2 Exercice 2. Dresser le graphe dévaluation et calculer la dérivée des fonctions usuelles symboliques suivantes. Donner l’ensemble de définition des fonctions usuelles strictes associées ainsi que de leurs dérivées. p a(X) = sin(X) cos(X) sin(X) +1 b(X) = exp − X 2 c(X) = ln(ln(ln(X))) Exercices d’analyse, feuille 2 Licence de Mathématiques / Informatique / Économie 1e` re année, semestre 1 1 cos(3X 2 )+1 d(X) = sin(X+2) e(X) = q sin(cos(ln(2X 2 ) + 3)) X−1 g(X) = πX + X+2 2 2 − 1))) h(X) = X sin(cos(ln(3X i(X) = exp sin(X + 1) − cos(X 2 )) ln(2 + sin(X) Ensembles de définition Exercice 1. Pour chacune des fonctions usuelles symboliques suivantes, représenter le graphe d’évaluation puis déterminer l’ensemble de définition de la fonction usuelle stricte associée. √ 1. 3 X j(X) 4. ln P + ln(2 − Q) 5. 6. 3 sin T cos T 7. ln(1 − ln X) 8. 3 sin X cos Y q 1 4 + cos X sin X X 10. exp − sin 2 X 9. √3X+cos Y X 2 +Y 2 −1 13. (ln (1 + X) − 2)X exp(sin X) sin(exp X) k(X) = o(X) p(X) q(X) r(X) s(X) t(X) = = = = = = 3 eX +2X+2 ln(cos(X) sin(X)) √ 2X 3eX + 2 pe − √ X − X + 6 cosh(X) exp X ln(tanh(X)) 2X +3X pln(X) u(X) = tanh(X) + π v(X) = cos(sin(cos(X))) 3 +π w(X) = X , où α est un nombre réel. X 2 +α 2 y(X) = X exp − X2 X+1 z(X) = sin X+2014 11. ln (ln (ln S)) 12. = cos(3X) cos(2X) + e3X+1 cos(X) + eX−1 + X 3 P Xk l(X) = e−X 2014 Q2014 k=0 k! m(X) = k=0 Q (X − k) n(X) = ln 2014 k=0 (X − k) 2. sin2 (X 3 + 1) √ 3. 1 − sin T ln(X−1) ln(1−X 2 ) Dérivation Exercice 3. Calculer les dérivées partielles des fonctions usuelles symboliques suivantes. √ 14. (exp (2T ) − 3 exp T + 2) T r q q 1+X 2 1+X 15. sin 1−X 2 + 2 + X 1 + 1−X 1. a (X, Y ) = 2XY + X 3 2. b (S, T ) = exp (2T ) + exp 2S 2 + T 1 3. f (X, Y ) = X 2Y Dl = l 0 (X) = = Dm = m0 (X) = Dn = 0 n (X) = Do = o0 (X) = Dp = p0 (X) = Dq = 2Y 3Z4 4. g (X, Y , Z) = cos X + 2Y 2 − X 1+Z 3 Correction partielle de l’Exercice 2 Da a0 (X) = R \ π2 Z cos2 (X)−sin2 (X) 1−2 sin2 (X) √ = = √ 2 sin(X) cos(X)+1 Db = b0 (X) = Dc = c0 (X) = Dd = d 0 (X) De 0 e (X) 2 sin(X) cos(X)+1 R \ {0} X cos X exp(− sin ) × 2 sin X−X X2 X3 ]e, +∞[ 1 X ln(X) ln(ln(X)) R \ {−2 + kπ | k ∈ Z} −6X sin(3X 2 ) sin(X+2)+(cos(3X 2 )+1) cos(X+2) (sin(X+2))2 = − = R \ {0} cos(cos(ln(2X 2 )+3)) sin(ln(2X 2 )+3) = −2 i h i h √ X √ Dg = 21 2π + 1 − 4π2 + 8π + 1 , 2 ∪ 12 2π + 1 + 4π2 + 8π + 1 , +∞ 2 2 +X 1 1 3X g 0 (X) = 2g(X) π + X +2X−X = π + 2g(X) (X+2)2 (X+2)2 i√ h i √ h 3, +∞ Dh = −∞, 3 ∪ h0 (X) = 2X sin(cos(ln(3X 2 − 1))) − X 2 cos(cos(ln(3X 2 − 1))) sin(ln(3X 2 − 1)) 3X6X 2 −1 6X 3 cos(cos(ln(3X 2 −1))) sin(ln(3X 2 −1)) = 2X sin(cos(ln(3X 2 − 1))) − 3X 2 −1 Di = R i 0 (X) = exp sin(X + 1) − cos(X 2 ) × (cos(X + 1) + 2X sin(X 2 )) × ln(2 + sin(X)) cos X + exp sin(X + 1) − cos(X 2 ) × 2+sin X cos X 2 = exp sin(X + 1) − cos(X ) × ln(2 + sin(X))(cos(X + 1) + 2X sin(X 2 )) + 2+sin X Dj = R \ {ln(kπ) | k ∈ N>0 } sin(exp X) cos(X) exp(sin X)−exp(sin X) cos(exp X) exp X j 0 (X) = 2 = Dk k 0 (X) exp(sin X) × sin (exp X) sin(exp X) cos(X)−cos(exp X) exp X sin2 (exp X) R P Xk −X P2014 kX k−1 −e−X 2014 k=1 k=0 k! + e k! P k X −X P2013 X k = −e−X X 2014 −e−X 2014 + e k=0 k! k=0 k! 2014! R P2014 Qt−1 Q2014 t=0 k=0 (X − k) × k=t+1 (X − k) ] − ∞, 0[ ∪ ]1, 2[ ∪ ]3, 4[ ∪ . . . ∪ ]2014, +∞[ P2014 1 Sk=0 X−k k∈Z ]2kπ, π/2 + 2kπ[ ∪ ] − π + 2kπ, −π/2 +2 2kπ[2 3 sin X+cos X eX +2X+2 (3X 2 + 2) ln(cos(X) sin(X)) + −cos(X) sin(X) ] − ∞, 0[ ∪ ] ln 2 + ∞[ 2X X √2e −3e 2 e2X −3eX +2 ]3, +∞[ 1− √1 2 X+6 √ 2 X+6−1 √ √ √ 4 X+6 X− X+6 = Dr 0 r (X) Ds = R \ {0} cosh(X) X sinh(X)−cosh(X) = · exp X X2 = ]0, +∞[ s0 (X) Dt = = t 0 (X) = Du 0 u (X) = R = √ √ 2 X− X+6 = ]0, +∞[ (ln(2)2X +ln(3)3X ) ln(X)− X1 (2X +3X ) ln2 (X) 1−tanh √ 2 = (ln(2)2X +ln(3)3X )X ln(X)−(2X +3X ) X ln2 (X) (X) 2 tanh(X)+π Dv v 0 (X) = R = − sin(sin(cos(X))) × cos(cos(X)) × sin(X) = − sin(X) cos(cos(X)) sin(sin(cos(X)) n √ √ o Si α ≤ 0alors Dw = R \ − |α|, |α| , sinon Dw = R, w0 (X) = Dy (X 2 +α)×3X 2 −(X 3 +π)×2X 2 X 2 +α ( ) = = R −X 2 (X+2014) 2 4 X( X+6−1)−6 1−tanh2 (X) tanh(X) y 0 (X) = (1 − X 2 )e 2 Dz = R \ {−2014} 2013 X+1 z0 (X) = 2 cos X+2014 = R = −3 sin(3X) cos(2X) + e3X+1 cos(X) + eX−1 + X 3 + cos(3X) −2 sin(2X) + 3e3X+1 cos(X) + eX−1 + X 3 + cos(3X) cos(2X) + e3X+1 − sin(X) + eX−1 + 3X 2 √ = √ 2 √X+6−1 q0 (X) X 4 +3αX 2 −2αX 2 (X 2 +α )
© Copyright 2025 ExpyDoc