Hadronic light-by-light scattering in the muon g − 2: a dispersive approach Martin Hoferichter ¨ Darmstadt Institut fur ¨ Kernphysik, Technische Universitat ExtreMe Matter Institute EMMI, GSI, Darmstadt Dark Matter, Hadron Physics and Fusion Physics Messina, September 26, 2014 G. Colangelo, MH, M. Procura, P. Stoffer, JHEP 09 (2014) 091, arXiv:1309.6877 G. Colangelo, MH, B. Kubis, M. Procura, P. Stoffer, PLB 738 (2014) 6 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 1 Outline 1 Hadronic contributions to the muon g − 2 2 Hadronic light-by-light scattering One-pion intermediate states Two-pion intermediate states Preliminary numbers 3 Summary and outlook M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 2 Anomalous magnetic moment of the muon Experimental precision 0.5 ppm BNL E821 2006 exp aµ = (116 592 089 ± 63) · 10−11 HMNT (06) JN (09) Davier et al, (10) Theory error of similar size + – Davier et al, e e (10) Deviation from SM prediction around 3σ New experiment at FNAL (E989) aiming at JS (11) HLMNT (10) HLMNT (11) experiment 0.14 ppm, beam in 2016/2017 BNL BNL (new from shift in λ) J-PARC aiming at 0.1 ppm, new approach with ultra-cold muons, R&D in progress 170 aµ ×1010 – 11659000 180 190 200 210 Hagiwara et al. 2012 ⇒ Need to improve theory by a factor of 4 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 3 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) Schwinger 1948 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) e, µ, τ Sommerfield, Petermann 1957 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 I(a) I(b) I(c) I(d) I(e) I(f) I(g) I(h) I(i) I(j) II(a) II(b) II(c) II(d) II(e) II(f) III(a) III(b) III(c) IV 63. QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 QED O(α 3 ) 30141.90 0.00 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 V QED total electroweak, total 153.6 1.0 HVP (LO) 6949. HVP (NLO) −98. 1. HLbL (LO) 116. 40. 43. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) VI(f) VI(a) VI(b) VI(c) VI(d) VI(e) VI(g) VI(h) VI(i) VI(j) VI(k) Kinoshita et al. 2012 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 QED O(α ) 30141.90 0.00 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 3 QED total electroweak, total 153.6 63. 6949. HVP (NLO) −98. 1. HLbL (LO) 116. 40. 12.4 HLbL (NLO) W Z ν t h 1.0 HVP (LO) HVP (NNLO) W γ, Z 43. 1-loop: Jackiw, Weinberg and others 1972 2-loop: Kukhto et al. 1992, Czarnecki, Krause, Marciano 0.1 1995, Degrassi, Giudice 1998, Knecht, Peris, Perrottet, de 3. 2. ¨ Rafael 2002, Vainshtein 2003, Heinemeyer, Stockinger, 116591855. 59. Weiglein 2004, Gribouk, Czarnecki 2005 theory M. Hoferichter (IKP & EMMI, TU Darmstadt) Update after Higgs discovery: Gnendiger et al. 2013 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) Hagiwara et al. 2011 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) Calmet et al. 1976, Hagiwara et al. 2011 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) Hayakawa, Kinoshita, Sanda 1995 Bijnens, Pallante, Prades 1995 Knecht, Nyffeler 2001 Jegerlehner, Nyffeler 2009 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. HVP (NLO) −98. 1. HLbL (LO) 116. 40. 43. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) e Kurz, Liu, Marquard, Steinhauser 2014 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 HVP (LO) 6949. HVP (NLO) −98. 1. HLbL (LO) 116. 40. 43. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) e 1.0 Colangelo, MH, Nyffeler, Passera, Stoffer 2014 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Overview of SM prediction experiment aµ 10−11 116592089. ∆aµ 10−11 QED O(α ) 116140973.21 0.03 QED O(α 2 ) 413217.63 0.01 0.00 3 63. QED O(α ) 30141.90 QED O(α 4 ) 381.01 0.02 QED O(α 5 ) 5.09 0.01 116584718.85 0.04 QED total electroweak, total 153.6 1.0 HVP (LO) 6949. 43. HVP (NLO) −98. 1. HLbL (LO) 116. 40. HVP (NNLO) 12.4 HLbL (NLO) 3. 2. 116591855. 59. theory M. Hoferichter (IKP & EMMI, TU Darmstadt) exp −11 aµ − aSM [2.7σ ] µ = (234 ± 86) · 10 ⇒Theory error comes almost exclusively from hadronic part 0.1 HLbL scattering: a dispersive approach Messina, September 26, 2014 4 Hadronic vacuum polarization General principles yield direct connection with experiment Gauge invariance Analyticity = −i k 2 g µν − k µ k ν Π k 2 Z∞ k2 Im Π(s) Πren = Π k 2 − Π(0) = ds π s s − k2 4Mπ2 Unitarity Im Π(s) = α s σtot e+ e− → hadrons = R(s) 4πα 3 1 Lorentz structure, 1 kinematic variable, parameter-free Dedicated e + e − program under way: BaBar, Belle, BESIII, CMD3, KLOE2, SND M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 5 HLbL scattering Large uncertainty and model dependence q1 , µ −q3 , λ q2 , ν k, σ 5 kinematic variables, (at least) 29 Lorentz structures M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 6 HLbL scattering Large uncertainty and model dependence q1 , µ −q3 , λ q2 , ν k, σ 5 kinematic variables, (at least) 29 Lorentz structures Dispersive point of view Analytic structure: poles and cuts ֒→ residues and imaginary parts ⇒ by definition on-shell quantities ֒→ form factors and scattering amplitudes from experiment Expansion: mass of intermediate states, partial waves Pseudoscalar poles most important, next ππ cuts M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 6 HLbL scattering Large uncertainty and model dependence q1 , µ −q3 , λ q2 , ν k, σ 5 kinematic variables, (at least) 29 Lorentz structures Dispersive point of view Analytic structure: poles and cuts ֒→ residues and imaginary parts ⇒ by definition on-shell quantities ֒→ form factors and scattering amplitudes from experiment Expansion: mass of intermediate states, partial waves Pseudoscalar poles most important, next ππ cuts Decompose the tensor according to 0 π -pole ¯ Πµνλ σ = Πµνλ σ + ΠFsQED µνλ σ + Πµνλ σ + · · · ֒→ accounts for one- and two-pion intermediate states ¯ , but e.g. 3π more difficult Generalizes immediately to η , η ′ , K K M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 6 Pion pole: pion transition form factor Knecht, Nyffeler 2001 Master formula for pion-pole contribution aπµ 0 -pole = −e6 × ( Z d4 q1 (2π )4 Z 1 d4 q2 (2π )4 q12 q22 s (p + q1 )2 − m2 (p − q2 )2 − m2 Fπ 0 γ ∗ γ ∗ (q12 , q22 )Fπ 0 γ ∗ γ ∗ (s, 0) s − Mπ2 T1 (q1 , q2 ; p) + Fπ 0 γ ∗ γ ∗ (s, q12 )Fπ 0 γ ∗ γ ∗ (q22 , 0) q22 − Mπ2 ) T2 (q1 , q2 ; p) Crucial ingredient: pion transition form factor Fπ 0 γ ∗ γ ∗ (q12 , q22 ) Wick rotation: only space-like s, q12 , q22 contribute Dispersive approach π 0 , η, η ′ On-shell form factor Fix parameters wherever data are available Use analyticity to go to the space-like region M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 7 Pion transition form factor: physical regions qs2 isoscalar e− π0 e− e+ e+ π 0 → e+ e− e+ e− qv2 − e π0 isovector π 0 → γγ e+ M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 8 Pion transition form factor: physical regions qs2 isoscalar π0 e− e− e+ e+ π 0 → e+ e− e+ e− qv2 − e π0 π 0 → γγ isovector related to γπ → ππ e+ M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 8 Pion transition form factor: physical regions qs2 isoscalar related to φ → 3π Mφ2 related to ω → 3π Mω2 π0 e− e− e+ e+ π 0 → e+ e− e+ e− qv2 − e π0 π 0 → γγ isovector related to γπ → ππ e+ M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 8 Pion transition form factor: unitarity relations process unitarity relations γv∗ γv∗ SC 1 SC 2 Fπ 0 γγ P γs γπ → ππ γs F3π P γs∗ ω, φ γv∗ ω, φ Γπ 0 γ γv∗ ω, φ P γs∗ γv∗ γs∗ Γ3π γv∗ γs∗ P σ (e+ e− → 3π ) F3π ω → 3π , φ → 3π d2 Γ (ω , φ → 3π ) dsdt σ (e+ e− → π 0 γ ) γs∗ M. Hoferichter (IKP & EMMI, TU Darmstadt) σ (γπ → ππ ) σ (γπ → ππ ) d2 Γ dsdt (ω , φ → 3π ) γ ∗ → 3π common theme: resum ππ rescattering σ (e+ e− → 3π ) HLbL scattering: a dispersive approach Messina, September 26, 2014 9 Predicting σ (e+ e− → π 0 γ ) from σ (e+ e− → 3π ) fit isoscalar q 2 dependence to σ (e + e − → 3π ): a(q 2 ) = F3π 3 + β q2 + q4 π R∞ ds q2 thr Im a(s) s 2 (s−q 2 ) e + e − → π 0 γ : both isoscalar and isovector σ (e + e − → π 0 γ ) reproduced X Next steps: analytic continuation into space-like region generalize to doubly-virtual case using e+ e− → π 0 γ as input MH, Kubis, Leupold, Niecknig, Schneider (in preparation) M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 10 ππ intermediate states: FsQED contribution 0 -pole FsQED ¯ Πµνλ σ = Ππµνλ σ + Πµνλ σ + Πµνλ σ + ··· Separate terms with simultaneous cuts V 2 V 2 2 V ΠFsQED µνλ σ = Fπ q1 Fπ q2 Fπ q3 × Multiplication of sQED diagrams with FπV gives correct q 2 -dependence ֒→ not an approximation ¯ µνλ σ has cuts only in one channel Remaining ππ contribution included in Π ֒→ partial-wave expansion, dispersion relations for this part M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 11 ππ intermediate states: reconstruction theorem ¯ µνλ σ = ∑ Aµνλ σ Πi (s) + Aµνλ σ Πi (t) + Aµνλ σ Πi (u) Π i,s i,t i,u i Πi functions with a right-hand cut only ֒→ similar to reconstruction theorem of ππ scattering Stern, Sazdjian, Fuchs 1993 Keep discontinuity of lowest partial waves Dispersion integrals for Πi required to have correct soft-photon zeros ֒→ forces subtraction constants to zero M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 12 ππ intermediate states: reconstruction theorem ¯ µνλ σ = ∑ Aµνλ σ Πi (s) + Aµνλ σ Πi (t) + Aµνλ σ Πi (u) Π i,s i,t i,u i Πi functions with a right-hand cut only ֒→ similar to reconstruction theorem of ππ scattering Stern, Sazdjian, Fuchs 1993 Keep discontinuity of lowest partial waves Dispersion integrals for Πi required to have correct soft-photon zeros ֒→ forces subtraction constants to zero Gives relations such as Π1 (s) = s − q32 π Z∞ ds′ s′ − q32 4Mπ2 ′ 2 2 2 ¯0 K1 (s′ ,s)Im h ++,++ s ; q1 ,q2 ; q3 ,0 0 Imh++,++ s; q12 , q22 ; q32 , 0 = s 4Mπ2 σ (s) = 1 − K1 (s′ , s) = s M. Hoferichter (IKP & EMMI, TU Darmstadt) h0,++ h0,++ σ (s) ∗ h s; q12 , q22 h0,++ s; q32 , 0 16π 0,++ s′ − q12 − q22 1 − s′ − s λ (s′ , q 2 , q 2 ) 1 2 λ (x , y , z) = x 2 + y 2 + z 2 − 2(xy + xz + yz) HLbL scattering: a dispersive approach Messina, September 26, 2014 12 ππ intermediate states: non-diagonal terms ¯ µνλ σ = ∑ Aµνλ σ Πi (s) + Aµνλ σ Πi (t) + Aµνλ σ Πi (u) Π i,s i,t i,u i µνλ σ Need to choose Ai so that Πi are free of kinematic singularities General procedure for finding such a basis Bardeen, Tung 1968, Tarrach 1975 Results in non-diagonal terms Π1 (s) = s − q32 π Z∞ 4Mπ2 ds′ 2ξ 1 ξ 2 ′ ′ ′ ¯0 ¯0 s h s + Im h K (s ,s)Im 1 ++,++ 00,++ s′ − q32 λ (s′ ,q12 ,q22 ) Solved for S-wave, D-wave calculation in progress M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 13 ππ intermediate states: master formula Colangelo, MH, Procura, Stoffer 2014 Master formula for ππ intermediate states 6 aππ µ =e Z 4 d q1 (2π )4 Z ∑ Ti (q1 , q2 ; p)Ii s, q12 , q22 d q2 i (2π )4 q12 q22 s (p + q1 )2 − m2 (p − q2 )2 − m2 q1 , µ −q3 , λ q2 , ν k, σ 4 Ii s, q12 , q22 : dispersive integrals over γ ∗ γ ∗ → ππ helicity partial waves What is included? How? ֒→ sorted by analytic structure in the crossed channel M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 14 Preliminary numbers: FsQED V 2 V 2 2 V ΠFsQED µνλ σ = Fπ q1 Fπ q2 Fπ q3 × ` factor FπV (s) = exp Input for FπV q 2 : Omnes Results for aFsQED in units of 10−11 µ ∞ s R π 4Mπ2 δ 1 (s ′ ) 1 ds′ s′ (s ′ −s) phase shift δ11 loop integrals DR 1 DR 2 CCL −13.77 ± 0.01 −15.87 ± 0.01 −14.57 ± 0.01 −14.65 ± 0.01 −16.90 ± 0.02 −15.53 ± 0.01 CCL + ρ ′ , ρ ′′ M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 15 Preliminary numbers: FsQED V 2 V 2 2 V ΠFsQED µνλ σ = Fπ q1 Fπ q2 Fπ q3 × ` factor FπV (s) = exp Input for FπV q 2 : Omnes Results for aFsQED in units of 10−11 µ ∞ s R π 4Mπ2 δ 1 (s ′ ) 1 ds′ s′ (s ′ −s) phase shift δ11 loop integrals DR 1 DR 2 CCL −13.77 ± 0.01 −15.87 ± 0.01 −14.57 ± 0.01 −14.65 ± 0.01 −16.90 ± 0.02 −15.53 ± 0.01 CCL + ρ ′ , ρ ′′ Dependence on FπV (s): analytic continuation can be stabilized using space-like data M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 15 Preliminary numbers: FsQED V 2 V 2 2 V ΠFsQED µνλ σ = Fπ q1 Fπ q2 Fπ q3 × ` factor FπV (s) = exp Input for FπV q 2 : Omnes Results for aFsQED in units of 10−11 µ ∞ s R π 4Mπ2 δ 1 (s ′ ) 1 ds′ s′ (s ′ −s) phase shift δ11 loop integrals DR 1 DR 2 CCL −13.77 ± 0.01 −15.87 ± 0.01 −14.57 ± 0.01 −14.65 ± 0.01 −16.90 ± 0.02 −15.53 ± 0.01 CCL + ρ ′ , ρ ′′ Dependence on FπV (s): analytic continuation can be stabilized using space-like data µνλ σ Basis Ai not unique (but: Πi need to be free of kinematic singularities) ֒→ DR 1/2 equivalent for suitable high-energy behavior ⇒ theoretical uncertainty Why does this work so well? it shouldn’t: double-spectral regions, only S-waves! M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 15 γ ∗ γ ∗ → ππ partial waves: unitarity relations process γv∗ building blocks and SC left-hand cut γv∗ π γs∗ 2π γv∗ γs∗ γs∗ γv∗ ω, φ ω, φ γv∗ 3π (∼ ω , φ ) γv∗ unitarity relations γ S,D α1 ± β1 , α2 ± β2 γ γ∗ S,D γ α1 q 2 ± β1 q 2 , ChPT e+ e− → ππγ e+ e− → e+ e− ππ on-shell singly-virtual ChPT γ∗ S,D γ∗ M. Hoferichter (IKP & EMMI, TU Darmstadt) (e+ e− → ππγ ) e+ e− → e+ e− ππ HLbL scattering: a dispersive approach doubly-virtual Messina, September 26, 2014 16 Simplified input for γ ∗ γ ∗ → ππ : pion pole ` representation for S-wave Omnes I I h0,++ (s) = N0,++ (s) + ΩI0 (s) π Zsm 4Mπ2 ds ′ sin δ0I (s ′ ) |ΩI0 (s ′ )| 1 s′ − s − s ′ − q12 − q22 2ξ1 ξ2 I ′ I ′ N0,++ N0,00 (s ) + (s ) 2 2 2 2 λ s ′ , q1 , q2 λ s ′ , q1 , q2 ∗ → ππ Starting point: Roy–Steinerequations for γ ∗ γ ` factors ΩI0 (s) = exp Omnes sm s R π 4Mπ2 δ I (s ′ ) ds′ s′ (s0 ′ −s) I LHC approximated by pion pole N0, λ1 λ2 only FπV q12 FπV q22 × I Finite matching point: h0,++ (s) = 0 above sm √ Take sm = 0.98 GeV ¯ ⇒ “σ -contribution” ֒→ no f0 (980) or coupling to K K M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 17 Preliminary numbers: ππ rescattering for S-waves −11 aππ µ in units of 10 phase shift δ11 CCL CCL + ρ ′ , ρ ′′ M. Hoferichter (IKP & EMMI, TU Darmstadt) I = 0 DR 1 I = 0 DR 2 I = 2 DR 1 I = 2 DR 2 −7.13 ± 0.03 −6.75 ± 0.06 1.82 ± 0.01 1.68 ± 0.01 −7.79 ± 0.03 −7.38 ± 0.06 2.00 ± 0.01 1.84 ± 0.01 HLbL scattering: a dispersive approach Messina, September 26, 2014 18 Preliminary numbers: ππ rescattering for S-waves −11 aππ µ in units of 10 phase shift δ11 CCL CCL + ρ ′ , ρ ′′ I = 0 DR 1 I = 0 DR 2 I = 2 DR 1 I = 2 DR 2 −7.13 ± 0.03 −6.75 ± 0.06 1.82 ± 0.01 1.68 ± 0.01 −7.79 ± 0.03 −7.38 ± 0.06 2.00 ± 0.01 1.84 ± 0.01 Adding the FsQED contribution phase shift δ11 CCL CCL + ρ ′ , ρ ′′ M. Hoferichter (IKP & EMMI, TU Darmstadt) FsQED sum DR 1 sum DR 2 −13.77 ± 0.01 −19.08 ± 0.03 −18.84 ± 0.06 −14.65 ± 0.01 −20.44 ± 0.03 −20.19 ± 0.06 HLbL scattering: a dispersive approach Messina, September 26, 2014 18 Preliminary numbers: ππ rescattering for S-waves −11 aππ µ in units of 10 phase shift δ11 CCL CCL + ρ ′ , ρ ′′ I = 0 DR 1 I = 0 DR 2 I = 2 DR 1 I = 2 DR 2 −7.13 ± 0.03 −6.75 ± 0.06 1.82 ± 0.01 1.68 ± 0.01 −7.79 ± 0.03 −7.38 ± 0.06 2.00 ± 0.01 1.84 ± 0.01 Adding the FsQED contribution phase shift δ11 CCL CCL + ρ ′ , ρ ′′ FsQED sum DR 1 sum DR 2 −13.77 ± 0.01 −19.08 ± 0.03 −18.84 ± 0.06 −14.65 ± 0.01 −20.44 ± 0.03 −20.19 ± 0.06 Comparing to the literature Jegerlehner, Nyffeler 2009 Contribution BPP HKS KN MV BP PdRV N/JN π 0 , η, η′ π , K loops π , K loops + other subleading in Nc 85 ± 13 −19 ± 13 – 2.5 ± 1.0 −6.8 ± 2.0 21 ± 3 82.7 ± 6.4 −4.5 ± 8.1 – 1.7 ± 1.7 – 9.7 ± 11.1 83 ± 12 – – – – – 114 ± 10 – 0 ± 10 22 ± 5 – – – – – – – – 114 ± 13 −19 ± 19 – 15 ± 10 −7 ± 7 2.3± 99 ± 16 −19 ± 13 83 ± 32 89.6 ± 15.4 80 ± 40 136 ± 25 110 ± 40 105 ± 26 116 ± 39 Axial vectors Scalars Quark loops Total M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach – 22 ± 5 −7 ± 2 21 ± 3 Messina, September 26, 2014 18 Summary Dispersive framework for the calculation of the HLbL contribution to aµ Includes one- and two-pion intermediate states Master formula for ππ in terms of γ ∗ γ ∗ → ππ partial waves Next steps Pion transition form factor Refinement of γ ∗ γ ∗ → ππ input Comprehensive treatment of D-waves Error analysis: which input quantity has the biggest impact on aµ ? M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 19 Outlook: towards a data-driven analysis of HLbL γπ → ππ e+ e− → e+ e− π 0 e+ e− → π 0 γ e+ e− → ππγ ω, φ → ππγ ππ → ππ Pion transition formfactor Fπ0 γ ∗γ ∗ q12 , q22 Partial waves for γ ∗ γ ∗ → ππ pion polarizabilities e+ e− → 3π ω, φ → 3π e+ e− → e+ e− ππ Pion vector form factor FVπ γπ → γπ ω, φ → π 0 γ ∗ Reconstruction of γ ∗ γ ∗ → ππ , π 0 : combine experiment and theory constraints ֒→ simplified version for ππ in this talk, some first results for π 0 ¯ , multi-pion channels (resonances), pQCD constraints, . . . Beyond: η , η ′ , K K M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 20 Pion vector form factor Dispersive approach: resum ππ rescattering FVπ as example Unitarity for pion vector form factor Im FVπ (s) = θ s − 4Mπ2 FVπ (s)e −i δ1 (s) sin δ1 (s) FVπ t1 ֒→ final-state theorem: phase of FVπ equals ππ P-wave phase δ1 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Watson 1954 Messina, September 26, 2014 21 Pion vector form factor Dispersive approach: resum ππ rescattering FVπ as example Unitarity for pion vector form factor FVπ Im FVπ (s) = θ s − 4Mπ2 FVπ (s)e −i δ1 (s) sin δ1 (s) t1 ֒→ final-state theorem: phase of FVπ equals ππ P-wave phase δ1 Watson 1954 ` function Omnes ` 1958 Solution in terms of Omnes FVπ (s) = P(s)Ω1 (s) Ω1 (s) = exp ( s π Z∞ 4Mπ2 ds′ δ1 (s′ ) ′ s (s′ − s) ) Asymptotics + normalization ⇒ P(s) = 1 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 21 γ ∗ γ ∗ → ππ partial waves Roy(–Steiner) equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance On-shell case γγ → ππ 2011 Moussallam 2010, MH, Phillips, Schat ֒→ precision determination of σ → γγ coupling Singly-virtual γ ∗ γ → ππ Moussallam 2013 Doubly-virtual γ ∗ γ ∗ → ππ : anomalous thresholds Colangelo, MH, Procura, Stoffer arXiv:1309.6877 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 22 γ ∗ γ ∗ → ππ partial waves Roy(–Steiner) equations = Dispersion relations + partial-wave expansion + crossing symmetry + unitarity + gauge invariance On-shell case γγ → ππ 2011 Moussallam 2010, MH, Phillips, Schat ֒→ precision determination of σ → γγ coupling Singly-virtual γ ∗ γ → ππ Moussallam 2013 Doubly-virtual γ ∗ γ ∗ → ππ : anomalous thresholds Colangelo, MH, Procura, Stoffer arXiv:1309.6877 Constraints Low energies: pion polarizabilities, ChPT e− π π π− Primakoff: γπ → γπ (COMPASS), γγ → ππ (JLab) π e+ − Scattering: e+ e− → e+ e− ππ , e+ e− → ππγ (Transition) Form factors: FVπ , ω , φ → π 0 γ ∗ ֒→ discuss these constraints in the following M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach e− π Z π e+ Messina, September 26, 2014 22 Left-hand cut ω, φ Pion pole: coupling determined by FVπ as before Multi-pion intermediate states: approximate in terms of resonances 2π ∼ ρ : can even be done exactly using γ ∗ → 3π amplitude ֒→ see pion transition form factor 3π ∼ ω , φ : narrow-width approximation ֒→ transition form factors for ω , φ → π 0 γ ∗ Higher intermediate states also potentially relevant: axials, tensors ֒→ sum rules to constrain their transition form factors Pauk, Vanderhaeghen 2014 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 23 ω , φ → π 0 γ ∗ transition form factor 100 100 VMD f1 (s) = a Ω(s) once subtracted f1 (s) twice subtracted f1 (s) |Fωπ0 (s)|2 |Fφπ0 (s)|2 NA60 ’09 NA60 ’11 Lepton-G VMD Terschl¨ usen et al. f1 (s) = a Ω(s) full dispersive 10 10 1 1 0 0.1 0.2 √0.3 0.4 s [GeV] 0.5 0.6 0 0.1 0.2 0.3 √0.4 0.5 0.6 0.7 0.8 s [GeV] Schneider, Kubis, Niecknig 2012 Puzzle of steep rise in Fωπ 0 ֒→ measurement of Fφ π 0 would be extremely valuable Clarification important for pion transition form factor, but also γ ∗ γ ∗ → ππ M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 24 Subtraction functions ` representation for S-wave Omnes " h0,++ (s) = ∆0,++ (s) + Ω0 (s) + + s(s − s+ ) 2π 2q12 q22 s π Z∞ ds ′ 4Mπ2 Z∞ 4Mπ2 ds ′ 1 1 (s − s+ )a+ q12 , q22 + (s − s− )a− q12 , q22 + q12 q22 b q12 , q22 2 2 sin δ0 (s ′ )∆0,++ (s ′ ) s(s − s− ) + s ′ (s ′ − s+ )(s ′ − s)|Ω0 (s ′ )| 2π ′ ′ sin δ0 (s )∆0,00 (s ) s ′ (s ′ − s+ )(s ′ − s− )|Ω0 (s ′ )| # Z∞ ds ′ 4Mπ2 sin δ0 (s ′ )∆0,++ (s ′ ) s ′ (s ′ − s− )(s ′ − s)|Ω0 (s ′ )| q s± = q12 + q22 ± 2 q12 q22 Inhomogeneities ∆0,++ (s), ∆0,00 (s) include left-hand cut Subtraction functions q b q12 ,q22 and a+ q12 ,q22 − a− q12 ,q22 multiply q12 q22 and q12 q22 ֒→ inherently doubly-virtual observables ⇒ need ChPT (or lattice) However: a(q12 ,q22 ) = (a+ (q12 ,q22 ) + a− (q12 ,q22 ))/2 fixed by singly-virtual measurements ֒→ compare with chiral prediction, uncertainty estimates for the other functions M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 25 Subtraction functions: chiral constraints 1-loop result for arbitrary qi2 , e.g. 0 aπ q12 ,q22 = − Mπ2 2 2 8π 2 Fπ2 q12 − q2 + q12 1 + ( q12 + q22 + 2 Mπ2 q12 + q22 + q12 q22 C0 q12 ,q22 ) 2 6q22 ¯ q 2 + q 2 1 − 6q1 ¯ q2 J J 1 2 2 q12 − q22 q12 − q22 Special case: q12 = q22 = 0 ¯l6 − ¯l5 π ± Mπ + ··· = α1 − β1 2α 48π 2 Fπ2 π 0 0 1 Mπ aπ (0,0) = − + ··· = α − β1 2α 1 96π 2 Fπ2 ± aπ (0,0) = ± b π (0,0) = 0 0 b π (0,0) = − 1 + ··· 1440π 2 Fπ2 Mπ2 ֒→ resum higher chiral orders into pion polarizabilities M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 26 Subtraction functions: dispersive representation 0.4 0.5 Akhmetshin (2003) βρ , βω : fitted βρ = βω = 0 Cross-section (nb) Cross-section (nb) 0.5 0.3 0.2 0.1 0 0.4 Achasov (2002) βρ , βω : fitted βρ = βω = 0 0.3 0.2 0.1 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.6 0.65 0.7 q (GeV) 0.75 0.8 0.85 0.9 0.95 q (GeV) Moussallam 2013 Singly-virtual case: phenomenological representation with chiral constraints ֒→ parameters fixed from e + e − → π 0 π 0 γ (CMD2 and SND) Moussallam 2013 Dispersive representation: imaginary part from 2π , 3π , . . . ֒→ analytic continuation from time-like to space-like kinematics Example: I = 2 ⇒ isovector photons ⇒ 2π ∼ ρ h i a2 q12 , q22 = α0 α 2 + α q12 F ρ q12 + q22 F ρ q22 + q12 q22 F ρ q12 F ρ q22 ∗ ∞ 1 Z q 3 (s) F V (s) Ω1 (s) F ρ q2 = ds ππ 3/2 π π s s − q2 qππ (s) = 4Mπ2 r s − Mπ2 4 ֒→ α0 and α can be determined from a2 (q 2 , 0) alone! M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 27 Quark-mass dependence: phase shifts 1-loop IAM with low-energy constants ´ from Hanhart, Pelaez, R´ıos 2008 Quark-mass dependence of the phase shifts M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 28 Quark-mass dependence: FsQED Check accuracy of IAM phase shift δ11 loop integrals DR 1 DR 2 CCL −13.77 ± 0.01 −15.87 ± 0.01 −14.57 ± 0.01 −14.65 ± 0.01 −16.90 ± 0.02 −15.53 ± 0.01 −13.72 ± 0.01 −15.82 ± 0.01 −14.51 ± 0.01 CCL + ρ ′ , ρ ′′ IAM Quark-mass dependence of FπV (s) via ` representation phase shift in Omnes Guo, Hanhart, Llanes-Estrada, Meißner 2009 ֒→ relevant for large Mπ Quark-mass dependence of aFsQED µ roughly ∝ Mπ−2 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 29 Quark-mass dependence: S-waves DR 1 DR 1 + IAM DR 2 DR 2 + IAM I=0 −7.13 ± 0.03 −7.70 ± 0.04 −6.75 ± 0.06 −7.28 ± 0.06 I=2 1.82 ± 0.01 1.73 ± 0.01 1.68 ± 0.01 1.60 ± 0.01 Choose √ sm = 2MK = 2 q phys 2 MK phys 2 + Mπ2 − Mπ Beyond 3Mπ : σ and ρ become bound states /2, compare to CCL δ11 ֒→ highly non-trivial quark-mass dependence M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 30 Anomalous thresholds q22 → −∞ q22 = 0 − e π q22 = 4Mπ2 − q12 π e+ q22 = 4Mπ2 q22 → ∞ Analytic continuation in qi2 in time-like region non-trivial in doubly-virtual case Singularities from second sheet move onto first one ֒→ need to deform the integration contour Problem already occurs for a simple triangle loop function C0 (s) ֒→ extra factor tℓ (s)/Ωℓ (s) is well defined in the whole complex plane ` solution ֒→ remedy in case of C0 (s) can be taken over to full Omnes Becomes relevant for e + e + → e + e − ππ in time-like kinematics M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 31 Numerical check of anomalous thresholds numerical analytic dispersive numerical analytic dispersive 5 4 3 2 1 0 −Im C0 (s) −Re C0 (s) 3 2 1 0 -1 -2 -10 -10 -5 -10 -5 0 q12 0 5 5 -5 q22 -10 -5 1010 0 q12 0 5 5 q22 1010 Comparison for s = 5, Mπ = 1 ֒→ dispersive reconstruction of C0 (s) works! M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 32 Numerical check of anomalous thresholds numerical analytic dispersive numerical analytic dispersive 5 4 3 2 1 0 −Im C0 (s) −Re C0 (s) 3 2 1 0 -1 -2 -10 -10 -5 -10 -5 0 q12 0 5 5 -5 q22 -10 -5 1010 0 q12 0 5 5 q22 1010 Ignore anomalous piece ֒→ substantial deviations for large virtualities! M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 33 γ ∗ γ ∗ → ππ Left-hand cut approximated by pion pole + resonances Unitarity for γ ∗ γ ∗ → ππ system: Watson’s theorem disc f0 s; q12 , q22 = 2i σs f0 s; q12 , q22 t0∗ (s) t0 (s) = σ1 ei δ0 (s) sin δ0 (s) s σs = r 1− f0 t0 4Mπ2 s ` function, e.g. for pion pole only ֒→ solution in terms of Omnes ∞ Ω (s) Z N0 s′ ; q12 ,q22 sin δ0 (s′ ) f0 s; q12 ,q22 = 0 ds′ π (s′ − s)|Ω0 (s′ )| 4Mπ2 q λ (s,q12 ,q22 ) q L = log s − q12 − q22 − σs λ (s,q12 ,q22 ) s − q12 − q22 + σs N0 s; q12 ,q22 = σs 2L q λ s,q12 ,q22 λ (x,y ,z) = x 2 + y 2 + z 2 − 2(xy + xz + yz) Analytic continuation in qi2 ? M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 34 γ ∗ γ ∗ → ππ : analytic continuation L = log √ 2 s−q12 −q22 +σs λ (s,q12 ,q22 ) q2 →0 σs √ −→ ± log 1+ 2 2 2 2 1−σs s−q1 −q2 −σs λ (s,q1 ,q2 ) Singularities of the log: anomalous thresholds s± = q12 + q22 − q12 q22 2Mπ2 ± 1 2Mπ2 q q12 q12 − 4Mπ2 q22 q22 − 4Mπ2 ` derivation breaks down ֒→ usual Omnes Idea: consider first the scalar loop function d4 k k 2 − Mπ2 (k + q1 )2 − Mπ2 (k − q2 )2 − Mπ2 2 2 L = −π i σs N0 s; q1 ,q2 Z 1 C0 (s) ≡ C0 (q1 + q2 )2 ; q12 ,q22 = 2 iπ 2π i disc C0 (s) = − q λ s,q12 ,q22 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 35 γ ∗ γ ∗ → ππ : anomalous thresholds s+ = q12 + q22 − q12 q22 2Mπ2 + 1 2Mπ2 q q12 q12 − 4Mπ2 q22 q22 − 4Mπ2 Anomalous threshold usually on the second sheet Trajectory of s+ (q22 ) for 0 ≤ q12 ≤ 4Mπ2 ֒→ moves through unitarity cut onto first sheet q22 → −∞ q22 = 0 q22 = 4Mπ2 − q12 q22 = 4Mπ2 M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach q22 → ∞ Messina, September 26, 2014 36 γ ∗ γ ∗ → ππ : anomalous thresholds s+ = q12 + q22 − q12 q22 2Mπ2 + 1 2Mπ2 q q12 q12 − 4Mπ2 q22 q22 − 4Mπ2 Anomalous threshold usually on the second sheet Trajectory of s+ (q22 ) for 0 ≤ q12 ≤ 4Mπ2 ֒→ moves through unitarity cut onto first sheet q22 → −∞ q22 = 0 q22 = 4Mπ2 − q12 Need to deform the contour C0 (s) = 1 2π i Z∞ 4Mπ2 ds′ disc C0 (s′ ) s′ − s + θ q12 + q22 − 4Mπ2 q22 = 4Mπ2 q22 → ∞ 1 1 Z ∂ sx discan C0 (sx ) dx 2π i ∂x sx − s sx = x4Mπ2 + (1 − x)s+ M. Hoferichter (IKP & EMMI, TU Darmstadt) 0 4π 2 discan C0 (s) = q λ s,q12 ,q22 HLbL scattering: a dispersive approach Messina, September 26, 2014 36 ` representation γ ∗ γ ∗ → ππ : back to the Omnes f0 s; q12 , q22 = ∞ Ω0 (s) R π 4Mπ2 ds′ N0 (s ′ ;q12 ,q22 )sin δ0 (s ′ ) (s ′ −s)|Ω0 (s ′ )| Integrand similar to the scalar-loop example N0 s; q12 ,q22 sin δ0 (s) disc C0 (s) sin δ0 (s) disc C0 (s) t0 (s) =− =− |Ω0 (s)| π i σs |Ω0 (s)| πi Ω0 (s) ֒→ additional factor independent of qi2 and well-defined in the whole s-plane M. Hoferichter (IKP & EMMI, TU Darmstadt) HLbL scattering: a dispersive approach Messina, September 26, 2014 37 ` representation γ ∗ γ ∗ → ππ : back to the Omnes f0 s; q12 , q22 = ∞ Ω0 (s) R π 4Mπ2 ds′ N0 (s ′ ;q12 ,q22 )sin δ0 (s ′ ) (s ′ −s)|Ω0 (s ′ )| Integrand similar to the scalar-loop example N0 s; q12 ,q22 sin δ0 (s) disc C0 (s) sin δ0 (s) disc C0 (s) t0 (s) =− =− |Ω0 (s)| π i σs |Ω0 (s)| πi Ω0 (s) ֒→ additional factor independent of qi2 and well-defined in the whole s-plane ` representation for γ ∗ γ ∗ → ππ Omnes ∞ Ω (s) Z N0 s′ ; q12 ,q22 sin δ0 (s′ ) f0 s; q12 ,q22 = 0 ds′ π (s′ − s)|Ω0 (s′ )| 4Mπ2 1 + θ q12 + q22 − 4Mπ2 sx = x4Mπ2 M. Hoferichter (IKP & EMMI, TU Darmstadt) Ω0 (s) Z + (1 − x)s+ 2π i 0 dx ∂ sx discan f0 sx ; q12 ,q22 ∂x sx − s 8π t0 (s) discan f0 s; q12 ,q22 = − q λ s,q12 ,q22 Ω0 (s) HLbL scattering: a dispersive approach Messina, September 26, 2014 37
© Copyright 2024 ExpyDoc