding energy Eb
Bohr model and emission of X-ray fluorescence
vacancy
空孔
Principle of X-ray fluorescence (XRF) analysis
Energy
ΔE
characteristic to each element
Qualitative analysis
Intensity
number of X-ray photons → concentration
Quantitative analysis
1000
Zr Kα
Intens ity (Counts /1000s ec)
Y Kα
Pb Lα
Pb Lβ
Bi Lα
Th Lα
U Lα
Sr Kα
Th Lβ
Er
Tm
Nb Kα
U Lβ, Mo Kα
Nb Kβ
Pb Kα1,2
Yb
Lu
Gd
Tb
Ca
500
Dy
Ag Cd
In
Hf
Ta
Re Kα, Lu Kβ
Hf Kβ
W
Sn
Sb
Ba
Ce
Sm
Pr
Nd Eu
Ho
Bi
Ta Kβ
W Kβ
Re
Kβ
Cs La
Te
0
0
20
40
60
X-ray energy (keV)
XRF spectrum of NIST SRM612 glass
80
試料
面間隔 d
d-spacing
分光結晶 crystal
Analyzing
(b)
(a)
(a)
WDS
(b) EDS
XRF analysis
(a) Wavelength dispersive spectroscopy
(b) EDS Energy dispersive spectroscopy
©http://www.postech.ac.kr/dept/mse/axal/index.html
Principle of analyzing crystal
Bragg condition nλ=2dsinθ
©http://www.postech.ac.kr/dept/mse/axal/index.html
Principle of Si(Li) detector → a reverse-biased silicon diode.
Pre Amp.
X-ray
Be
window
Si(Li) detector
electron-hole pair
3.85eV
ex. Fe Kα 6.400keV 6400/3.85=1662 pairs
Bias voltage(-500V) cause current flow. The charge collected at the
anode is converted to a voltage by an amplifier. This results in a
voltage pulse that is proportional to the number of pairs created and
thus to the incident X-ray energy. The resolution is determined by the
energy required to create an electron-hole pair (3.8 eV).
Slides made by Prof. A. Iida (PF)
©A.Iida(PF)
Characteristics of SR-XRF
( X-ray fluorescence analysis)
©A.Iida(PF)
©A.Iida(PF)
©A.Iida(PF)
(1)High Brilliance Source
©A.Iida(PF)
©A.Iida(PF)
©K. Sakurai(NIMS)
©K. Sakurai(NIMS)
World record of MDL by total reflection SR-XRF
3.1x10-16g= 0.31fg
3.1ppt(pg/g) 3x106atom
(a) Crytal monochormator
(b)XRF spectrum of 0.1ml Ni
(1ng/g)solution (20s/point)
C: Ge(220)Johansson type
D:YAP:Ce scintillation counter
©K.Sakurai(NIMS)
Typical XRF Spectra Obtained by R=100 Spectrometer
Trace Metals in Apple and Tomato Leaves (NIST1573a and 1515)
Gd
3
0.17
Sm
3
3
Tb
0.4 μg/g
0.4 mg/kg
1sec/point
5
3
10
2
10
MDL(Ni)
4.64ppb
10
3
10
2
10
MDL(Co)
3.27ppb
MDL(Mn)
0.22ppm
MDL(Ni)
38.4ppb
1
10
MDL(Fe)
0.48 ppm
1
10
10
4
CoKβ1
GdLβ2
MDL(Co)
2.51ppb
NiKα2
NiKα1
FeKβ1
MDL(Fe)
31.5ppb
CoKα1
FeKα2
Nd
17
-
NIST 1573a Tomato Leaves (left axis)
NIST 1515 Apple Leaves (right axis)
SmLβ1
4
10
MDL(Mn)
39.7ppb
GdLα1
NdLβ2
10
MnKα1
5
MnKα2
X-Ray Intensity [counts]
10
Ni
0.91
0.91
GdLβ1
Co
0.09
0.09
NdLγ1
6
Fe
83
83
FeKα1
MnKβ1
Mn
apple 54
tomato 246
6000
0
6500
7000
7500
Energy [eV]
©K. Sakurai(NIMS)
10
(2)parallel beam with small
divergence
©A.Iida(PF)
©A.Iida(PF)
©A.Iida(PF)
Spring-8
Beam profile at focal points made by FZP at 8keV
©Y.Suzuki(2002)
Application of SR-XRF to in vivo analysis
of biological sample
Study of hyperaccumulator plants of As and Cd
Phytoremediation
ash
Cd
remediate
plant
Phytoremediation is a technology
Merit:no
damage,low
costdestroy,
that
uses plants
to remove,
preservation
of substances
surface
Green
technology
by plant
or sequester
hazardous
from the etc…
environment.
Cd
......
Cd . ..
Cd
Cd
Cd
Cd
Cd
Cd
Cd
Cd isolation
Some specific kinds of plants
are known to be heavy metal
hyperaccumulator
Element
As*1
Cd
Pb
Contaminated soil
conc./ ppm
plant
22,630
Pteris vittata L. (モエジマシダ)
11,000
Athyrium yokoscense ( ヘビノネゴザ)
34,500
Brassica juncea (カラシナ )
*1 L. Q. Ma, et al., Nature, (2001) , 409, 579.
-Cd
Phytoremediation
Environmentally friendly low cost
technique
Key:Use of hyperaccumulator plant
As
Arsenic Hyperaccumulator
Pteris vitteta L.
(モエジマシダ)
Cd
Cd Hyperaccumulator
Arabidopsis halleri ssp.gemmifera
(ハクサンハタザオ)
Hyperaccumulation
3: accumulation
HM
HM
HM
HM
HM
HM
HM
2: transportation
HM
1: absorption of
heavy metal
HM
HM
HM
HM
HM
HM
HM
Application of SR X-ray analyses
・Two dimensional multi-element
nondestructive analysis in cell level
→ μ-XRF imaging
・ in vivo chemical state analysis of metals in
the plant
→ X-ray absorption fine structure (XAFS)
analysis
・chemical state analysis in cell level
→ μ-XANES
As hyperaccumulator
Chinese brake fern (Pteris vittata L.)
(As: ca. 22,000 μg /g dry weight)
Arsenic distribution and speciation in an arsenic hyperaccumulator fern by Xray spectrometry utilizing a synchrotron radiation source
A. Hokura, R. Onuma, Y. Terada, N. Kitajima, T. Abe, H. Saito, S. Yoshida
and I. Nakai
Journal of Analytical Atomic Spectrometry, 21, 321-328 (2006)
Life of fern
pinna
Pteris vittata L.
fertilized
200 μm
prothallium
sporophyte
5cm
midrib of a
frond
30 μm
spore
frond
Fertile pinna
Cultivation of fern
As level in soil:481 µg g-1dry
Term: ~3 weeks
Average As level :~720 µg /gdry
arsenic-contaminated soil
As level*
pinna:2800 - 4500 µg g-1dry
midrib of a frond:84 - 250 µg /g dry
* Anal. By AAS
culture medium containing As
(1 ppm 4days)
Sample preparation for microbeam analysis
moist unwoven paper
X-ray
200μm thick
vertical slicer (Model HS1, JASCO Co.)
freeze dry of frozen
Mylar film
Plastic plate
μ-XRF, μ-XANES
X-ray energy
As: 12.8keV
Cd: 37.0keV
Beam siz: ca. 1 μm
In-vacuum undulator
XY slit (0.2 x 0.2 mm)
Si 111 Monochromator
XY slit (0.15 x 0.15 mm)
K-B mirror
53 m
Sample
SPring-8 BL37XU
- BEAMLINE DESCRIPTION The light source : In-vacuum type undulator
(Period length : 32 mm, the number of period : 140)
Monochromator : Double-crystal monochromator
located 43 m from the source
Table
Sample on XYstage
X-ray
Details of focusing optics by K-B mirror
Material
Surface
Focal length (1st mirror)
(2nd mirror)
Average glancing angle
37 keV[1]
fused quartz
platinum coated
250 mm
100 mm
0.8 mrad
12.8 keV
fused quartz
platinum coated
100 mm
50 mm
2.8 mrad
K-Bmirror
detecor
Instrument ~Spring-8 BL37XU~
X-ray
検出器
Sample
SDD
Acrylic plate
(1 mm thick)
XAFS analysis
KEK PF BL12C
As K-edge (11.863 keV)
Si(111) double crystal
Fluorescence mode
19elements-SSD
in vivo XAFS
X-ray
SSD
A section of pinna
200μm
spore
high
low
As
K
frond
X-ray Energy : 14.999 keV
Beam size : 50 μm×50 μm
Step number : 35 point×90 point
measurement time : 1 sec/point
X-ray Energy : 12.8 keV
Beam size : 1.5 μm ×1.5 μm
Exposure time : 0.2 sec. / point
Point : 150 point ×150 point
M-XRF imaging at Spring-8
As
X-ray Energy : 12.8 keV
Beam size : 1.5 μm ×1.5 μm
Exposure time : 0.2 sec. / point
Point : 150 point ×150 point
5778
475
55
0
0
0
K
Ca
As level is low at spore
11730
As
0
K
425
372
0
0
Ca
(3)Energy tunability
Chemical state analysis
by Fluorescence -XAFS
©A.Iida(PF)
Absorbance = ln(Io/I) ( arbitrary
XAFS
XANES
EXAFS
sample
Io
I
If
t
μt = ln(Io/I)
Ni K-absorption edge Eo=Eb
8.20
Eo
8.40
8.60
8.80
9.00
9.20
Energy/keV
X-ray absorption spectrum of LiNiO2
XANES: X-ray absorption near edge structure
electronic state, oxidation number
EXAFS: Extended X-ray absorption fine structure
local structure (atomic distance and coordination No.)
X-ray absorption by sample
I/Io = exp(-μt) = exp(-μM ρt)
μ:linear absorption coef.(cm-1)
μM:mass absorption coef.(cm2/g)
ρ:density of sample(g/cm3)
μM = ΣμMiwi
[2]
μMi: μM of component i
wi:weight% of component i
[1]
As K-edge XANES analysis
in vivo XANES of frond
Frond Top
Root (freeze dried)
基部
Midrib A上
Midrib B
Frond Top
Frond Base
Midrib A
Midrib B
petiole
soil
petiole
Frond
PF BL-12C
11.85
11.85
As2O3
(Ⅲ)
H3AsO4
(Ⅴ)
11.87
11.86
Energy
/keV
Energy
/ keV
11.88
Normalized Intensity (a.u.)
Frond Base
Normalized Intensity (a.u.)
⑥
11.85
⑤
④
③
②
①
KH2AsO4
(V)
1 cm
As2O3
(III)
11.87
11.86
Energy / keV
先端
11.88
Root
Summary
・We have established μ-XRF imaging technique
utilizing SR to monitor time dependent process of
arsenic transfer in a leaf tissue of hyperaccumulator fern.
・This study visually revealed for the first time that
arsenic transferred from root to marginal part of leaf
within 30min after feeding.
・Arsenic accumulated in the region of vascular bundle
and transferred to paraphysis prior to sporangium.
Arabidopsis halleri
Cd and Zn hyper-accumulator
and
Cd in Rice
Micro X-ray fluorescence imaging and micro X-ray absorption
spectroscopy of cadmium hyper-accumulating plant, Arabidopsis
halleri ssp. gemmifera, using high-energy synchrotron radiation
Journal of Analytical Atomic Spectrometry, 23, 1068-1075 (2008)
N. Fukuda, A. Hokura, N. Kitajima, Y. Terada, H. Saito, T. Abe
and I. Nakai.
Arabidpsis halleri ssp. Genmifera (ハクサンハタザオ)
Arabidopsis halleri is known as a Cd and Zn hyperaccumulator, which contained more than 9000 mg/ kg
Cd and Zn.
XRF imaging of a leaf of A. halleri ssp. Gemmifera.
Cd
Rb
704
2063
0
0
Zn
13
38
0
X-ray Energy : 37 keV
Beam size : 50 μm× 50 μm
Measurement points : 60 point×100 point
0 measurement time : 1 sec/point
Sr
μ-XRF imaging of a trichome taken from a leaf.
Cd
101
199
17
19
60
0
0
0
0
0
Zn
K
Sr
Ca
X-ray Energy : 37 keV
Beam size : 3 μm× 3 μm
Measurement points : 59 point×226 point
measurement time : 0.5 s/ point
100 μm
Trichomes are epidermal hairs present at the
surface of leaves of A. halleri, and their
functions are thought to be an exudation of
various molecules.
Prospect of microbeam analysis
Microbeam → Nanobeam
Nano-beam focusing system at SPring-8
(left)Hig precision K-B mirror
(right) Optical parameters of elliptical mirror
Yamauchi et al.(Osaka Univ.)
120
120
理想プロファイル
100
80
強 度 (任 意 ス ケー ル )
強度(任意スケール)
計測
計測
80
48nm
60
40
40
20
0
0
-20
-20
-200
-100
0
100
200
300
36nm
60
20
-300
理想プロファイル
100
-300
-200
-100
0
100
200
位置 (nm)
位置(nm)
(a)vertical
Beam profile
(b)horizontal
300
TXRF-XAFS
19el-SSD
Photon Factory BL-12C
sample
Total reflection
High S/N
SR-X-ray
Nanosheet Monolayer
19element SSD
S-polarization
Si(111)
XRF
X-ray
Θc < 0.3°
Material Science
Heating behavior of titania nanosheet by TXRF-XAFS
Cs0.7Ti1.825□0.175O4
Ti
Ti
Nanosheet(1-layer)
Layer structure
0.45 nm
Ti
O
Atomic arrangement
Ti1-δO2
4δ-
Titania nanosheet
heat
transition
How to construct the three
dimensional structure
Ti K-edge XANES spectra as a function of temperature
900℃
Anatase
Nanocrsytal
800℃
Normalized intensity
Anatase
700℃
Anatase
(Reference)
900℃
Nanoー
sheet
600℃
nanosheet
As grown
nanosheet
800℃
Bulk crystal: stable phase
700℃
800℃ → rutile
600℃
400℃ → anatase
As grown
4950
4970
4990
Energy / eV
5010
©Fukuda&Nakai
(4)High energy X-ray
High energy SR-XRF
Bi Kα 76.35 Eb=90.57
U Kα 97.17 Eb=115.66keV
EEnergy
n e rg y /keV
(K e V )
120
Kα1
Kβ1
Lα1
Lβ1
100
80
60
U
At
Hg
Re
Yb
40
Sn
20
P
0
0
10
Cs
Rh
Zr
Zn Br
Mn
Ca
Zr Rh Sn Cs
20
30
40
50
Nd
Tb
U
Hg At
Re
Yb
Tb
Nd
60
70
80
90
Z (Atomic
Atomic Number)
Number
Fig.
X-ray fluorescence energies of K & L lines v.s. atomic number
100
Sb
Sn
La
Nd
Energy of heavy element
L lines XRF peak
Dy
Tm
Lu
Bi
4000
Rb Kα
Sr Kα
Intensity
Fe Kα
Ca Kα
2000
Rb Kβ,
Y Kα
Fe Kβ
Ti Kα
Mn Kα
K Kα
Ni Kα
Pb Lα
Cu Kα
0
0
5
10
15
20
Energy/keV
Problem of conventional XRF analysis
overlapping of heavy elements L lines as light elements K lines
Sample porcelain , Source:Mo Ka X-ray 40 kV-40 mA , time:1000sec
BL08W (for High-energy inelastic scattering experiments)
sample
SR
Si(400)
Monochromator
XYステージ
slit
I.C.
Ge
SSD
MCA
Eliptical multipole wiggler (Gap:160~25.5 mm)
Excitation energy:116 keV (100-150 keV)
Beam size:1~0.1 mm2
Experimental setup for high energy XRF
PC
In te n s ity (Co u n ts /1000s e c )
1000
Pb*
Sn
Pb
Ca
500
Cd
Ag
In
Nb
RbMo
Ba Nd
Sb
Ce
Cs
Eu
Pr
La
Te
Lu Kβ
Ho
Tb
Lu
Tm
TaW
Yb Hf
Bi
Hf Kβ
Er
GdDy
Sm
Ta Kβ
W Kβ
0
0
10
20
30
40
50
60
70
80
X-ray energy (keV)
XRF spectrum of NIST SRM612 glass:
61 trace elements in 50ppm level(*scattering)
1500
Fe Kα
Ba Kα
Hf K1,
Yb Kα1,2
Er Kα1,2
W Kα1,2
Dy Kα1,2
Ba Kβ
Mn Kα
Intensity / counts
Fe Kβ
Sr Kα
Ce Kα1,2
Pb Lα,β
1000
Rb Kα,β
Nb Kα
Zr Kα,β
Nd Kα
La Kα
Ba esc.
Ce Kβ
Cs Kα
500
Sm Kα
Nd Kβ
Gd Kα
0
0
10
20
30
40
50
60
X-ray energy / keV
XRF spectrum of JG1 excited at 116keV for 1000sec.
MDL for JG1 sample
Contents/ ppm
Fe
Rb
Sr
Zrb)
Cs
Ba
La
Ce
Nd
Sm
Gd
Dy
Er
Yb
Hf
W
Ipeak
2.02a) 1557
181
184
108
10.2
462
23
46.6
20
5.1
3.7
4.6
1.7
2.7
3.5
1.7
577
719
395
280
7205
535
520
862
136
108
110
86
125
268
737
Iback
MDL/ppm
366
0.097a)
281
258
293.5
181
354.5
355.5
86
154.5
45
42.5
41
51.5
61
98.5
199.5
30.8
19.2
54.7
4.2
3.8
7.2
3.0
1.1
1.1
1.1
1.3
1.1
1.0
0.6
0.1
Normarized net intensity (ILu /IGd )
10
Lu
1
0.1
0.01
0.001
0.01
0.1
1
Metal concentration (ng)
Calibration curves for Lu
using K-lines XRF spectra
10
. Application field of high energy XRF
・Archaeology for nondestructive provenance analysis
・Forensic analysis
・Industrial chemical analysis of high-Tech materials
・ Geochemistry
Principle of Provenance Analysis of Cultural Heritages
Raw material
→
Porcelain Stone
Trace element composition tells the locality
Role of Heavy Elements
Good fingerprint elements
• Cosmic abundances of the heavy elements with
atomic number larger than 26 (Fe) are small compared
with the lighter elements.
• They exhibit characteristic distribution in earth, for the
heavy elements such as rare earth and U often posses
large ionic radii and high oxidation states.
• The trace elements often substitute for major elements,
whose manner is largely affected by the nature of the
elements such as the ionic radii, oxidation state as well as
the PTC condition.
→ High energy SR-XRF analysis
a加賀(Kutani)
・肥前(Arita)
・有田
・伊万里、嬉野
・波佐見
・福山姫谷
(Himetani)
Colored Porcelain
Since 17th Century
17Cの色絵の磁器
Provenance analysis of Old-Kutani China wares
based on the information of their material history
obtained by high energy XRF
Kutani china wares were first produced in the late 17th century in
the Kaga Province in Japan. In 1710, however, after half a
century of continuous production, the kiln was suddenly closed.
Pottery from this early period is known as Old Kutani, which is
extremely precious. However, there is a possibility that the Old
Kutani might come from Arita, another famous production place
of porcelain since 17th century in Japan. Therefore, identification
of Old Kutani and Arita is an important and mysterious problem
in Japanese art history. It was expected that high-energy XRF
analysis utilizing synchrotron radiation from SPring-8 would
reveal the origin of the source materials. This is the first
nondestructive analysis of museum grade samples of Old Kutani.
Porcelain Stone tells the Locality
)とうP
Arita
Himetani
Raw Material
Kutani
Samples
◆Fragments of porcelain excavated at each
old kiln of Kaga, Arita, and Fukuyama.
Kutani: 121 Arita: 57 Fukuyama: 10
◆Museum grade samples which are thought
to be original:
6
3000
Ba
Nd
Intensity/counts
2000
Rb
Pb Se Sr
Y Zr
Fe
La
Ce
Sm
Cs
Gd
1000
Hf
Yb
W
Dy Er
0
0
10
20
30
40
Energy / keV
50
60
70
XRF spectrum of fragments of china ware
excavated from Old Kutani kiln
0
H
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
H
K
K
K
K
K
K
K
K
K
H
H
H
H
H
H
H
H
H
H
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
K
H
H
H
H
K
K
K
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
K
K
K
K
H
H
K
K
H
H
H
H
H
H
H
H
H
H
H
H
H
A 3
Y 3
H 8
4 4
3 5
H 5
3 8
H 3
2 9
1 0 1
2 5
3 9
5 5
5 0
3 3
4 8
2 2
4 9
M 2
3 7
M 1
2 3
1 6
0 9
0 7
H 1
5 3
Y 3
Y 2
3 4
4 3
H 7
5 9
6 0
5 6
5 1
4 7
5 2
1 0 9
2 7
4 7
A 1
1 2
1 1
A 6
3 0
5 3
5 8
3 9
1 0
N 1
1 0 5
Y 2
1 5
H 3
H 1
2 8
2 6
0 8
2 0
H 5
2 1
1 9
1 3
0 6
M 1 0
M 7
M 4
M 2
M 9
M 8
M 6
M 5
M 3
M 1
6 5
6 6
6 1
3 2
1 3
6 7
0 4
M 2
A 5
6 2
5 1
3 4
1 4
1 2
M 1
1 5
4 0
2 3
6 8
5 6
2 7
1 6
0 9
5 5
0 7
6 8
3 1
5 7
0 3
4 6
1 0 3
3 2
1 8
1 7
A 2
3 5
H 8
0 5
2 9
6 3
2 8
5 9
4 1
5 2
5 4
3 3
1 4
6 4
6 0
0 2
0 1
5
D is ta n c e
1 0
1 5
2 0
Kutani
Kutani &
Arita
Fukuyama
Arita
Cluster analysis of fragments of china wares
using normalized XRF peak intensities of Ba, Ce, Nd
16
12
Kutani
Ba/Ce
Fukuyama
8
Arita
4
0
0
0.2
0.4
0.6
Nd/Ce
0.8
1
Ba/Ce-Nd/Ce plot
1.2
原明窯
小溝上
百間窯
ダンバギリ窯
窯の辻窯
猿川窯
長吉谷窯
下白窯
柿右衛門窯
鍋島藩窯
不動山皿屋谷二号窯
吉田二号窯
三股古窯
永尾本登窯
辺後の谷窯
三股新登窯
福山姫谷窯
九谷一号窯
九谷二号窯
吉田屋窯
若杉古窯
八間道
耳聞山
今九谷
山代
Material History
A latent record of information stored in
a substance recording its origin and history
Every substance was produced in the past. The law of
causality determines the chemical state of a substance.
During the formation and existence of a substance, the
information of its material history is recorded in the substance
in various forms such as the concentration, distribution, and
chemical state of the trace elements as well as chemical
composition, structure, isotope ratio of the major elements.
Material Evolution:material world is continuous
15 billions years ago
Stream of Time →
Elementary
Particle
Big-bang
Hydrogen atom
neutron capture
chemical evolution
& β-decay
heavy
minerals
molecule
elements
rock
geological
process
star
life
human
beings
evolution of life
nuclear fusion
light
elements
civilization
Application of the material history:
Information of the material history can be
used in various scientific fields
• Archaeology, forensic analysis, geology,geochemisty
→To reveal the past based on the material history.
• Biological sciences: life history, migration history, environmental
problems
• Industrial application: prediction of source material, production
method and patent related problems
• Environmental science: monitoring of environmental
change→industrial, biological, and social activities etc.
Highly sensitive nondestructive X-ray analyses utilizing SR
are most suitable techniques to reveal the material history of
the sample.
Importance of trace element
Cobalt blue 0.0002% Co
Forensic application
S&W Gunshot Residue
Characteristic element: Ba,Sb, Pb
Ba
Pb
Sb
Pb
SPring-8 BL08W
High energy SR-XRF characterization of trace gunshot residue
High energy XRF characterization of trace heavy elements in white car
paints (paints A & B) compared with X-ray microprobe (bottom)
1500
Ti Fe Zn
1000
A
Nb Sn
counts
Ti
1000
Ta
B
Zn
W
Nb
500
Ba
500
0
0
0
20
10000
40
60
Energy(keV)
0
20
40
Energy(keV)
10000
Ti
Ti
EPMA
Counts
Counts
EPMA
5000
Al Si
5000
Fe
Al
0
0
5
60
10
Energy(keV)
15
20
0
0
5
10
Energy(keV)
15
20
Ninomiya(2004)
(5) multiple X-ray analytical technique
μ-XRF imaging, m-XRD,XAFS and SEM
Chemical speciation of arsenic-accumulating
mineral in a sedimentary iron deposit by
synchrotron radiation multiple X-ray analytical
techniques
S.ENDO,Y.TERADA,Y.KATO,I.NAKAI
Environ.Sci.Technol.2008,42,7152.
Comprehensive characterization of As(V)-bearing
iron minerals from the Gunma iron deposit by
Sample the Gunma
iron deposit of
quaternary age
Background
Natural behavior of arsenic at volcanic region
Decompositon of As containing minerals
by acidic water
As
Hot spring
・Precipiation
ex.) Fe3+ + AsO43- → FeAsO4↓
・Adsorption
α-FeO(OH)
・biological effect
biomineral formation
As fixation
Remediation of As poisoning
3
SR-μ-XRF XRF imaging
SPring-8 BL37XU
X-ray: 12.8 keV
Beam size : 1.8 μm×2.8 μm
Step size : 2.0 μm×3.0 μm
Meas. time : 0.1 s/point
Detector
: SDD
200 μm
As
3500
15500
0
0
Fe
Purpose: which mineral accumulate arsenic?
strengite FePO4·7H2O ?
jarosite KFe3(SO4)2(OH)6 ?
goethite FeOOH?
SR-μ-XRF & SEM-EDS
1800
As
0
Beam size: 1.8 μm×2.8 μm
Step size : 1.0 μm×1.0 μm
S (SEM-EDS)
Fe
strengite FePO4·7H2O
jarosite KFe3(SO4)2(OH)6
11000
SEM image
20 μm
0
As at the region with peculiar concentric morphology
P (SEM-EDS)
K (SEM-EDS)
Positive correlation between As and P, negative for S and K
SR-μ-XRF & SEM-EDS
1800
As
11000
Fe
0
Beam size: 1.8 μm×2.8 μm
Step size : 1.0 μm×1.0 μm
strengite FePO4·7H2O
jarosite KFe3(SO4)2(OH)6
20 μm
0
O Kα
Fe Lα
00
P Kα
Fe Kα
O Kα
S Kα
Intensity
Intensity
Intensity
Localization of As.
SEM
0
2
As Lα
K Kα
45 5
Fe Kα
Fe Kβ
As Kα
Fe Kβ
6
Energy/ /keV
keV
Energy
Energy
/ keV
SEM-EDS spectrum
10
8
12
10
10
XRD
X-ray : 12.8 keV
Beam size : 50 μm×50 μm
Meas.time
: 12 min. / sample
IP (Imaging Plate)
P1
d / Å I / I0
P2
d / Å I / I0
strengite
ストレング石
hkl d / Å I / I 0
5.93 32
5.75 14
5.49
111 5.509 60
55
102 5.09 70
020
201
211
121
112
4.95 43
4.37 100
4.00 22
P1
XRD point
4.954
4.383
3.996
3.959
3.719
30
85
45
13
25
3.63 32
3.27 21
3.12 53
2.99 16
2.95 19
2.56
45
hkl d / Å I / I 0
101 5.93 45
003 5.72 25
5.10 56
P2
jarosite
鉄明礬鉱
3.11 72
3.07 100
2.97 12
2.88 8
2.55 20
110 3.65 40
221 3.281 17
122 3.114 100
311 3.002 45
131 2.949 45
231 2.631 11
132 2.546 50
201 3.11 75
113 3.08 100
202 2.965 15
006 2.861 30
204 2.542 30
* strengite FePO4·7H2O
PDF No. 33-667
** jarosite KFe3(SO4)2(OH)6 PDF No. 22-827
XRD pattern (P1)
μ-XANES
As
P2
As K-edge XANES spectra
measured by 2μm X-ray beam
P1
XANES points
Normalized intensity (a.u.)
As(V)
As exists as As(V) in the sample
(AsO43-, HAsO42-)
P1
P2
As(V) in strengite
KH2AsO4
KAsO2
AsO4311.85
11.85
11.86
11.87
11.88
Energy / keV
11.89
11.9
11.90
strengite (FePO4・2H2O)
μ-EXAFS
k3χ(k)
As
As-O
2
7
P1
As-Fe
12
― Meas.
EXAFS測定箇所・ fitting
k/Å
P1
P1
FT Magnitude
P2
Curve fitting
P2
strengite FePO4·7H2O
EXAFS
As(V) in
strengite
0
1
2
3
4
r Fe
/Å
動径構造関数
As
As
O
O
AsO43- イオン
5
6
Atom
r/Å
CN
P1
O
Fe
1.68
3.36
4.0
4.0
P2
O
1.69
4.0
As(V) in
strengite
O
Fe
1.68
3.35
4.0
4.0
As→AsO4
AsO4 tetrahedra-Fe(III)octahedra
As accumulation mechanism
PO4 → AsO4
AsO43-
1.68 Å
As in solution
3.36 Å
As
in strengite
Crystal structure of strengite (FePO4・2H2O)
PO4
AsO4
FeO4(OH)2 Octahedron
O
P
Fe
As
Substitution of PO4 tetrahedra in
strengite (FePO4・2H2O) by AsO4
teterahedra
Conclusion
Limitation of the SR-XRF
1.Microbeam analysis
i) the thickness of the sample should be in the order of beam size
→ preparation of thin sample is not easy
ii) it takes long hours to carry out two dimensional mapping
because of large numbers of measurement points
2.
Low excitation efficiency for light elements
3.
Special efforts is necessary to carry out quantitative analysis
4.
Sample damage should be considered if you use brilliant
Undulator SR Source or white X-ray radiation. Especially, care
must be taken about photo-reduction/oxidation of the component
elements.
However!
Attractiveness of SR-XRF
1.Nondestructive analysis, multielemental analysis
2. Two dimensional resolution
3. Easy to carry out the analysis and easy to understand the results
4. Basic optical system for EDS analysis is simple
SR → Monochromator → sample → detector
5.We can analyze almost any samples
size → from cell level to sculpture, paintings
in situ、 in vivo、 in air at any temperature
6. Information
concentration: major(%), minor, trace(ppm) elements C ~Na ~ U
distribution: from nm level to cm level
chemical state ( oxidation state, local structure) C ~ Si ~ U
7.Multiple SR-X-ray analysis: combination with X-ray diffraction and
XAFS
Invitation to SR-XRF
SR-XRF is waiting for you.
Come and just try it !