PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/23829 Please be advised that this information was generated on 2015-01-28 and may be subject to change. Cytogenet Cell Genet 73:179-183 (1996) Cytogenetics and Cell Genetics sarcomas B. de Leeuw, M. Balemans, and A. Geurts van Kessel Department of Human Genetics, University Hospital, Nijmegen (The Netherlands) Abstract. The human synovial sarcoma-specific transloca tion t(X; 18) results in the fusion of the SYT gene on chromo some 18 with either one of the Kruppel-associated box (KRAB) containing SSX1 or SSX2 genes on the X chromosome, de pending on the exact location of the breakpoint within band X p ll.2 . Screening of a testis cDNA library yielded several SSX-positive clones. Subsequent sequence analysis revealed that one third of these clones represent an SSX gene that differs from both SSX1 and SSX2. This novel member of the family of Synovial sarcomas are soft-tissue tumors that occur mainly in adolescents and young adults. The chromosomal transloca tion t(X; 18)(pl 1.2;ql 1.2) is found in the majority of these sar comas and, as such, is thought to play a causative role in tumor formation (Turc-Carel et al., 1987). Two distinct chimeric products have been identified in different t(X; 18)-positive synovial sarcomas, resulting from the fusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene on the X chromosome (Clark et al., 1994; Leeuw et al., 1994a, 1995; Crew et al., 1995). These alternative fusion products have been correlated with different X-chromosomal breakpoints in fluo rescence in situ hybridization experiments using Xp 11.2-spe cific YACs as probes (Leeuw et al., 1993a, b, 1994b; Olde Weghuis et al., 1994; Shipley et al., 1994; Janz et al., 1995). Interestingly, there appears to be a positive relationship be tween the occurrence of these alternative X-chromosomal breakpoints and the most predominant histologic characteris tics of the tumors, namely, whether they are monophasic or Supported by the Dutch Cancer Society (Koningin Wilhelmina Fonds). Received 1 November 1995; accepted 15 January 1996. Request reprints from Dr. A. Geurts van Kessel, Department of Human Genetics, University Hospital Nijmegen, PO Box 9101, 6500 HB Nijmegen (The Netherlands); telephone: 31-24-3614107; fax: 31-24-3542151. YCA R C\ F R l\/* V I \U 1 1 \ E-mail [email protected] Fax+ 41 61 306 12 34 http:// www. karger, ch © 1996 S. Karger AG, Basel 0301-0171/96/0733-0179$ 10.00/0 KRAB containing SSX genes, which we designated SSX3, is 90% homologous to SSX1 and 95 % homologous to SSX2 at the cDNA level. Somatic cell hybrid analysis indicated that SSX3 maps within Xpl 1.2-»p i 1.1, the region that also harbors the SSX1 and SSX2 genes. However, we conclude from our RTPCR data and from results reported in the literature that SSX3 does not act as a fusion partner to SYT in any of the 44 inde pendent synovial sarcomas thus far tested. biphasic (Leeuw et al., 1994b; Janz et al., 1995). Here, we report the identification and chromosomal localization of a third member of the family of Kruppel-associated box contain ing SSX genes. This gene, however, is not implicated in t(X; 18)positive synovial sarcomas. Materials and methods Library screening and sequence analysis The human fibrosarcoma HT1080 (Clonetech) and the human testis 5' stretch (Clonetech) cDNA libraries were used for screening, using essentially the same standard procedures described as before (Leeuw et al., 1993b, 1994a). DNA sequences were analyzed on an automated DNA sequencer (ABI 373A) using a Taq dye deoxy terminator cycle sequencing kit (Applied Biosystems). Patient material and RT-PCR analysis The patient material used in this study included nine synovial sarcomas that were extensively analyzed before (Leeuw et al., 1995) and six novel tumors. Diagnosis of these latter six tumors as synovial sarcomas was con firmed via a positive SYT-SSX RT-PCR score. RT-PCR and subsequent restriction enzyme analyses were performed as described previously (Leeuw etal., 1995). Southern blot analysis DNAs of hybrid and parental cell lines were isolated as described before (Leeuw et al., 1994a); digested to completion with a variety of restriction endonucleases (Life Technologies); and, after agarose gel electrophoresis, SSX1 SSX2 SSX3 ATGAACGGAG ACGACACCTT TGCAAAGAGA CCCAGGGATG ATGAACGGAG ACGACGCCTT TGCAAGGAGA CCCACGGTTG ATGAACGGAG ATGACACCTT TGCAAGGAGA CCCACGGTTG SSXl SSX2 SSX3 AATGATTCGA AGGGAGTGTC AGAAGCATCT GGCCCACAAA AATGATTCGG AGGAAGTGCC AGAAGCATCT GGCCCACCAA AATGTTTCGA AGGAAGTGCC AGAAGCATCT GGCCCACAAA Lspl SSX1 SSX2 SSX3 ATGCTAAAGC ATCAGAGAAG AGAAGCAAGG CCTTTGATGA GTGCTCAAAT ACCAGAGAAG ATCCAAAAGG CCTTCGATGA GTGCTCAAAT ACCAGAGAAG ATACAAAAGG CCTTCGATGA SSXl SSX2 SSX3 ACGATGGGAA ACAACTGCAC CCCCCAGGAA AAGCAAATAT AT GAT GGGAA AGAGCTGTGC CCCCCGGGAA AACCAACTAC ACGATGGGAA ACAGCTGTGC CCCCCGGGAA AACCAACTAC Sma I SSX1 SSX2 SSX3 TATTGCCACA TACTTCTCTA AGAAAGAGTG GAAAAAGATG TATTGCCAAA TACTTCTCTA AGGAAGAGTG GGAAAAGATG TATTGCCAAA TACTTCTCTA AGGAAGAGTG GGAAAAGATG SSXl SSX2 SSX3 TTCTGAGAAG ATTAATAAGA GATCTGGACC CAAAAGGGGG CTCTGAGAAG ATTCACGAGA GATCTGGACC CAAAAGGGGG CTCTGAGAAG ATTAACATGA TATCTGGACC CAAAAGGGGG E c o R V / B g lX I SSX1 SSX2 SSX3 AAATACTCAG AGAAAATCAG CTATGTGTAT ATGAAGAGAA AAAGCCTCAG AGAAAATCTT CTATGTGTAT ATGAAGAGAA AAAGTCTCGG AGAAAATCGT CTATGTGTAT ATGAAGAGAA SSXl SSX2 SSX3 AAACATGCCT GGACCCACAG ACTGCGTGAG AGAAAGCAGC GAACATGCCT GGACCCACAG ATTGCGTGAG AGAAAACAGC GAACATGCCT GGACCCACAG ACTGCGTGAG AGAAAACAGC SSX1 SSX2 SSX3 ACTATAAGGC CATGACTAAA CTAGGTTTCA AAGTCACCCT AGTATGAGGC TATGACTAAA CTAGGTTTCA AGGCCACCCT AGTATGAGGC CATGACTAAA CTAGGTTTCA AGGCCATCCT SSXl SSX2 SSX3 TGGTGATTTA TGAAGAGATC AGCGACCCTG AGGAAGATGA TGGTGATTTA TGAAGAGATC AGCGACCCTG AGGAAGATGA TGGTGATTTA TGAAGAGATC AGCGATCCTG AGGAAGATGA SSX1 SSX2 SSX3 CCCACCTTTC ATGTGTAATA AACAGGCCAC AGACTTCCAG CCCACCTTTC ATGTGTAATA TACGGGCCGA AGACTTCCAG CCCATCTTTC ATGCGTAATA AACGGGTCAC AGACTTCCAG SSXl SSX2 SSX3 CGAGTAACTC CCCTGGGGGA TACGACACAT GCCCTTGATG CGACTAACTC CCCTCAGGGA TACGACACAT GCCCATGATG TGAGTAACTC CCCTTGGGGA TATGACACAT GCCCATGATG SSX1 SSX2 SSX3 GGGAATGATT TTGATAATGA CCATAACCGC AGGATTCAGG GGGAATGATT TGGATAATGA CCCTAACCGT GGGAATCAGG GGGAATGATT TTGATAATGA CCCTAACCGT GGGAATCAGG SSXl SSX2 SSX3 AGAAGCAGAA CGTGGTGACC TTTCACGAAC ATGGGCATGG AGAAGCAGAA CGTGGTGACC TTTCACGAAC ATGGGCATGG AGAAGCAGAA CGTGGTGACC TTTCACGAAC ATGGGCATGG SSX1 SSX2 SSX3 TTGAACATCC TCAGATGACT TTCGGCAGGC TCCACAGAAT TTGAACGTCC TCAGATGACT TTCGGCAGGC TCCAGGGAAT TTCTACGTCC TCAGATGACT TTCGGCAGGC TCCAGGGAAT SSXl SSX2 SSX3 CTGCGGCTCC CTCGTCATCA GGTGCATAGC AAGTG CTGCGGCTCC CTCGTCATCA GGTGCATAGC AAGTG CTGTGGACCC CTCGTCATCA GGTGCATAGC AAGTG SSX1 SSX2 SSX3 CATCCCGAAG ATCATGCCCA AGAAGCCAGC AGAGGACGAA CTCCCCGAAG ATCATGCCCA AGAAGCCAGC AGAGGAAGGA CTTCCCGAAG ATCATGCCCA AGAAGCCAGC AGAGGAAGGA Lt r a n s l o c a t i o n b r e a k p o i n t Fig. 1. The SSX3 cDNA sequence compared to those of SSX1 Bglll, EcoRV, Smal, and Lspl restriction sites are indicated. M 1 2 3 4 5 Fig. 2. Restriction digests of SSX3 testis cDNA clones (BamHl-Xbal inserts into pDR2) using BamHU Bglll (lanes l—5) or BamHl/IuvR'V (lanes 6-10). Lanes 1 and 6: pDR2-30; lanes 2 and 7: pDR2-33; lanes 3 and 8: pDR2-34; lanes 4 and 9: pDR2-36; lanes 5 and 10: pDR2-42. Lane M: size marker (100-bp ladder, Life Technologies). The 6()0-bp marker band is indi cated by an arrow. The asterisks indicate a 1.3-kb Baml-l if EcoRV vector blotted onto Genescreen Plus membranes (Dupont) using standard protocols. Blots were hybridized overnight in 0.5 mM PBS, 1 mM NaaEDTA, and 7% (h’/ vJ SDS at 65 °C; washed once in 40 mM phosphate, 0.1 % SDS and then in 10 mM phosphate, 0.1 % SDS at 650 C; and, lastly, exposed to X-ray film (Kodak) at - 8 0 ° C for 1-3 d, using intensifying screens. Results and discussion Screening of a hum an fibrosarcoma cDNA library with a synovial sarcoma-derived SYT-SSX RT-PCR product (Leeuw et al., 1995) yielded several partial SSX2 fragments. One of 180 Cytogcnet Cell Genet 73:179-183 (1996) 6 7 8 9 10 M * these fragments was used as a probe to screen a human testis cDNA library, which resulted in 15 positive clones. Five of these full-length clones (pDR2-30, pDR2-33, pDR2-34, pDR236, and pDR2-42) were found to lack a Bglll site that is normal ly present in both the SSXl and SSX2 cDNAs (Leeuw et al., 1995). Sequencing of these five clones yielded identical results and revealed a novel SSX transcript that was significantly dif ferent from SSXl and SSX2 (for comparison, see Fig. 1). Overall, this novel sequence, which we designated SSX3, is 90% homologous to SSXl and 95% homologous to SSX2 at the cDNA level. At the position of the Bglll site in SSXl and SSX2 M 1 2 3 4 5 6 7 8 9 1011 12 M A - . S - \ ‘\y y ; ^ h ? s :0 ;v^ o 'y 't'n K : !!A ^ i ’v^ î .ü :^ ^v^r«?.vr i^v> v i v, a: :<; ; : V:!- : / • • ’ ;: ; : : v . \ ^ - , : ^ • ; :;:v r 1r ' V : - : v r v . : :•<-:;w VI :• ::■-:•.•;>•>?■s : ; •v:v;v’ > ; :v .: :>,y, ; .*. r.w ;:f . X ' Y ; : > >:. i X ; . . ; :•: ¡ ! : > -:-;ï ; :.■'.;;' :;ô :-^ " v/; ¡ ^ :•; i v , : . . v: ; •••v > ,V - : V v . ,-;'^;ƒ-v - ü ^ 'KV|v:>y:^ 7 > ^ /;•>•• ï : 1. : .c>1 c s s } . . :’i . î.: ^ :?.■v ^ < ; y • > : ! y ; i^y>V' ^ V •> : ; > • '£ . : •;;; ; ïW. i s / U ' ) y f m m ttliitlffl : {.‘/ i -v v : C ; v . ' ^ j ¡ ¿ i -v > :•;< • • ? • >v. ;i ' ; /-: .V,V> . W V . '' ,: MNGDDTFAKR PRDDAKASEK RSKAFDDIAT YFSKKEWKK.M K YSfîK ISYV Y ** * * * Vf * *★* *** rt * 2 MNGDDAFARR PTVGAQIPEK IQ K A FD D IA K YFSKEEWEKM KASßKI FYVY * * •* * 3 MNGDDTFVRR PTVGAQIPEK IQ K A FD D IA K YFSKKEWEKM KVSgKIVYVY - -KRAB A BOX ( i *•.' : ; i .<• >.'v- : i • s <: sv > '•!• Í •<i I '; \ f i • >J • A '', ^ -/V ■ / ï ;v W* KM Mf tr*-. M < < 9 i M V r r t o i .\.;. y • •, r -•; -• <. ' I »• • V, VJ/v v r '. - v í ; ^ 1 MKRNYKAMTK L G F K V ÎL P P F MCNKQATDFQ g n d f d n d h n r RIQVEHPQMT #T »f líf ic -k -k ilf # * * * 2 MKRKYEAMTK L G F K A ÏL P P F MCNIRAEDFQ GNDLDNDPNR GNQVERPQMT TÄ T ★ líf★ ★ ★ * m 3 MKRKYEGMTK L G F K A IL P S F MRNKRVTDFQ GNDLDNDPNR j I KRAB B BOX ) M« B Vn BP tm «N 9m ma w * Ku w cí 4 vt ìt* A IZ & Y /& • ; / . v i ; / »:■' i î > : ••'•I* /•*•’• i V \ ! w i ^ v < t í f e > i ú ^ í ^ j Í ! V / ''VV V*..*•' V < /'.4\ .« ' ir C ¡ í :»•/« ; : V ::.' • .'■' : C*: lÙ-lC'Ù<\ •'•*^ ;< ' :> ;I; V:T•>: i ^ ’-y rv /::;•-/•;•<í.ió : : .'i-, lit#fi;SlSIS§ ^ / : V ; v v7:> í? ;■!; '< , \ i -r.; ^a r s>> « ■ • ’ V •; >fis i v O¡v >^<j:!i r >><:S': :, . s s /,Vvi »•i ; , . ✓.•. ^ , »'.'• *<" \“>• •>’ I >• >• . •• *Ï r e*/ '.• ' ^ *' • V**/, •i : 5’••7, i' a .•' ••. .v .'••v *•••>*•'•*/•v . •v .v• ^ f"/ í ; v '>■<• ' ¿ v b : !¿ '• V/. > : U l / • ' >; s ƒ ' :;. v ; v < . ^ - V , >\ ', C ': - a 7 > ^ r, l J > L \ ' ' r ^ > ' ^ y i ',l ) ■ } * ' ,-s.r , ' v y V r <*/,*!•, sv Ä >X r <\‘' ‘'>'i'V'', vY ' i'i'^ ¿A r -;í ;l í í s»' -y. r i. >'..•> ■........ •': i ••■.•’ ?. I ,. . ^ ' Z - 1'. < v . -V-V . v f ; ’ : :-J:V . ••• , V ’ ¡ : .•> s ' !•>:.'ss •\>/' *' ^ -V V > : ;.vV::vVVÎ*^V^ i •■'.-r;-.-.'. :v r:;-.-.- r : :■■^ : j ; • < ’ • í . ; ’ v . ^ •->■,• •/,• ,:¿ c ^ : * , <.«.• r V - • > - , • / . . > > ^ J V .V ’ : s;:/ ‘' i X ’^V ; '/>; :S.v^s) ’N ii V . x v r v v V (\ y y ^ .'i/¡¿ ’.: ; ; • S;';T ?,C: - ' ; ^ ^ V<r- ^ ' ¿ wy;:í ;íí- • « '/;• • > / > s’; V • V A / ’ > :/'•••’ ;.• <’•>• ::-:• •r . - . • 'vMS'rY^,vs,; I’ ’*'■■<•■ ' > * ' < 'S'£\ ¿ W ' *s^ ') ; ; ; 'S-* ,s : . ï * ^ / " - * l - v . . v ^ : * : ’ : • S >: ; KS -\> \ ' < \ ' ;•: s : ^ -v.< ; iJ: V V - :V:<. ' 'rr^’:-;< «.v 1-5! ¿j vwiy;» :sN ^ ,\*SV: s ' i: • .'/-V y>:- 1 FGRLHRÏ I PI C cIM PKKPAED ENDSKGVSBA SGPQNDGKQl ★ * in ic -to *k if rt rt ¡A C>W f î PQNDGKBL t:V h G cIM PKKPAEE G FG R LQ G ISP K 2 * * 3 FG RLQ G IFPK , IMPKKPAEE GNVSKEVPEA SQPHNDGKQL L b r e a k p o in t r a g io n 1 KINKRSGPKR GKHAWTHRLR ERKQLV IYEE c IM ** m A“ C * r ,* mu *** :TSR YFPOKFTTSE D E - ••s to p S S X l * 2 K IH ERSG PK R GEHAWTHRLR ERK Q LV IYEE k’, y, '{ M i a ? ISDPBED ■H> ■ SSX2 ivic"k m 3 K IN M ISG PK R GEHAWTHRLR ERKQLVIYEE ISD PE E D D E - -Stop SSX3 /^::'Vv.;‘r>NÍ :V>-ií ï^ ï^ î í -'t:■?'IV: )!; •V'iív*' ;v‘ : : , V ', : ^ :/: \VV •!1'■•1 ■’’■K<Y ''J *V'i í ^ ,5 -; '. V ÿ : '+ m w ^ r n r n 'A y ï : ï 'ä $ M ■ . ' ' v' r " .* ■;*' .'i D ^^t r: :cyrJ.NÍ:•?¿ i Í ^ ^ \y ÿ ^ Y .'Y .ï. : i> :s:^ >:^/ ’.V/.V Fig. 4. Amino acid sequences of SSXl, SSX2, and SSX3 and 3, respectively). Differences as compared to the SSX2 sc cated by asterisks. The KRAB boxes are marked with the conserved amino acids in boldface type, and the semiconserved amino acids are underlined (modified after Crew et al., 1995). SÄiiiiiSf l'X'.K'}: rJi i-S'Î ¿Í-:.^ 1'í= Ï r.c-': .'-i-; i-': •w »*•: r .V s• : • v k 'i -iiW V i FI*. 3. R estric tio n <liecst „fS Y T -ssx R T - P C R p ro d u cts from ! 2 d iiT Crent synovial sarcomas with EcoRV (A), Bglll (B), Lspl (C), and Smal (D). The PCR was performed on 1 jxl of RT material with SYT (5'-CAACAGCAAGATGCATACCA-3') and SSX (5'-CAClTGCTATGCACCTGATG-3') primers (Leeuw et al., 1995), I min at 92°C, 1 min at 48°C, and 3 min at 72“C for 35 cycles. Lanes 1-12 contain RT-PCR material from tumors 9450418, 89-52115, 2374/90, CATC, 88-50654, 243090, Hiss, KN, PTN SSI, 4873/92, 950501XC, and 2214-287, respectively (Leeuw et al., 1993a, 1993b, 1994a, 1994b, 1995; Janz et al., 1995; and unpublished cases). Lane M: size marker (100-bp ladder, Life Technologies). The 600-bp marker band is indicated by an arrow. (Figs. I and 2) an EcoRV site is found in SSX3 that is not present in SSX 1 and SSX2. Aside from these differences, SSX3 shows the same Smal site as SSX2 (absent from SSXl) and the same Lspl site as SSX 1 (absent from SSX2). As a consequence, digestion of SYT-SSX RT-PCR products must reveal Bglll and Lspl sites in case SSXl is involved, Bglll and Smal sites in case SSX2 is involved, and Smal, Lsph and EcoRV sites in case digestion of SYT-SSX RT-PCR products from nine different synovial sarcomas revealed fusion products that contained only SSX 1- or SSX2-derived sequences (Leeuw et al., 1995). Digestion of RT-PCR products from six additional independent synovial sarcomas revealed a Bglll site and either an Sma\ or Lspl site, whereas none showed an EcoRV site or both ¿7««I and Lspl sites (Fig. 3). From these results we conclude that the SSX3 gene is not fused to SYT in any of our 15 independent synovial sarcomas. C r e w c t a1' (1 9 9 5 ) P “ 1* " a series o f 2 9 sy n o v ia l s a r c o m a s ?1f t\ SSX RT-PCR products, but never both sites tioned that only SSXl or SSX2 sequences were encountered. Therefore, we conclude that SSX3 is not included in the fusion with SYT in any of the 44 independent synovial sarcomas thus far tested. In addition, three synovial sarcomas without any evideuce for the presence of SYT-SSX1 or SYT-SSX2 fusion products were ted (Crew et al., in these cases with certainty, but it would h detected by the investigators using the highly Figure4 compares the amino acid sequences of SSXl, SSX2, and SSX3. It can be deduced from this comparison that, at this level, the identity between SSX2 and SSX3 is relatively high (90 %), except for the Kruppel-assoeiated box B (KRAB B) region, where it is only 73%. The overall identity between SSXl and SSX2 is only 76%. Whereas the KRAB A domain appears to be involved in the repression of transcription, B domain seems to be dispensable f activity under in vitro conditions ( Witzgall et al., 1994). It been suggested that KRAB-eontaining proteins may exert their effects through interactions with transcriptional activators containing a glutamine-rich activation domain (Licht et al., 1993). « j jt M * % í is a t3 * « íia M N s # * i» w s 5 T W * y « w t f 4 » * ! tiA U « ^ iP i ¿ ^ * > r v y t^ X r» » u ¿ tA ^ iy M $ * n i.?ía Cytogenet Cell Genet 73:179-183(1996) 181 A B C D E Fig. 5. Southern blot analysis of ¿scoRI-digested somatic cell hybrid (578, 578K17, Hlsynsarc; lanes C, D, and E, respectively) and control Chinese hamster (A3, lane A) and human (HL60, lane B) cell line DNAs. Size markers are deduced from a co-electrophoresed 1-kb lad der (BRL). As such, the observed differences at the amino acid level between the KRAB B domains of SSX2 and SSX3 may give rise to functionally different interactions. The exact nature of these putative interactions, however, remains to be established. The chromosome location of the SSX3 gene was established through the analysis of a panel of human x rodent somatic cell hybrids including the X-only line 578 (Sinke et a l, 1993); its radiation-reduced derivative 578K17, which contains Xp 11.4 -» p 11.1 segment as the only human constituent (Berger et al., 1992); and the synovial sarcoma-derived line Hlsynsarc containing X p ll.2 - > q te r (Leeuw et al., 1993a). Since 578, 578K17, and Hlsynsarc exhibit restricion fragments similar to in control total human genomic DNA that hybridizes to our SSX3 cDNA probe (absent in the control hamster DNA under the stringency conditions applied [Fig. 5]), we conclude that the SSX3 gene must reside within X pl 1.2 p 11.1. This proximal Xp segment contains several low-copy repeats, among which are the OAT-like sequences (Sinke et al., 1993; Leeuw et al., 1994b). Interestingly, SSX1 is positioned precisely within the OATL1 cluster (Leeuw et al., 1993a). The identification of yet another SSX gene (SSX3) in X p ll.2 -> p i 1.1 is in full agreement with the repeated nature of this par ticular chromosomal segment (Lafreniere et al., 1991). Since SSX1 and SSX2 are functional, expressed genes containing intronic sequences (unpublished data), they do not seem to 182 Cytogenet Cell Genet 73:179-183 (1996) have arisen by reversed transcription. In this respect, they are the interspersed OAT-like sedifferent from, for quences, some of which have been reported to be processed pseudogenes (Lafreniere et al., 1991; Geraghty et a l, 1993). It has been hypothesized before that the OATL1 and OATL2 clusters may have evolved via a duplication event of the entire region (Shipley et al., 1994). Our present results indicate that during the course of evolution, several of these duplication events must have occurred within this particular genomic seg ment. In addition to the SSX3 gene reported here, we have evi dence for the existence of at least two other SSX-like genes. The first one, designated SSX4, was found after RT-PCR with two SSX internal primers oil RNA extracted from a primary human fibrosarcoma. Preliminary sequence data indicate that this gene may give rise to a protein truncated just after the KRAB A box. The second one, SSX5, was detected via the presence of an exon in one of our OATL1 YAC-derived cosmids (Leeuw et al., 1993b). This exon shows between 80% and 90% base-pair homology to the corresponding exons in SSX1, SSX2, SSX3, and SSX4. Whether SSX4 and SSX5 actually represent func tional genes still remains to be established. The possible involvement of any of these novel SSX sequences in the devel opment of other neoplastic disorders carrying X-autosome translocations, such as renal cell carcinomas (Sinke et al., 1993; Dijkhuizen et al., 1995), is currently under investigation. Acknowledgements The authors thank C. Ture-Carel, G. Stcnman, L.G. Kindblom, N. Mandahl, S. Gilgenkrantz, J.M. Lopes, J.A. Fletcher, W.M. Molenaar, and T. Wobbes for providing tumor material. References Berger W, Meindl A, de Leeuw B, de Roos A, van de Pol TJR, Meitinger T, van der Velde-Visser SD, Achatz H, Gcurts van Kesscl A, Cremers FPM, Ropers HH: Generation and characterization of radiation reduced cell hybrids and isolation of probes from the proximal short arm of the human X chromosome. Hum Genet 90:243-246 (1992)* Clark J, Rocques PJ, Crew AJ, Gill S, Shipley J, Chan AML, Gusterson BA, Cooper C: Identification of novel genes, SYT and SSX, involved in the t(X; 18)(p 11.2;ql 1.2) translocation found in hu man synovial sarcoma. Nature Genet 7:502-508 (1994). Crew AJ, Clark J , Fisher C\ Gill S, Grimer R, Chand A, Shipley J, Gusterson BA, Cooper CS: Fusion of SYT to two genes, SSX1 and SSX2, encoding pro teins with homology to the Kruppel-assoeiated box in human synovial sarcoma. EMBO J 14:23332340(1995). Dijkhuizen T, van den Berg E, Wilbrink M, Weterman M, Gcurts van Kessel A, Storkel S, Folkers RP, Braam A, de Jong B: Distinct Xpl 1.2 breakpoints in two renal cell carcinomas exhibiting X;autosome translocations. Genes Chrom Cancer 14:43— 50(1995). Geraghty MT, Brody LC, Martin LS, Marble M, Kearns W, Pearson P, Monaco AP, Leraeh H, Valle D: The isolation of eDNAs from OATLl at Xpl 1.2 using a 480-kb YAC. Genomics 16:440-446 (1993). Janz M, de Leeuw B, Olde Weghuis D, Werner M, Nolte M, Geurts van Kessel A, Nordheim A, Hipskind RA: Interphase cytogenetic analysis of dis tinct X-chromosomal breakpoints in synovial sar coma. J Pathol 175:391-396 (1995). Lafreniere RG, Geraghty MT, Valle D, Shows TB, Wil lard HF: Ornithine aminotransferase-related se quences map to two nonadjacent intervals on the human X chromosome short arm. Genomics 10: 276-279 (1991). de Leeuw B, Balemans M, Olde Weghuis D, Geurts van Kessel A: Identification of two alternative fusion genes, SYT-SSXl and SYT-SSX2, in t(X;l8) (pi L2;ql l.2)-positive synovial sarcomas. Hum molec Genet 4:1097-1099 (1995). de Leeuw B, Balemans M, Okie Weghuis D, Seruea R, Janz M, Geraghty MT, Gilgenkranz S, Ropers HI I, Geurts van Kessel A: Molecular cloning of the synovial sarcoma-specific translocation (X; 18) (pi 1.2;ql 1.2) breakpoint. Hum molec Genet 3: 745-749 (1994a), de Leeuw B, Berger W, Sinke RJ, Suijkerbuijk RF, Gil genkrantz S, Geraghty MT, Valle D, Monaco AP, Lehraeh H, Ropers HII, Geurts van Kessel A: Identification of a yeast artificial chromosome (YAC) spanning the synovial sarcoma-specific t(X; 18)(p 11,2;q 11.2) breakpoint. Genes Chrom Cancer 6:182-189 (1993a). de Leeuw B, Suijkerbuijk RF, Balemans M, Sinke RJ, de Jong B, Molenaar WM, Metoni AM, Sandberg AA, Geraghty MT, Ilofker M, Ropers HH, Geurts van Kessel A: Subloealization of the synovial sarco ma-associated t(X; 18) chromosomal breakpoint in X p ll.2 using cosmid cloning and fluorescent in situ hybridization. Oncogene 8:1457-1463 (1993b). de Leeuw B, Suijkerbuijk RF, Olde Weghuis D, Meloni AM, Stenman G, Kinblom LG, Balemans M, van den Berg E, Molenaar WM, Sandberg AA, Geurts van Kessel A: Distinct Xpl L2 breakpoint regions in synovial sarcoma revealed by metaphase and intcrphase FISH: relationship to histologic subtypes. Cancer Genet Cytogenet 73:89-94 (1994b). Licht JD, Ro M, English MA, Grossei M, Hansen U: Selective repression of transcriptional activators at a distance by the Drosophila Krüppel protein. Proc natl Acad Sei, USA 90:11361-11365 (1993). Olde Weghuis D, Stoepker MEJ, de Leeuw B, van den BergE, Suijkerbuijk RF, Molenaar WM, de Jong B, Geurts van Kessel A: A synovial sarcoma with a complex t(X;18;5;4) and a break in the ornithine aminotransferase (OAT)Ll cluster on Xpl 1,2, Genes Chrom Cancer 9:288-291 (1994). Shipley JM, Clark AJ, Birdsal! S, Rocques PJ, Gill S. Chelly J, Monaco AP, Abe S» Gusterson BA, Coop er CS: The t(X;18)(pl L2;ql 1.2) transloeation found in human synovial sarcomas involves two distinct loci on the X chromosome. Oncogene 9: 1447-1453 (1994), Sinke RJ, de Leeuw B, Janssen HAP, Olde Weghuis D, RF, Meloni AM, Gilgenkrantz S, Berger W, Ropers IilL Sandberg AA, Geurts van Kessel A: Localization of X chromosome short arm markers relative to synovial sarcoma- and renal adenocarcinoma-associated transloeation break points. Hum Genet 92:305-308 (1993). Turc-Carel C, Dal Cin P, Limon J, Rao IK Li FP, Cor son JM, Zimmerman R, Parry DM, Cowan JM, Sandberg AA: Involvement of chromosome X in primary genetic change in human neoplasia: nonrandom transloeation in synovial sarcoma, Proc natl Acad Sci, USA 84:1981-1985 (1987). Witzgall R, O ’Leary E, Leaf A, 6naldi D, Bonventre JV: The Krtippel-associated box-A (KRAB-A) do main of zinc finger proteins mediates transcription repression. Proc natl Acad Sci, USA 91:4514-4518 (1994). letM« Cytogenet Cell Genet 73:179-183(1996) 183
© Copyright 2024 ExpyDoc