1 Celle Solari a Perovskite Processate da Soluzione: Fondamenti e Tecnologia Annamaria Petrozza Mario Caironi “STATO E PROSPETTIVE DEL FOTOVOLTAICO IN ITALIA” Roma, 26 Giugno 2014 Excitonic Solar Cells Type II Hetero-Junction Hybrid Crystals in DSSC-Like Devices CH3NH3PbI3 perovskite as light antenna in the DSSC concept e- injection hu Hole transfer H. S. Kim et al. Sci Rep. 2: 591 (2012) Hybrid Crystals in Hybrid Solar Cells Cl-doped CH3NH3PbI3 Perovskite role: • Absorber HTL FTO Glass M.Lee et al. Science 338, 643 (2012) • Electron-transporter Al2O3 TiO2 Hybrid Crystals in Hybrid Solar Cells 1.2 Voc = BG -0.2eV -0.4eV GaAs MSSC Voc (V) 1.0 -0.6eV OPV CdTe aSi 0.8 Si DSC CIGS 0.6 ncSi CZTSS 0.4 1.0 1.2 1.4 1.6 Bandgap (eV) 1.8 5 Organo-Metal Halide Crystalline Perovskite ABX3 B = (CH3NH3 )x X= I, Cl, Br A= Pb Which is their strength? 7 Which is their strength? 19.2 % (NOT published) 40 cents /watt Laboratory Cells G. Hodes, Science ,Vol. 342 no. 6156 pp. 317-318 8 Designing the Device Architecture CH3NH3PbI3-xClx HTM HTM HTM Al2O3 scaffold+ Perovskite Perovkite capping layer Perovkite layer Nano-structured vs Thin Film J. Ball, EES, 2013 9 How do they work? How far can they go? 10 Snaith JH, JPCL, 2013 Thin Film Architecture Excitons vs Free Carriers Nat Comm, DOI: 10.1038/ncomms4586 11 Thin Film Architecture 1m carriers diffusion length in solution processed thin film Science , 342,341, 2013 12 Thin Film vs Nano-structured CH3NH3PbI3 CH3NH3PbI3-xClx * * * 13 Thin Film vs Nano-structured FLAT 500 nm GRADED MESOPOROUS 50 nm J. Ball et al, EES , 2013. 14 Open Questions Relationship Structure/Optoelectronic properties •Interfaces Structure/ Interface Physics – which are the right buffers layers? • Charge Transport • DOS, Doping • Are these materials Ferroelectric? • Photoluminescence – origin? There is lasing! • Pb substitution (Nakita Noel et al, Energy &Env Sci, doi: 10.1039/c4ee01076) 15 “Photovoltaic inks” Ink inlet nk supply ps Soluble Materials Rotating screen Ink / Paste Printed pattern Squeegee Backup roller Meniscus Inks Printable Printed pattern Ink / Paste Coating ply Squeegee Screen Rotary Screen Printing Slot-die Coating Screen Printing Printed pattern Ink supply Air / N2 Piezo dV/dt waveform Printed pattern nkjet Printing 00 Impression cylinder Doctor blade Printed pattern Nozzle Low cost PVs 00 Impression cylinder Gravure cylinder Flexible PVs Spray Printing Doctor blade Ink bath Gravure Printing Lightweight PVs Printing plate cylinder Anilox roller Fountain roller Ink bath Flexographic Printing 16 Printed stacked layers Electrode Interlayer Photoactive layer Interlayer 0.2 mm Electrode PET Low-temperature printing on plastic 17 17 “SolarPrint” project Continuous “Roll-to-Roll” Printing Process on an Industrial Printer Research Institutions Know-how Solution Processable PVs State-of-the-Art Scientific Labs High Productivity (>10 meters/minute) Low Cost Industrial Partner Leader in Printing Technology Low Environmental Impact Low Capital Investments 18 Large Area Printing of Conductive Inks RS = 1 Ω/sq (RS, ITO = 15 Ω/sq) 19 Road-map February 2017 Indoor photovoltaics Start-up February 2015 • Wireless Sensors, Tags • Internet of Things • Energy Scavenging • Smart Walls July 2014 July 2012 September 2011 Joint Lab II round of funding Technology Transfer 20 Q2 2014 From Molecules to PV Modules Solar-Print Project Perovskites Technology V + Roll-to-Roll Printed Photovoltaics Low-Cost “Portable” Energy and Very Large Area Applications 21 Acknowledgements Dr Giulia Grancini Dr Ajay Ram Srimath Kandada Dr Chen Tao Dr James Ball Valerio D’Innocenzo Michele De Bastiani Marcelo Alcocer Tomas Ljetes Jiaren Chen Marina Gandini Stefanie Neutzer Prof. Guglielmo Lanzani Starting Grant SOLARPRINT TEAM: Dr. Michele Garbugli Dr. Marco Carvelli Dr. Antonio Iacchetti Nicolas Bienville Nicola Piva Dr. Dario Natali (POLIMI)
© Copyright 2024 ExpyDoc