Fondamenti e Tecnologia

1
Celle Solari a Perovskite Processate
da Soluzione:
Fondamenti e Tecnologia
Annamaria Petrozza
Mario Caironi
“STATO E PROSPETTIVE
DEL FOTOVOLTAICO IN ITALIA”
Roma, 26 Giugno 2014
Excitonic Solar Cells
Type II Hetero-Junction
Hybrid Crystals in DSSC-Like Devices
CH3NH3PbI3 perovskite as light
antenna in the DSSC concept
e- injection
hu
Hole transfer
H. S. Kim et al. Sci Rep. 2: 591 (2012)
Hybrid Crystals in Hybrid Solar Cells
Cl-doped CH3NH3PbI3
Perovskite role:
• Absorber
HTL
FTO
Glass
M.Lee et al. Science 338, 643 (2012)
• Electron-transporter
Al2O3
TiO2
Hybrid Crystals in Hybrid Solar Cells
1.2
Voc = BG
-0.2eV
-0.4eV
GaAs
MSSC
Voc (V)
1.0
-0.6eV
OPV
CdTe
aSi
0.8
Si
DSC
CIGS
0.6
ncSi
CZTSS
0.4
1.0
1.2
1.4
1.6
Bandgap (eV)
1.8
5
Organo-Metal Halide Crystalline Perovskite
ABX3
B = (CH3NH3 )x
X= I, Cl, Br
A= Pb
Which is their strength?
7
Which is their strength?
19.2 %
(NOT published)
40 cents /watt
Laboratory Cells
G. Hodes, Science ,Vol. 342 no. 6156 pp. 317-318
8
Designing the Device Architecture
CH3NH3PbI3-xClx
HTM
HTM
HTM
Al2O3 scaffold+
Perovskite
Perovkite capping
layer
Perovkite layer
Nano-structured vs Thin Film
J. Ball, EES, 2013
9
How do they work? How far can they go?
10
Snaith JH, JPCL, 2013
Thin Film Architecture
Excitons vs Free Carriers
Nat Comm, DOI: 10.1038/ncomms4586
11
Thin Film Architecture
1m carriers diffusion length
in solution processed thin film
Science , 342,341, 2013
12
Thin Film vs Nano-structured
CH3NH3PbI3
CH3NH3PbI3-xClx
*
*
*
13
Thin Film vs Nano-structured
FLAT
500 nm
GRADED
MESOPOROUS
50 nm
J. Ball et al, EES , 2013.
14
Open Questions
 Relationship Structure/Optoelectronic
properties
•Interfaces Structure/ Interface Physics – which are the
right buffers layers?
• Charge Transport
• DOS, Doping
• Are these materials Ferroelectric?
• Photoluminescence – origin? There is lasing!
• Pb substitution (Nakita Noel et al, Energy &Env Sci, doi:
10.1039/c4ee01076)
15
“Photovoltaic inks”
Ink inlet
nk supply
ps
Soluble Materials
Rotating
screen
Ink / Paste
Printed pattern
Squeegee
Backup
roller
Meniscus
Inks
Printable
Printed pattern
Ink / Paste
Coating
ply
Squeegee
Screen
Rotary Screen Printing
Slot-die Coating
Screen Printing
Printed pattern
Ink supply
Air / N2
Piezo
dV/dt waveform
Printed pattern
nkjet Printing
00
Impression
cylinder
Doctor
blade
Printed pattern
Nozzle
Low cost PVs
00
Impression
cylinder
Gravure
cylinder
Flexible PVs
Spray Printing
Doctor
blade
Ink bath
Gravure Printing
Lightweight PVs
Printing plate cylinder
Anilox roller
Fountain roller
Ink bath
Flexographic Printing
16
Printed stacked layers
Electrode
Interlayer
Photoactive layer
Interlayer
0.2 mm
Electrode
PET
Low-temperature printing on plastic
17
17
“SolarPrint” project
Continuous
“Roll-to-Roll”
Printing Process
on an Industrial Printer
Research Institutions
Know-how Solution Processable PVs
State-of-the-Art Scientific Labs
 High Productivity (>10 meters/minute)
 Low Cost
Industrial Partner
Leader in Printing Technology
 Low Environmental Impact
 Low Capital Investments
18
Large Area Printing of Conductive Inks
RS = 1 Ω/sq
(RS, ITO = 15 Ω/sq)
19
Road-map
February
2017
Indoor photovoltaics
Start-up
February
2015
• Wireless Sensors, Tags
• Internet of Things
• Energy Scavenging
• Smart Walls
July
2014
July
2012
September
2011
Joint Lab
II round of
funding
Technology
Transfer
20
Q2 2014
From Molecules to PV Modules
Solar-Print Project
Perovskites Technology
V
+
Roll-to-Roll Printed
Photovoltaics
Low-Cost “Portable” Energy and
Very Large Area Applications
21
Acknowledgements
Dr Giulia Grancini
Dr Ajay Ram Srimath Kandada
Dr Chen Tao
Dr James Ball
Valerio D’Innocenzo
Michele De Bastiani
Marcelo Alcocer
Tomas Ljetes
Jiaren Chen
Marina Gandini
Stefanie Neutzer
Prof. Guglielmo Lanzani
Starting Grant
SOLARPRINT TEAM:
Dr. Michele Garbugli
Dr. Marco Carvelli
Dr. Antonio Iacchetti
Nicolas Bienville
Nicola Piva
Dr. Dario Natali (POLIMI)