X-ray fluorescence analysis Tokyo University of Science Department of Applied Chemistry Izumi NAKAI sample Scattered 反跳電子 electron 物 Scattered X-ray 弾性散乱トムソン (コンプトン 散乱 Thomson X 線 非弾性散乱 コンプトン (トムソン Compton X-ray 入射 X線 Transmitted X-ray(Absorption) 透過 X 線 (吸収) 質 蛍光 X 線 X-ray Fluorescent Photoelectron 光電子,オージェ電子 Auger electron 熱 Heat Interaction of X-ray with matter sample Transmitted X-ray Photoelectron (XPS) Fluorescent X-ray (XRF) Auger electron (AES) Thomson scattering (XRD) Photoelectron effect Absorption (XAFS) Scattering Compton scattering Interaction of X-ray with matter and X-ray analysis Relationship between λ and E Particle :energy E [keV] Wave : wavelength λ[Å] E=hc/λ = 12.398/λ Wavelength λ [keV], ex. 1Å= 12.398keV λ = long Energy = low λ = short Energy = high photoelectron 光電子 蛍光 X 線(ΔE) Fluorescence (Kα線) X-ray Kα N M L Kβ K Mα Eb K Kα1 Lα Kα2 Lβ core 原子核 入射 X 線(E) X-ray energy E electron 電子 Eb K < E X-ray energy E > Binding energy Eb Bohr model and emission of X-ray fluorescence vacancy 空孔 Principle of X-ray fluorescence (XRF) analysis Energy ΔE characteristic to each element Qualitative analysis Intensity number of X-ray photons → concentration Quantitative analysis 1000 Zr Kα Intens ity (Counts /1000s ec) Y Kα Pb Lα Pb Lβ Bi Lα Th Lα U Lα Sr Kα Th Lβ Er Tm Nb Kα U Lβ, Mo Kα Nb Kβ Pb Kα1,2 Yb Lu Gd Tb Ca 500 Dy Ag Cd In Hf Ta Re Kα, Lu Kβ Hf Kβ W Sn Sb Ba Ce Sm Pr Nd Eu Ho Bi Ta Kβ W Kβ Re Kβ Cs La Te 0 0 20 40 60 X-ray energy (keV) XRF spectrum of NIST SRM612 glass 80 試料 面間隔 d d-spacing 分光結晶 crystal Analyzing (b) (a) (a) WDS (b) EDS XRF analysis (a) Wavelength dispersive spectroscopy (b) EDS Energy dispersive spectroscopy ©http://www.postech.ac.kr/dept/mse/axal/index.html Principle of analyzing crystal Bragg condition nλ=2dsinθ ©http://www.postech.ac.kr/dept/mse/axal/index.html Principle of Si(Li) detector → a reverse-biased silicon diode. Pre Amp. X-ray Be window Si(Li) detector electron-hole pair 3.85eV ex. Fe Kα 6.400keV 6400/3.85=1662 pairs Bias voltage(-500V) cause current flow. The charge collected at the anode is converted to a voltage by an amplifier. This results in a voltage pulse that is proportional to the number of pairs created and thus to the incident X-ray energy. The resolution is determined by the energy required to create an electron-hole pair (3.8 eV). Slides made by Prof. A. Iida (PF) ©A.Iida(PF) Characteristics of SR-XRF ( X-ray fluorescence analysis) ©A.Iida(PF) ©A.Iida(PF) ©A.Iida(PF) (1)High Brilliance Source ©A.Iida(PF) ©A.Iida(PF) ©K. Sakurai(NIMS) ©K. Sakurai(NIMS) World record of MDL by total reflection SR-XRF 3.1x10-16g= 0.31fg 3.1ppt(pg/g) 3x106atom (a) Crytal monochormator (b)XRF spectrum of 0.1ml Ni (1ng/g)solution (20s/point) C: Ge(220)Johansson type D:YAP:Ce scintillation counter ©K.Sakurai(NIMS) Typical XRF Spectra Obtained by R=100 Spectrometer Trace Metals in Apple and Tomato Leaves (NIST1573a and 1515) Gd 3 0.17 Sm 3 3 Tb 0.4 μg/g 0.4 mg/kg 1sec/point 5 3 10 2 10 MDL(Ni) 4.64ppb 10 3 10 2 10 MDL(Co) 3.27ppb MDL(Mn) 0.22ppm MDL(Ni) 38.4ppb 1 10 MDL(Fe) 0.48 ppm 1 10 10 4 CoKβ1 GdLβ2 MDL(Co) 2.51ppb NiKα2 NiKα1 FeKβ1 MDL(Fe) 31.5ppb CoKα1 FeKα2 Nd 17 - NIST 1573a Tomato Leaves (left axis) NIST 1515 Apple Leaves (right axis) SmLβ1 4 10 MDL(Mn) 39.7ppb GdLα1 NdLβ2 10 MnKα1 5 MnKα2 X-Ray Intensity [counts] 10 Ni 0.91 0.91 GdLβ1 Co 0.09 0.09 NdLγ1 6 Fe 83 83 FeKα1 MnKβ1 Mn apple 54 tomato 246 6000 0 6500 7000 7500 Energy [eV] ©K. Sakurai(NIMS) 10 (2)parallel beam with small divergence ©A.Iida(PF) ©A.Iida(PF) ©A.Iida(PF) Spring-8 Beam profile at focal points made by FZP at 8keV ©Y.Suzuki(2002) Application of SR-XRF to in vivo analysis of biological sample Study of hyperaccumulator plants of As and Cd Phytoremediation ash Cd remediate plant Phytoremediation is a technology Merit:no damage,low costdestroy, that uses plants to remove, preservation of substances surface Green technology by plant or sequester hazardous from the etc… environment. Cd ...... Cd . .. Cd Cd Cd Cd Cd Cd Cd Cd isolation Some specific kinds of plants are known to be heavy metal hyperaccumulator Element As*1 Cd Pb Contaminated soil conc./ ppm plant 22,630 Pteris vittata L. (モエジマシダ) 11,000 Athyrium yokoscense ( ヘビノネゴザ) 34,500 Brassica juncea (カラシナ ) *1 L. Q. Ma, et al., Nature, (2001) , 409, 579. -Cd Phytoremediation Environmentally friendly low cost technique Key:Use of hyperaccumulator plant As Arsenic Hyperaccumulator Pteris vitteta L. (モエジマシダ) Cd Cd Hyperaccumulator Arabidopsis halleri ssp.gemmifera (ハクサンハタザオ) Hyperaccumulation 3: accumulation HM HM HM HM HM HM HM 2: transportation HM 1: absorption of heavy metal HM HM HM HM HM HM HM Application of SR X-ray analyses ・Two dimensional multi-element nondestructive analysis in cell level → μ-XRF imaging ・ in vivo chemical state analysis of metals in the plant → X-ray absorption fine structure (XAFS) analysis ・chemical state analysis in cell level → μ-XANES As hyperaccumulator Chinese brake fern (Pteris vittata L.) (As: ca. 22,000 μg /g dry weight) Arsenic distribution and speciation in an arsenic hyperaccumulator fern by Xray spectrometry utilizing a synchrotron radiation source A. Hokura, R. Onuma, Y. Terada, N. Kitajima, T. Abe, H. Saito, S. Yoshida and I. Nakai Journal of Analytical Atomic Spectrometry, 21, 321-328 (2006) Life of fern pinna Pteris vittata L. fertilized 200 μm prothallium sporophyte 5cm midrib of a frond 30 μm spore frond Fertile pinna Cultivation of fern As level in soil:481 µg g-1dry Term: ~3 weeks Average As level :~720 µg /gdry arsenic-contaminated soil As level* pinna:2800 - 4500 µg g-1dry midrib of a frond:84 - 250 µg /g dry * Anal. By AAS culture medium containing As (1 ppm 4days) Sample preparation for microbeam analysis moist unwoven paper X-ray 200μm thick vertical slicer (Model HS1, JASCO Co.) freeze dry of frozen Mylar film Plastic plate μ-XRF, μ-XANES X-ray energy As: 12.8keV Cd: 37.0keV Beam siz: ca. 1 μm In-vacuum undulator XY slit (0.2 x 0.2 mm) Si 111 Monochromator XY slit (0.15 x 0.15 mm) K-B mirror 53 m Sample SPring-8 BL37XU - BEAMLINE DESCRIPTION The light source : In-vacuum type undulator (Period length : 32 mm, the number of period : 140) Monochromator : Double-crystal monochromator located 43 m from the source Table Sample on XYstage X-ray Details of focusing optics by K-B mirror Material Surface Focal length (1st mirror) (2nd mirror) Average glancing angle 37 keV[1] fused quartz platinum coated 250 mm 100 mm 0.8 mrad 12.8 keV fused quartz platinum coated 100 mm 50 mm 2.8 mrad K-Bmirror detecor Instrument ~Spring-8 BL37XU~ X-ray 検出器 Sample SDD Acrylic plate (1 mm thick) XAFS analysis KEK PF BL12C As K-edge (11.863 keV) Si(111) double crystal Fluorescence mode 19elements-SSD in vivo XAFS X-ray SSD A section of pinna 200μm spore high low As K frond X-ray Energy : 14.999 keV Beam size : 50 μm×50 μm Step number : 35 point×90 point measurement time : 1 sec/point X-ray Energy : 12.8 keV Beam size : 1.5 μm ×1.5 μm Exposure time : 0.2 sec. / point Point : 150 point ×150 point M-XRF imaging at Spring-8 As X-ray Energy : 12.8 keV Beam size : 1.5 μm ×1.5 μm Exposure time : 0.2 sec. / point Point : 150 point ×150 point 5778 475 55 0 0 0 K Ca As level is low at spore 11730 As 0 K 425 372 0 0 Ca (3)Energy tunability Chemical state analysis by Fluorescence -XAFS ©A.Iida(PF) Absorbance = ln(Io/I) ( arbitrary XAFS XANES EXAFS sample Io I If t μt = ln(Io/I) Ni K-absorption edge Eo=Eb 8.20 Eo 8.40 8.60 8.80 9.00 9.20 Energy/keV X-ray absorption spectrum of LiNiO2 XANES: X-ray absorption near edge structure electronic state, oxidation number EXAFS: Extended X-ray absorption fine structure local structure (atomic distance and coordination No.) X-ray absorption by sample I/Io = exp(-μt) = exp(-μM ρt) μ:linear absorption coef.(cm-1) μM:mass absorption coef.(cm2/g) ρ:density of sample(g/cm3) μM = ΣμMiwi [2] μMi: μM of component i wi:weight% of component i [1] As K-edge XANES analysis in vivo XANES of frond Frond Top Root (freeze dried) 基部 Midrib A上 Midrib B Frond Top Frond Base Midrib A Midrib B petiole soil petiole Frond PF BL-12C 11.85 11.85 As2O3 (Ⅲ) H3AsO4 (Ⅴ) 11.87 11.86 Energy /keV Energy / keV 11.88 Normalized Intensity (a.u.) Frond Base Normalized Intensity (a.u.) ⑥ 11.85 ⑤ ④ ③ ② ① KH2AsO4 (V) 1 cm As2O3 (III) 11.87 11.86 Energy / keV 先端 11.88 Root Summary ・We have established μ-XRF imaging technique utilizing SR to monitor time dependent process of arsenic transfer in a leaf tissue of hyperaccumulator fern. ・This study visually revealed for the first time that arsenic transferred from root to marginal part of leaf within 30min after feeding. ・Arsenic accumulated in the region of vascular bundle and transferred to paraphysis prior to sporangium. Arabidopsis halleri Cd and Zn hyper-accumulator and Cd in Rice Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation Journal of Analytical Atomic Spectrometry, 23, 1068-1075 (2008) N. Fukuda, A. Hokura, N. Kitajima, Y. Terada, H. Saito, T. Abe and I. Nakai. Arabidpsis halleri ssp. Genmifera (ハクサンハタザオ) Arabidopsis halleri is known as a Cd and Zn hyperaccumulator, which contained more than 9000 mg/ kg Cd and Zn. XRF imaging of a leaf of A. halleri ssp. Gemmifera. Cd Rb 704 2063 0 0 Zn 13 38 0 X-ray Energy : 37 keV Beam size : 50 μm× 50 μm Measurement points : 60 point×100 point 0 measurement time : 1 sec/point Sr μ-XRF imaging of a trichome taken from a leaf. Cd 101 199 17 19 60 0 0 0 0 0 Zn K Sr Ca X-ray Energy : 37 keV Beam size : 3 μm× 3 μm Measurement points : 59 point×226 point measurement time : 0.5 s/ point 100 μm Trichomes are epidermal hairs present at the surface of leaves of A. halleri, and their functions are thought to be an exudation of various molecules. Prospect of microbeam analysis Microbeam → Nanobeam Nano-beam focusing system at SPring-8 (left)Hig precision K-B mirror (right) Optical parameters of elliptical mirror Yamauchi et al.(Osaka Univ.) 120 120 理想プロファイル 100 80 強 度 (任 意 ス ケー ル ) 強度(任意スケール) 計測 計測 80 48nm 60 40 40 20 0 0 -20 -20 -200 -100 0 100 200 300 36nm 60 20 -300 理想プロファイル 100 -300 -200 -100 0 100 200 位置 (nm) 位置(nm) (a)vertical Beam profile (b)horizontal 300 TXRF-XAFS 19el-SSD Photon Factory BL-12C sample Total reflection High S/N SR-X-ray Nanosheet Monolayer 19element SSD S-polarization Si(111) XRF X-ray Θc < 0.3° Material Science Heating behavior of titania nanosheet by TXRF-XAFS Cs0.7Ti1.825□0.175O4 Ti Ti Nanosheet(1-layer) Layer structure 0.45 nm Ti O Atomic arrangement Ti1-δO2 4δ- Titania nanosheet heat transition How to construct the three dimensional structure Ti K-edge XANES spectra as a function of temperature 900℃ Anatase Nanocrsytal 800℃ Normalized intensity Anatase 700℃ Anatase (Reference) 900℃ Nanoー sheet 600℃ nanosheet As grown nanosheet 800℃ Bulk crystal: stable phase 700℃ 800℃ → rutile 600℃ 400℃ → anatase As grown 4950 4970 4990 Energy / eV 5010 ©Fukuda&Nakai (4)High energy X-ray High energy SR-XRF Bi Kα 76.35 Eb=90.57 U Kα 97.17 Eb=115.66keV EEnergy n e rg y /keV (K e V ) 120 Kα1 Kβ1 Lα1 Lβ1 100 80 60 U At Hg Re Yb 40 Sn 20 P 0 0 10 Cs Rh Zr Zn Br Mn Ca Zr Rh Sn Cs 20 30 40 50 Nd Tb U Hg At Re Yb Tb Nd 60 70 80 90 Z (Atomic Atomic Number) Number Fig. X-ray fluorescence energies of K & L lines v.s. atomic number 100 Sb Sn La Nd Energy of heavy element L lines XRF peak Dy Tm Lu Bi 4000 Rb Kα Sr Kα Intensity Fe Kα Ca Kα 2000 Rb Kβ, Y Kα Fe Kβ Ti Kα Mn Kα K Kα Ni Kα Pb Lα Cu Kα 0 0 5 10 15 20 Energy/keV Problem of conventional XRF analysis overlapping of heavy elements L lines as light elements K lines Sample porcelain , Source:Mo Ka X-ray 40 kV-40 mA , time:1000sec BL08W (for High-energy inelastic scattering experiments) sample SR Si(400) Monochromator XYステージ slit I.C. Ge SSD MCA Eliptical multipole wiggler (Gap:160~25.5 mm) Excitation energy:116 keV (100-150 keV) Beam size:1~0.1 mm2 Experimental setup for high energy XRF PC In te n s ity (Co u n ts /1000s e c ) 1000 Pb* Sn Pb Ca 500 Cd Ag In Nb RbMo Ba Nd Sb Ce Cs Eu Pr La Te Lu Kβ Ho Tb Lu Tm TaW Yb Hf Bi Hf Kβ Er GdDy Sm Ta Kβ W Kβ 0 0 10 20 30 40 50 60 70 80 X-ray energy (keV) XRF spectrum of NIST SRM612 glass: 61 trace elements in 50ppm level(*scattering) 1500 Fe Kα Ba Kα Hf K1, Yb Kα1,2 Er Kα1,2 W Kα1,2 Dy Kα1,2 Ba Kβ Mn Kα Intensity / counts Fe Kβ Sr Kα Ce Kα1,2 Pb Lα,β 1000 Rb Kα,β Nb Kα Zr Kα,β Nd Kα La Kα Ba esc. Ce Kβ Cs Kα 500 Sm Kα Nd Kβ Gd Kα 0 0 10 20 30 40 50 60 X-ray energy / keV XRF spectrum of JG1 excited at 116keV for 1000sec. MDL for JG1 sample Contents/ ppm Fe Rb Sr Zrb) Cs Ba La Ce Nd Sm Gd Dy Er Yb Hf W Ipeak 2.02a) 1557 181 184 108 10.2 462 23 46.6 20 5.1 3.7 4.6 1.7 2.7 3.5 1.7 577 719 395 280 7205 535 520 862 136 108 110 86 125 268 737 Iback MDL/ppm 366 0.097a) 281 258 293.5 181 354.5 355.5 86 154.5 45 42.5 41 51.5 61 98.5 199.5 30.8 19.2 54.7 4.2 3.8 7.2 3.0 1.1 1.1 1.1 1.3 1.1 1.0 0.6 0.1 Normarized net intensity (ILu /IGd ) 10 Lu 1 0.1 0.01 0.001 0.01 0.1 1 Metal concentration (ng) Calibration curves for Lu using K-lines XRF spectra 10 . Application field of high energy XRF ・Archaeology for nondestructive provenance analysis ・Forensic analysis ・Industrial chemical analysis of high-Tech materials ・ Geochemistry Principle of Provenance Analysis of Cultural Heritages Raw material → Porcelain Stone Trace element composition tells the locality Role of Heavy Elements Good fingerprint elements • Cosmic abundances of the heavy elements with atomic number larger than 26 (Fe) are small compared with the lighter elements. • They exhibit characteristic distribution in earth, for the heavy elements such as rare earth and U often posses large ionic radii and high oxidation states. • The trace elements often substitute for major elements, whose manner is largely affected by the nature of the elements such as the ionic radii, oxidation state as well as the PTC condition. → High energy SR-XRF analysis a加賀(Kutani) ・肥前(Arita) ・有田 ・伊万里、嬉野 ・波佐見 ・福山姫谷 (Himetani) Colored Porcelain Since 17th Century 17Cの色絵の磁器 Provenance analysis of Old-Kutani China wares based on the information of their material history obtained by high energy XRF Kutani china wares were first produced in the late 17th century in the Kaga Province in Japan. In 1710, however, after half a century of continuous production, the kiln was suddenly closed. Pottery from this early period is known as Old Kutani, which is extremely precious. However, there is a possibility that the Old Kutani might come from Arita, another famous production place of porcelain since 17th century in Japan. Therefore, identification of Old Kutani and Arita is an important and mysterious problem in Japanese art history. It was expected that high-energy XRF analysis utilizing synchrotron radiation from SPring-8 would reveal the origin of the source materials. This is the first nondestructive analysis of museum grade samples of Old Kutani. Porcelain Stone tells the Locality )とうP Arita Himetani Raw Material Kutani Samples ◆Fragments of porcelain excavated at each old kiln of Kaga, Arita, and Fukuyama. Kutani: 121 Arita: 57 Fukuyama: 10 ◆Museum grade samples which are thought to be original: 6 3000 Ba Nd Intensity/counts 2000 Rb Pb Se Sr Y Zr Fe La Ce Sm Cs Gd 1000 Hf Yb W Dy Er 0 0 10 20 30 40 Energy / keV 50 60 70 XRF spectrum of fragments of china ware excavated from Old Kutani kiln 0 H K K K K K K K K K K K K K K K K K K K K K K K K K K K K K H K K K K K K K K K H H H H H H H H H H K K K K K K K K K K K K K K K H H H H H H H H H H H H H H H H H K H H H H K K K H H H H H H H H H H H H H H H K K K K H H K K H H H H H H H H H H H H H A 3 Y 3 H 8 4 4 3 5 H 5 3 8 H 3 2 9 1 0 1 2 5 3 9 5 5 5 0 3 3 4 8 2 2 4 9 M 2 3 7 M 1 2 3 1 6 0 9 0 7 H 1 5 3 Y 3 Y 2 3 4 4 3 H 7 5 9 6 0 5 6 5 1 4 7 5 2 1 0 9 2 7 4 7 A 1 1 2 1 1 A 6 3 0 5 3 5 8 3 9 1 0 N 1 1 0 5 Y 2 1 5 H 3 H 1 2 8 2 6 0 8 2 0 H 5 2 1 1 9 1 3 0 6 M 1 0 M 7 M 4 M 2 M 9 M 8 M 6 M 5 M 3 M 1 6 5 6 6 6 1 3 2 1 3 6 7 0 4 M 2 A 5 6 2 5 1 3 4 1 4 1 2 M 1 1 5 4 0 2 3 6 8 5 6 2 7 1 6 0 9 5 5 0 7 6 8 3 1 5 7 0 3 4 6 1 0 3 3 2 1 8 1 7 A 2 3 5 H 8 0 5 2 9 6 3 2 8 5 9 4 1 5 2 5 4 3 3 1 4 6 4 6 0 0 2 0 1 5 D is ta n c e 1 0 1 5 2 0 Kutani Kutani & Arita Fukuyama Arita Cluster analysis of fragments of china wares using normalized XRF peak intensities of Ba, Ce, Nd 16 12 Kutani Ba/Ce Fukuyama 8 Arita 4 0 0 0.2 0.4 0.6 Nd/Ce 0.8 1 Ba/Ce-Nd/Ce plot 1.2 原明窯 小溝上 百間窯 ダンバギリ窯 窯の辻窯 猿川窯 長吉谷窯 下白窯 柿右衛門窯 鍋島藩窯 不動山皿屋谷二号窯 吉田二号窯 三股古窯 永尾本登窯 辺後の谷窯 三股新登窯 福山姫谷窯 九谷一号窯 九谷二号窯 吉田屋窯 若杉古窯 八間道 耳聞山 今九谷 山代 Material History A latent record of information stored in a substance recording its origin and history Every substance was produced in the past. The law of causality determines the chemical state of a substance. During the formation and existence of a substance, the information of its material history is recorded in the substance in various forms such as the concentration, distribution, and chemical state of the trace elements as well as chemical composition, structure, isotope ratio of the major elements. Material Evolution:material world is continuous 15 billions years ago Stream of Time → Elementary Particle Big-bang Hydrogen atom neutron capture chemical evolution & β-decay heavy minerals molecule elements rock geological process star life human beings evolution of life nuclear fusion light elements civilization Application of the material history: Information of the material history can be used in various scientific fields • Archaeology, forensic analysis, geology,geochemisty →To reveal the past based on the material history. • Biological sciences: life history, migration history, environmental problems • Industrial application: prediction of source material, production method and patent related problems • Environmental science: monitoring of environmental change→industrial, biological, and social activities etc. Highly sensitive nondestructive X-ray analyses utilizing SR are most suitable techniques to reveal the material history of the sample. Importance of trace element Cobalt blue 0.0002% Co Forensic application S&W Gunshot Residue Characteristic element: Ba,Sb, Pb Ba Pb Sb Pb SPring-8 BL08W High energy SR-XRF characterization of trace gunshot residue High energy XRF characterization of trace heavy elements in white car paints (paints A & B) compared with X-ray microprobe (bottom) 1500 Ti Fe Zn 1000 A Nb Sn counts Ti 1000 Ta B Zn W Nb 500 Ba 500 0 0 0 20 10000 40 60 Energy(keV) 0 20 40 Energy(keV) 10000 Ti Ti EPMA Counts Counts EPMA 5000 Al Si 5000 Fe Al 0 0 5 60 10 Energy(keV) 15 20 0 0 5 10 Energy(keV) 15 20 Ninomiya(2004) (5) multiple X-ray analytical technique μ-XRF imaging, m-XRD,XAFS and SEM Chemical speciation of arsenic-accumulating mineral in a sedimentary iron deposit by synchrotron radiation multiple X-ray analytical techniques S.ENDO,Y.TERADA,Y.KATO,I.NAKAI Environ.Sci.Technol.2008,42,7152. Comprehensive characterization of As(V)-bearing iron minerals from the Gunma iron deposit by Sample the Gunma iron deposit of quaternary age Background Natural behavior of arsenic at volcanic region Decompositon of As containing minerals by acidic water As Hot spring ・Precipiation ex.) Fe3+ + AsO43- → FeAsO4↓ ・Adsorption α-FeO(OH) ・biological effect biomineral formation As fixation Remediation of As poisoning 3 SR-μ-XRF XRF imaging SPring-8 BL37XU X-ray: 12.8 keV Beam size : 1.8 μm×2.8 μm Step size : 2.0 μm×3.0 μm Meas. time : 0.1 s/point Detector : SDD 200 μm As 3500 15500 0 0 Fe Purpose: which mineral accumulate arsenic? strengite FePO4·7H2O ? jarosite KFe3(SO4)2(OH)6 ? goethite FeOOH? SR-μ-XRF & SEM-EDS 1800 As 0 Beam size: 1.8 μm×2.8 μm Step size : 1.0 μm×1.0 μm S (SEM-EDS) Fe strengite FePO4·7H2O jarosite KFe3(SO4)2(OH)6 11000 SEM image 20 μm 0 As at the region with peculiar concentric morphology P (SEM-EDS) K (SEM-EDS) Positive correlation between As and P, negative for S and K SR-μ-XRF & SEM-EDS 1800 As 11000 Fe 0 Beam size: 1.8 μm×2.8 μm Step size : 1.0 μm×1.0 μm strengite FePO4·7H2O jarosite KFe3(SO4)2(OH)6 20 μm 0 O Kα Fe Lα 00 P Kα Fe Kα O Kα S Kα Intensity Intensity Intensity Localization of As. SEM 0 2 As Lα K Kα 45 5 Fe Kα Fe Kβ As Kα Fe Kβ 6 Energy/ /keV keV Energy Energy / keV SEM-EDS spectrum 10 8 12 10 10 XRD X-ray : 12.8 keV Beam size : 50 μm×50 μm Meas.time : 12 min. / sample IP (Imaging Plate) P1 d / Å I / I0 P2 d / Å I / I0 strengite ストレング石 hkl d / Å I / I 0 5.93 32 5.75 14 5.49 111 5.509 60 55 102 5.09 70 020 201 211 121 112 4.95 43 4.37 100 4.00 22 P1 XRD point 4.954 4.383 3.996 3.959 3.719 30 85 45 13 25 3.63 32 3.27 21 3.12 53 2.99 16 2.95 19 2.56 45 hkl d / Å I / I 0 101 5.93 45 003 5.72 25 5.10 56 P2 jarosite 鉄明礬鉱 3.11 72 3.07 100 2.97 12 2.88 8 2.55 20 110 3.65 40 221 3.281 17 122 3.114 100 311 3.002 45 131 2.949 45 231 2.631 11 132 2.546 50 201 3.11 75 113 3.08 100 202 2.965 15 006 2.861 30 204 2.542 30 * strengite FePO4·7H2O PDF No. 33-667 ** jarosite KFe3(SO4)2(OH)6 PDF No. 22-827 XRD pattern (P1) μ-XANES As P2 As K-edge XANES spectra measured by 2μm X-ray beam P1 XANES points Normalized intensity (a.u.) As(V) As exists as As(V) in the sample (AsO43-, HAsO42-) P1 P2 As(V) in strengite KH2AsO4 KAsO2 AsO4311.85 11.85 11.86 11.87 11.88 Energy / keV 11.89 11.9 11.90 strengite (FePO4・2H2O) μ-EXAFS k3χ(k) As As-O 2 7 P1 As-Fe 12 ― Meas. EXAFS測定箇所・ fitting k/Å P1 P1 FT Magnitude P2 Curve fitting P2 strengite FePO4·7H2O EXAFS As(V) in strengite 0 1 2 3 4 r Fe /Å 動径構造関数 As As O O AsO43- イオン 5 6 Atom r/Å CN P1 O Fe 1.68 3.36 4.0 4.0 P2 O 1.69 4.0 As(V) in strengite O Fe 1.68 3.35 4.0 4.0 As→AsO4 AsO4 tetrahedra-Fe(III)octahedra As accumulation mechanism PO4 → AsO4 AsO43- 1.68 Å As in solution 3.36 Å As in strengite Crystal structure of strengite (FePO4・2H2O) PO4 AsO4 FeO4(OH)2 Octahedron O P Fe As Substitution of PO4 tetrahedra in strengite (FePO4・2H2O) by AsO4 teterahedra Conclusion Limitation of the SR-XRF 1.Microbeam analysis i) the thickness of the sample should be in the order of beam size → preparation of thin sample is not easy ii) it takes long hours to carry out two dimensional mapping because of large numbers of measurement points 2. Low excitation efficiency for light elements 3. Special efforts is necessary to carry out quantitative analysis 4. Sample damage should be considered if you use brilliant Undulator SR Source or white X-ray radiation. Especially, care must be taken about photo-reduction/oxidation of the component elements. However! Attractiveness of SR-XRF 1.Nondestructive analysis, multielemental analysis 2. Two dimensional resolution 3. Easy to carry out the analysis and easy to understand the results 4. Basic optical system for EDS analysis is simple SR → Monochromator → sample → detector 5.We can analyze almost any samples size → from cell level to sculpture, paintings in situ、 in vivo、 in air at any temperature 6. Information concentration: major(%), minor, trace(ppm) elements C ~Na ~ U distribution: from nm level to cm level chemical state ( oxidation state, local structure) C ~ Si ~ U 7.Multiple SR-X-ray analysis: combination with X-ray diffraction and XAFS Invitation to SR-XRF SR-XRF is waiting for you. Come and just try it !
© Copyright 2024 ExpyDoc