Boll. Soc. Geol. It., Volume speciale n. 1 (2002), 641-648, 2 ff., 3 tabb. Mesoscopic structural styles of deformation within the Frosolone unit multilayer (Molise Region, Central Italy) A. ANTONUCCI (*), E. DI LUZIO (**), F. LENCI (***), D. SCROCCA (**) & M. TOZZI (**) ABSTRACT The analysis of the mesoscopic structures observed within the Frosolone unit multilayer (Molise region, Central Italy) has led to the distinction of three main «structural groups», each one characterised by different styles of deformation as a response to their lithological features. In this scenario, the Oligo-Miocene Macchiagodena Formation clearly represents the upper weakness level of the multilayer, which is mainly made up of Mesozoic and Cenozoic formations affected by less pervasive brittle deformations. Moreover, mesoscopic structures likely related to break-back thrusting sequences have been observed, and might represent an indication of larger scale out-of-sequence thrust propagation occurred in the area. KEY WORDS: mesoscopic structures, deformational style, Frosolone unit, Molise Apennine. RIASSUNTO Stili deformativi mesoscopici all’interno dell’unità di Frosolone (Molise, Italia centrale). L’analisi delle strutture mesoscopiche osservate all’interno della successione stratigrafica dell’Unità Frosolone (Molise, Italia centromeridionale) ha portato alla distinzione di tre principali «gruppi strutturali». In questo contesto la Formazione di Macchiagodena, dell’Oligocene-Miocene, rappresenta il livello di debolezza strutturale più alto dell’intero multilayer, costituito principalmente da formazioni meso-cenozoiche caratterizzate da deformazioni fragili non pervasive. Inoltre, strutture mesoscopiche osservate in alcuni affioramenti sono probabilmente legate a processi di break-back thrusting e potrebbero essere un indizio di fenomeni di fuori-sequenza avvenuti nell’area a più grande scala. TERMINI CHIAVE: strutture mesoscopiche, stile deformativo, Unità Frosolone, Appennino molisano. INTRODUCTION The central-southern part of the Molise region (Central Italy) has been the topic of several geological surveys led by the CNR during the last five years. Starting from a relative shortage of structural and tectonic data, in spite of an accomplished geological and stratigraphic literature, we have focused our attention on the deformational (*) Dipartimento di Scienze della Terra – Università degli Studi di Roma «La Sapienza». (**) C.N.R. – Centro di Studio per il Quaternario e l’Evoluzione Ambientale, Roma. C/o Dip. Scienze della Terra – Piazzale Aldo Moro, 5 – 00185 Roma. (***) Dottorato di ricerca in Scienze della Terra – Università degli Studi di Roma «La Sapienza». processes that took place during the Late Miocene-Early Pliocene, responsible for the building up of the Molise Apennines. Our previous efforts (DE CORSO et alii, 1998; DI LUZIO et alii, 1999; SCROCCA & TOZZI, 1999; ANTONUCCI et alii, 2000; TOZZI et alii, 2000a, b) have particularly focused on the structural and tectonic setting of an area in the Molise region, commonly known as the Montagnola di Frosolone (fig. 1). As part of a larger regional research project (CARG), in this paper we describe the mesoscopic deformational styles observed within the Frosolone multilayer. We have divided the pre-siliciclastic deposits of the multilayer into three main «structural groups» (sensu RAMSAY & HUBER, 1987), each one characterised by a nearly homogeneous mechanical behaviour. Deformational styles are strongly controlled by the lithological features. GEOLOGICAL FRAMEWORK The Montagnola di Frosolone is a wide dome-shaped mountain ridge lying east of Isernia (fig. 1), where the transitional facies of the Frosolone Unit, i.e. the inner Molise geological unit according to PATACCA et alii (1992), are exposed. These facies represent the result of the Mesozoic and Cenozoic sedimentation that took place along the northern margin of the Matese carbonatic platform, nowadays located few tens of kilometres to the south. On the western and northern edges, the Montagnola di Frosolone is completely surrounded by terrigenous facies that were deposited within the Early Messinian Molise foredeep: the contact has almost everywhere a tectonic nature, as already pointed out in NASO et alii (1995), DI LUZIO et alii (1999), and SCROCCA & TOZZI (1999). The deeper basinal facies of the Molise geological domain outcrop in the northern Molise area. The geological and stratigraphical aspects of the Montagnola di Frosolone have been properly investigated by several authors in the last four decades (SELLI, 1957; SIGNORINI, 1961; SIGNORINI & DEVOTO, 1962; PESCATORE, 1965; STEFFENS, 1968; CLERMONTE` , 1977; CLERMONTE` & PIRONON, 1979; PIRONON, 1980; RENAUD et alii, 1990; PATACCA et alii, 1992). Basically, in this area a Late Jurassic-Middle Miocene transitional geological sequence outcrops above a buried late Triassic-Early Liassic dolomitic substratum found in the Frosolone 1 and 2 wells. This sequence underlies synorogenic foredeep deposits mainly made up of Messinian clays, with rare interbedded sandstones. 642 A. ANTONUCCI ET ALII Fig. 1 - Geological and structural sketch of the Central-Southern Apenines. The frame shows the area of research (after SCROCCA et alii, 1995, modified). LEGEND: 1: Marine and continental deposits (Pleistocene-Pliocene); 2: Sannio Unit (Miocene-Oligocene); 3: syntectonic siliciclastic deposits (Early Pliocene-Late Messinian); 4: syntectonic siliciclastic deposits (Early Messinian-Late Tortonian); 5: carbonatic platform and shelf-edge sedimentary deposits (Middle Miocene-Late Triassic); 6: transitional and basin sedimentary deposits (Middle Miocene-Late Triassic); 7a: main thrusts (the arrow points out the average transport direction as inferred by structural analysis); 7b: second order thrusts and inverse faults; 8a: anticlinal axial surface; 8b: synclinal axial surface; 9a: strike-slip faults; 9b: normal faults; 10: wells. – Schema geologico-strutturale dell’Appennino centro.meridionale. Il riquadro mostra l’area di ricerca (da SCROCCA et alii, 1995, modificato). LEGENDA: 1: depositi marini e continentali (Pleistocene-Pliocene); 2: Unità del Sannio (Miocene-Oligocene); 3: depositi silicoclastici sintettonici (Pliocene inferiore-Messiniano superiore); 4: depositi silicoclastici sintettonici (Messiniano inferiore-Tortoniano superiore); 5: successioni sedimentarie carbonatiche di piattaforma e di soglia (Miocene medio-Triassico superiore); 6: successioni sedimentarie di transizione e di bacino (Miocene medio-Triassico superiore); 7a: thrust principali (la freccia indica il verso del trasporto tettonico, come evidenziato dall’analisi strutturale); 7b: thrust di secondo ordine e faglie inverse; 8a: superficie assiale di anticlinale; 8b: superficie assiale di sinclinale; 9a: faglie trascorrenti; 9b: faglie dirette; 10: pozzi di esplorazione. MESOSCOPIC STRUCTURAL STYLES OF DEFORMATION WITHIN THE FROSOLONE 643 Fig. 2 - Structural groups within the Frosolone unit multilayer. From the bottom to the top the calcareous-dolomitic substratum, the calcareous-marly, and the marly-calcareous groups are distinguished. Formation thicknesses are the average thicknesses surveyed in the whole outcropping area (Montagnola di Frosolone). – Gruppi strutturali individuati all’interno dell’Unità di Frosolone. Dal basso verso l’alto, il substrato calcareo-dolomitico, il gruppo calcareomarnoso e il gruppo marnoso-calcareo. Gli spessori riportati sono gli spessori medi delle formazioni, calcolati su tutta l’area di affioramento (Montagnola di Frosolone). The transitional sequence shows evident re-sedimentation processes of debris, probably derived from the Matese carbonatic platform to the south. Therefore, detritic calcareous layers, often rich in broken benthonic fossils, are interbedded to thinner layers of calcareous marls, marls and clays, that are characterised, instead, by pelagic foraminifera. Consequently, an heterogeneous multilayer results, whose deformational styles clearly rely on the competent/incompetent material ratio within each geological interval. STRUCTURAL GROUPS WITHIN THE FROSOLONE MULTILAYER Three main «structural groups» have been recognised within the pre-siliciclastic deposits of the Frosolone multilayer (fig. 2), subdivided on the basis of their deformational styles strongly determined by lithology. From the bottom to the top, we distinguish a calcareous-dolomitic substratum, a calcareous-marly group, and a marly-calcareous group. In this section the mesoscopic structures commonly observed within the outcrops are described. Most of them 644 A. ANTONUCCI ET ALII were formed in a thrust tectonic environment, even though structural features related to normal and strikeslip faults have also been observed. CALCAREOUS-DOLOMITIC SUBSTRATUM (tab. 1) Above the Fontegreca Formation (Early Liassic-Late Triassic), found in the Frosolone 1 and 2 wells, lies the Indiprete Formation, the oldest formation outcropping in the whole area. It is splitted into a lower Albian-Dogger dolomitic member (600-700 m thick) and in an upper member, which consist of 180-270 metres of detritic dolomitic limestones and clays dated from the Albian to the Early Cenomanian. The formation is mainly characterised by brittle behaviour: the deformational style mostly consists of fractures and faults (tab. 1, fig. 1a). Major thrust surfaces (tab. 1, fig. 1b) are responsible for the genesis of wide cataclastic zones which often obscure the bedding. Duplex structures have been found where very thin clayey layers are interbedded with the dolomitic massive body (tab. 1, fig. 1c). Mesoscopic folds have rarely been found, probably due to the high competence of the whole formation. layers. As a consequence, duplexes result to be the dominant thrust structure, with calcareous elongate horses between roof and floor thrusts along the marly layers (tab. 2, fig. 2a). As concerns the folding mechanism, the competent layers usually shows a nearly perfect parallel fold form (class 1B of RAMSAY & HUBER, 1987), whereas the thin interbedded calcilutites, marly limestones and marls layers are usually thickened in the hinge zone and thinned in the limbs (class 3); the combination of the two different folding styles gives folds in the calcareous-marly group which are often recognisable as 1C class folds. As well as for the thrusting styles, the folding styles are clearly controlled by the different mechanical behaviour of the layers. For instance, fault-propagation folds grow at the tips of thrusts propagating through the calcareous layers (tab. 2, fig. 2c): as the fault continues to cut the rigid packstones layers, the covering marl layer is folded. Detachment folds have also been observed (tab. 2, fig. 2b): the detachment is required to allow a different style and amount of deformation between thick and strong calciruditic layers and thin micritic or marly-calcareous strata. MARLY-CALCAREOUS CALCAREOUS-MARLY GROUP (tab. 2) It is a group of geological formations strongly affected by re-sedimentation processes. These formations seem basically to have the same deformational style and this evidence led us to consider them as a single group with a peculiar mechanical behaviour. The brief following lithological description of these formations does not consider the details about their biostratigraphic features and geological meaning; a more extensive account can be found in TOZZI et alii (2000a, b). From the bottom to the top we recognised: – Monte Coppe Formation (Early Turonian-Early Cenomanian): thinly layered white calcilutites with nodules and lenses of red and black chert; layers of calcarenites, green marls, and varicoloured clays are often interbedded. Average thickness: 60-80 m. – Coste Chiavarine Formation (Senonian-Early Turonian): thickly layered grey calcarenites and calcirudites, with nodules and lens of grey or brown chert; layers of calcilutites. Average thickness: 100-150 m. – Monte Calvello Formation (Maastrichtian-Campanian): white calcarenites, rich in debris of benthonic fossils; thin layers of green or red marls and marly clays are often interbedden. Average thickness: 160-200 m. – Monaci Formation (Early Oligocene-Early Eocene): it is possible to distinguish two heteropic members: a calcareous member, which mainly consists of brown and well-layered calcarenites, rich in debris of Eocenic benthonic organisms, interbedded to calcirudites and calcilutites; and a marly-calcareous member, which is made up of red marly limestones and marls, with a reduced amount of calcarenitic layers. Boh members present nodules and lenses of chert. Average thickness: 80-100 m. Thrust styles within the calcareous-marly group is evidently influenced by the different mechanical behaviour of the calcarenitic and calciruditic strata with respect to the thinner and weaker layers of calcilutites, marly limestones and marls. In these formations thrusts develop as bedding-parallel flats in the less competent layers, whereas as bedding-oblique ramps in the more competent GROUP (tab. 3) The Frosolone multilayer ends upwards with two Oligocene-Miocene formations mainly made up of marls and calcareous marls belonging to the marly-calcareous group. The 50-80 metres of marls and calcareous marls of the Macchiagodena Formation, dated from the Early Oligocene to the Early Miocene (Langhian), represent a meaningful variation in the sedimentary features of the Frosolone multilayer that leads also to a structural style of deformation which is unique among the other geological formations. First of all, thrust structures appear here to be pervasive at the outcrop scale, as clearly highlighted by the wavelength of ramps in the duplex structures, that is reduced with respect to the calcareous-marly group (compare tab. 3, fig. 3a, to fig. 2a in tab. 2). Moreover, as a result of pressure solution processes, foliations and S-C structures can be easily detected in the Macchiagodena Formation. Considering the fold style, the Macchiagodena Formation shows in some outcrops a first deformation, represented by an early foliation (S1) that overprints the original bedding (S0), and a late foliation producing kink bands (tab. 3, fig. 3b and see also NASO et alii, 1995). Taking into account all these field evidences, we consider the Macchiagodena Formation as a fault gathering zone, the uppermost weakness level within the Frosolone multilayer. The Macchiagodena Formation is followed upwards by the Longano Formation, which consists of 40-80 metres thick hemipelagic marly limestones, marls and calcarenites rich in pelagic foraminifera as Orbulinidi (Later Tortoniano-Langhiano), locally characterised, at the bottom, by interbedded calcareous coarse clastic horizons. Such formation, similar to others outcropping in the Central-Southern Apennines, represents the depositional response to the flexural bending of the foreland. Its deformational style shows low wavelength thrusting features, foliations and S-C structures (tab. 3, fig. 3c); faultpropagation folds, similar to those found in the calcareous-marly group, have been also locally observed in the lower part of this formation. Deformational styles within the calcareous-dolomitic substratum. TABLE 1 MESOSCOPIC STRUCTURAL STYLES OF DEFORMATION WITHIN THE FROSOLONE 645 Deformational styles within the calcareous-marly structural group. TABLE 2 646 A. ANTONUCCI ET ALII Deformational styles within the marly-calcareous group. TABLE 3 MESOSCOPIC STRUCTURAL STYLES OF DEFORMATION WITHIN THE FROSOLONE 647 648 A. ANTONUCCI ET ALII OUT-OF-SEQUENCE FEATURES Our interest has been also focused on some thrust structures related to out-of-sequence thrust propagation (sensu MORLEY, 1988) that have been observed in several outcrops in the Montagnola di Frosolone area. The duplextype structures, as represented in tab. 2, fig. 2a, are often affected by out of sequence thrust phenomena displacing previously formed carbonatic horses and partly developing along their roof thrust. CONCLUSIONS The analysis of the mesoscopic deformational styles represent a precious tool to better understand the geological features of an area. In this study, the evidence collected on the outcrop scale have given us a sounder idea of how the Frosolone multilayer could have been deformed during the Apenninic orogenesis. A careful observation of the mesoscopic structures inside the Frosolone multilayer, mainly related to a thrust tectonic environment, has allowed us to distinguish three main structural groups, each one characterised by a peculiar type of deformational style, strongly controlled by the primary lithological features. In this scenario, an OligoMiocene marly formation placed at the bottom of the third group, the Macchiagodena Formation, has been identified as the uppermost weak structural level of the Frosolone multilayer, a fault gathering zone that has played a major role in the geometric configuration of the whole area (ANTONUCCI et alii, 2000). It is worthwhile to note that also the Monte Coppe Formation (NASO et alii, 1995; DI LUZIO et alii, 1999) and the marly-calcareous member of the Monaci Formation (TOZZI et alii, 2000b) are both strongly deformed on the mesoscale. Nevertheless, as indicated by the geological section in ANTONUCCI et alii (2000), only the Macchiagodena Formation seems to play a critical role in the macroscopic geometric configuration of the Frosolone multilayer. The Monte Coppe Formation and the marly-calcareous member of the Monaci Formation represent internal minor weakness levels of the multilayer. Moreover, assuming that the mesoscopic structures reflect the macroscopic deformation environment of an area, the out-of-sequence thrusting features found in some outcrops within the Frosolone multilayer might well be incorporated to the geological framework outlined by SCROCCA & TOZZI (1999), as other evidence for the occurrence of such thrusting process in the centralsouthern Molise area. ACKNOWLEDGEMENTS Authors wish to thank Stefano De Corso for his help during land survey. REFERENCES ANTONUCCI A., DE CORSO S., DI LUZIO E., LENCI F., SANSONNE P., SCROCCA D. & TOZZI M. (2000) - La Montagnola di Frosolone ed il Matese settentrionale: una recente interpretazione della geologia molisana. Boll. Soc. Geol. It., 119, 637-654. BUTLER R.W.H. (1987) - Thrust sequences. Journal of the Geological Society, London, 144, 619-634. CLERMONTE` J. (1977) - La bourdure abruzzaise sud-orientale de le haut Molise: historie sedimentarie et tectonique comparèe. Riv. Ital. Paleont., 83 (1), 21-102. CLERMONTE` J. & PIRONON P. (1979) - Le plate-forme campano-abruzzaise de la Meta au Matese (Italie méridionale): différenciations au Paléogène et au Miocène, structures, relations avec les formations molisanes. Bull. Soc. Geol. France, 21, 737-743. DE CORSO S., SCROCCA D. & TOZZI M. (1998) - Geologia dell’anticlinale del Matese e implicazioni per la tettonica dell’Appennino molisano. Boll. Soc. Geol. It., 117, 419-441. DI LUZIO E., PANICCIA D., PITZIANTI P., SANSONNE P. & TOZZI M. (1999) - Evoluzione tettonica dell’Alto Molise. Boll. Soc. Geol. It., 118 (2), 287-315. MORLEY C.K (1988) - Out-of-sequence thrust. Tectonics, 7 (3), 539-561. NASO G., TALLINI M. & TOZZI M. (1995) - Caratteristiche geologicostrutturali dell’area di Miranda (Isernia): un contributo alla comprensione dei rapporti tra falde molisane ed avanfossa del Messiniano-Pliocene inferiore. Boll. Soc. Geol. It., 114, 423-441. PATACCA E., SCANDONE P., BELLATALLA M., PERILLI N. & SANTINI U. (1992) - La zona di giunzione tra l’arco appenninico settentrionale e l’arco appenninico meridionale nell’Abruzzo e nel Molise. Studi Geologici Camerti, Volume Speciale 1991/2, 417-441. PESCATORE T. (1965) - Ricerche geologiche sulla depressione molisano-sannitica. Atti Acc. Sc. Fis. Mat. Napoli, 5, 101-145. PIRONON B. (1980) - La notion de zone de transition en bordure orientale de la plate-forme campano-abruzzaise de la Meta au Matese (Italie centro-meridionale). Thèse 3ème cycle, Nancy I, 175 pp. RAMSAY J.G. & HUBER M.I. (1987) - The techniques of Modern Structural Geology. Volume 2: Folds and Fractures. Academic Press, London. RENAUD P., BILLAUD Y., CLERMONTE` J., LORENZ C. & PIRONON P. (1990) - Evolution paléogéographique le long de la bordure sudorientale de la plate-forme campano-abruzzaise (Italie) du Crétacé au Néogène. Bull. Soc. Geol. France, 6, 105-112. SCROCCA D., TOZZI M. & PAROTTO M. (1995) - Assetto strutturale del settore compreso tra il Matese, le Mainarde e l’Unità di Frosolone. Implicazioni per l’evoluzione neogenica del sistema di sovrascorrimenti nell’Appennino centro-meridionale. Studi Geologici Camerti, Volume Speciale 1991/2, 407-418. SCROCCA D. & TOZZI M. (1999) - Tettogenesi mio-pliocenica dell’Appennino molisano. Boll. Soc. Geol. It., 118 (2), 255-286. SELLI R. (1957) - Sulla trasgressione del Miocene nell’Italia meridionale. Giorn. Geol., 26, 1-54. SIGNORINI R. (1961) - Osservazioni geologiche nell’alto Molise. Boll. Soc. Geol. It., 80, 215-224. SIGNORINI R. & DEVOTO G. (1962) - Il Paleogene nell’Alto Molise. Mem. Soc. Geol. It., 3, 461-514. STEFFENS P. (1968) - Zur Geologie der Molise-Zone nordostlich von Isernia (Provinz Campobasso, Italien). Inaugural Dissertation Zur Erlagung der Doktorwurde der Mathematisch Naturwissenschaftlichen Fakultat, Freien Universitat Berlin. TOZZI M., DE CORSO S., ANTONUCCI A., DI LUZIO E., DI STEFANO T., GIOIA P., LENCI F. & SCROCCA D. (2000a) - Assetto geologico della Montagnola di Frosolone. Geol. Rom., 35 (1999), 89-109. TOZZI M., DE CORSO S., ANTONUCCI A., DI LUZIO E., DI STEFANO T., GIOIA P., LENCI F. & SCROCCA D. (2000b) - Carta geologica della Montagnola di Frosolone. Geol. Rom., 35 (1999). Manoscritto pervenuto il 23 Agosto 2000; testo approvato per la stampa il 9 Maggio 2001; ultime bozze restituite il 16 Gennaio 2002.
© Copyright 2025 ExpyDoc