Rend. online Soc. Geol. It., Vol. 22 (2012), pp. 83-85, 4 figg. © Società Geologica Italiana, Roma 2012 Rendiconti online Soc. Geol. It., Vol. n (2012), n-n (Stile: intestazione prima pagina) Deep seated gravitational slope deformation in an alpine ophiolites massif: the case of “Badia di Tiglieto” (Voltri Massif, northern Italy) LAURA FEDERICO (*), FRANCESCO FACCINI (*), SILVIA TORCHIO (*), ANNA ROCCATI (*), LAURA CRISPINI (*), ANDREA VIGO (*), EUGENIO POGGI (*), MARCO FIRPO (*) & GIOVANNI CAPPONI (*) RIASSUNTO Deformazioni gravitative profonde di versante in un massiccio ofiolitico alpino: il caso della Badia di Tiglieto (Massiccio di Voltri, Italia settentrionale) Le deformazioni gravitative profonde di versante (DSGSD) rappresentano un’importante forma del territorio, a scala intermedia tra evoluzione tettonica e morfogenesi gravitativa. Nel corso del rilevamento geologico per il Foglio 212 “Spigno Monferrato” ne sono stati individuati diversi casi; questo contributo è focalizzato sulla DGPV che starebbe all’origine della Piana della Badia in cui è stata edificata nel X secolo l’Abbazia cistercense di Tiglieto, situata in alta val d’Orba a circa 25 km a NW di Genova. Sono stati riconosciuti numerosi indizi morfotettonici che consentono di identificare una DSGSD che governa l’attuale assetto e dinamica di versante, e probabilmente anche del crinale spartiacque. Le superficie profonde di scorrimento possono rappresentare riattivazioni di pre-esistenti discontinuità strutturali. Nel corso del rilevamento sono state individuate diverse famiglie di faglie che, come indicano anche studi pregressi sulla neotettonica dell’area, potrebbero rappresentare fattori predisponenti alla tettonica-gravitativa. Altro fattore strutturale che può aver innescato il DSGSD è rappresentato da una superficie di thrust nella parte alta del versante a monte della DSGSD stessa, che porta peridotiti poco serpentinizzate a sovrascorrere su serpentiniti e serpentinoscisti molto tettonizzati, che potrebbero aver collassato a causa del forte contrasto di competenza. KEY WORDS: deep seated gravitational slope deformation, post-orogenic evolution, neotectonics, Voltri Massif, Western Alps INTRODUCTION the low present deformation rate (mm/y, in the alpine range) and iv) the occurrence of smaller landslides inside the deformed mass and v) the presence of ancient collapses in the lower part of the slope (AGLIARDI et alii, 2001). THE “BADIA DI TIGLIETO” DSGSD During fieldwork for the “Spigno Monferrato” (212) quadrangle geological map (FEDERICO et alii, this congress), a large number of DSGSD have been detected. They are more frequently found close to the main watershed, because of the complex geologic setting and of the neotectonic activity in this segment of the alpine chain. Among the observed cases, we focused on the DSGSD located in the Orba valley at about 25 km NW of Genoa (Fig. 1). This DSGSD probably originated the plain where the Tiglieto Cistercian Abbey has been built in the Xth century. This area represents one of the most outstanding geological sites of the Beigua Natural Park that belongs to the European Geoparks network. We identified for the first time this DSGSD: in the recent investigations aimed at land planning and management and in the italian landslides project some inactive landslides are actually recognized along the slope (REGIONE LIGURIA, 2004), but the sackung-type DSGSD that involved the whole ridge, watershed, valley floor system has not been recognized. Deep seated gravitational slope deformation (DSGSD) represent an important landform, at an intermediate scale between tectonic evolution and gravitative morphogenesis. They have received growing attention only in the last few decades, but their understanding bears important scientific and applicative implications. DSGSD genesis is usually associated to lithological features, tectonic styles, geomorphological dynamics and quaternary climatic variations. Their identification, not always univoque, often relies on: i) morphological elements similar to those present in fine soil landslides, but at a bigger scale; ii) the large scale of the structure, of the same order of the slope; iii) _________________________ (*) Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, C. so Europa 26, 16133 - Genova (Italy) Fig. 1 – Location of the studied area. The Abbey plain is an almost flat area of about 0,3 km2 where “ancient terraced alluvial deposits” are reported in the Lavoro eseguito nell’ambito del progetto "Cartografia Geologica del Foglio Spigno Monferrato" della Regione Liguria. 83 84 2 F EDERICO ET AL . Fig. 2 – Geological schema of the studied area. Sheet 83 “Genova” of the Geological Map of Italy. The hilly area upstream has low to moderate slope (less than 25%) and falls inside serpentinites of the Voltri tectonometamorphic Unit (CAPPONI AND CRISPINI, 2008), with minor occurrences of metabasites and eclogitic metagabbros (Fig. 2). Recent detailed fieldwork accomplished in the area (about 3 km2) between the ridge at about 800 m s.l.m. and the Orba riverbed (about 360 m s.l.m.) revealed the occurrence of very small outcrops of serpentinites, metabasites and eclogites along the slope, whereas peridotite and serpentinite crop out on top of the ridge. Locally ultramafites are overlaid with Upper Eocene – Lower Oligocene (?) continental breccias (Brecce di Costa Cravara). Many morphotectonic elements which belong to the following main groups (PEROTTI et alii, 1988), have been recognized: i) ridges (straight ridges, plano-altimetric ridge discontinuities, peaks alignment), ii) scarps (edge degradation and/or landslide scarps, edge of erosion scarp or alluvial terrace), iii) streams (fluvial elbow, straight valleys, upriver confluence, straight riverbed stretch, anomalies in the stream longitudinal profile), vi) high erosion, vii) general character (saddles, poligenetic fans, landslides, reverse slopes, close depressions and many alignments). From all these morphological elements we identified a DSGSD that controls the present slope setting and slope dynamics; it likely involves also the ridge watershed thus falling in the rock-flow type (DIKAU et alii, 1996) or in the rotational sagging, possibly double sided (HUTCHINSON, 1988). Deep sliding surfaces can represent the reactivation of preexisting structural discontinuities. Available literature on neotectonic evolution of this area points out a general uplift in the last 700 ky and suggests two main fault sets, either N-S or NW-SE striking, which may guide the gravitational tectonics (Fig. 3; FANUCCI et alii, 1982). We identified in the field three main fault sets (Fig. 4) either E-W, NW-SE or NE-SW-striking and steeply-dipping. We moreover observed, on the ridge at the back of the DSGSD, low-dipping thrust surfaces that bring very hard peridotites on top of pervasively fractured, low-strenght serpentinites. This thrust tectonics is widespread in the studied area and involves both the bedrock and the sedimentary cover (Brecce di Costa Cravara). This tectonics can be related to the late-to-post orogenic east vergent thrust tectonics related to the Corsica-Sardinia block rotation (CAPPONI et alii, 2001; CRISPINI et alii, 2009). The fluvial pattern appears to be controlled by some fracture sets, either NW-SE or NE-SW-striking, and by less frequent sets either N-S or E-W striking, which produced a rock blocks evolution of the slope and consequent step profile. In the contest of researches aimed at renovation and strengthening of the Abbey some drilling has been performed in the southern sector of the Abbey plain. The stratigraphy is 3 D EEP SEATED GRAVITATIONAL SLOPE DEFORMATION IN AN A LPINE OPHIOLITES MASSIF characterized by fine-grained and coarse-grained soils and by rock blocks up to 0,5 m wide; a very altered and fractured serpentinites bedrock was found at 6-7 m below ground level. 85 presence of fine-grained deposits, the evident N diversion of the Orba river (Fig. 1) and the tectono-stratigraphic slope setting described above. To sum up the “Badia di Tiglieto” DSGSD appears to be originated by the concurrence of different geological elements: first of all the presence of structural discontinuities and fault sets influencing the slope setting and its dynamics, then the high difference in rock strength between peridotites and serpentinites producing an important geomechanical contrasts. REFERENCES AGLIARDI F., CROSTA G. & ZANCHI A. (2001) - Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59 (1-2), 83-102 CAPPONI G., CRISPINI L., PIAZZA M. & AMANDOLA L. (2001) Field constraints to the mid-tertiary kinematics of the Ligurian Alps. Ofioliti, 26 (2b), 409-416 CAPPONI G. & CRISPINI L. ( 2008) - Note Illustrative del Foglio 213 - 230 "Genova" della Carta Geologica d'Italia alla scala 1:50.000. Apat - Regione Liguria, Selca, Firenze. CRISPINI L., FEDERICO L., CAPPONI G. & SPAGNOLO C. (2009) Late orogenic transpressional tectonics in the "Ligurian Knot". Ital. J. Geosci. (Boll. Soc. Geol. It.), 128(2), 433 441. Fig. 3 – Neotectonic map of central Liguria (modified after FANUCCI et alii, 1982). 1) area affected by relative uplift, 2) area affected by absolute uplift, 3) area affected by different degree of uplift, 4) mainly vertical fault, 5) fault. DIKAU R., BRUNSDEN D., SCHROTT L. & IBSEN M.L. (1996) Landslide recognition. Wiley, Chichester DRAMIS F.& SORRISO-VALVO M. (1994) - Deep-seated gravitational slope deformations, related landslides and tectonics. Engineering Geology, 38, 231-243 FANUCCI F., TEDESCHI D. & VIGNOLO A. (1980) - Dati preliminari sulla neotettonica del Foglio 84 Genova Contributi preliminari alla realizzazione della Carta Neotettonica d'Italia, pubblicazione n. 356 del Progetto Finalizzato Geodinamica. CNR Roma, 1305-1327 FEDERICO L., TORCHIO S., VIGO A., POGGI E., CRISPINI L., PIAZZA M. & CAPPONI G. - Mapping polydeformed HP ophiolites: The new gis-based geological map "Spigno Monferrato" 212 quadrangle. This congress HUTCHINSON J.N. (1988) - General Report. Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Proceedings 5th International Symposium on Landslides, Lausanne, 1, 3-35 PEROTTI C.R., SAVAZZI G. & VERCESI, P.L. (1988) - Evoluzione morfotettonica recente della zona compresa tra la testata del T. Nure e la Val d’Aveto. Suppl. Geografia Fisica e Dinamica Quaternaria, 1, 121-140 Fig. 4 – Rose diagram of moderate-to-steeply-dipping (> 60°) faults measured in the study area. The origin of the Abbey plain appears to be related to a weir lake produced by a landslide: this can be inferred by the REGIONE LIGURIA (2004) – Progetto inventario dei fenomeni franosi in Italia IFFI: primi risultati in Liguria, a cura di Bottero D., Cavallo C., De Stefanis E., Gorziglia G. & Poggi F., Regione Liguria, Genova
© Copyright 2024 ExpyDoc