Rijkswaterstaat
Tidal waters division
rijkswaterstaat
dienst getijde wateron
bibliotheek
grenadiersweg 31 »
4338 PG middeiburg
GREW\Q: an ecological model for
Lake Grevelingen
i
documentation report
addendum: tables and figures
I. de Vries, F. Hopstaken, H. Goossens,
M. de Vries, H. de Vries, J. Heringa
rijkswaterstaai
CONTENTS
Tables and figures introduction and data base
dionst getijdewateren
bibliotheek
grenadiersweg 31 •
4338 PG iTHddelburg
1
Tables and figures GREWAq model description
30
Tables and figures results
45
Tables and figures model applications
60
LIST OF TABLES
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
1.1 Volumes and surface areas of seqments in QREWAQ
. .3
1.2 Nutriënt loadings on Lake Grevelingen
3
1.3 Sampling locations Lake Grevelingen
4
1.4 Fytoplankton celvolumes and volume to carbon ratios
5
1.5 Concentrations of Phytoplankton and POC
6
1.6 Empirical carbon to chlorophyll ratios
6
1,7 Eelgrass standing erop and production
6
1.8 Griginal data on benthic fauna 1983-1986
7
1.9 Biomass of functional groups of benthic macrofauna
7
1.10 Production and mineralisation in Lake Brevelingen
8
I.ll Sediment - water exchange fluxes in Lake Grevelingen 8
II. 1 Modules of GREWAQ
31
II.2 State variables of GREWAQ
32
II.3 Coefficients in the GREALG module
33
II.4 Production of eelgrass and transport of detritus.
34
II.5 Functioning of the BOS
34
II.6 Coefficients in the COMPLX module
35
II.7 Coefficients in the CQNSUM module
36
II.8 Coefficients in the MICROB module
37
II.9 Mass exchange betwesn segments
37
11.10 Characteristics of pore water profiles
38
II.11 Coefficients in the OISPER and BOTTOM modules
. 38
III, 1 Measured and calculated phytoplankton and POC
. 46
III.2 Measured and calculated benthic diatoms and PQC
46
III,3 Measured and calculated pore water nutriënt conc. 47
III.4 Measured and calculated sediment - water exchange 47111,5 Measured and calculated production and respiration 48
III.6 Summary of calculated carbon budgets
48
III.7 Nitrogen cycling in Lake Grevelingen
49
III.8 Summary of calculated nitrogen budgets
49
III.9 Summary of calculated silicon budgets
49
III. 10 Parameter space for three parameters
50
III. 11 List of parameter vectors and goodness of fit . 51
III. 12 Optimal parameter vectors and goodness of fit . 52
III.13 Goodness of fit option of PC version GREWAQ . . 52
III.14 Nitrogen loadings of marine ecosystems
....
53
IV. 1 Nitro'gen budgets for three scenarios
81
ii
LIST OF ILLUSTRATIQNS
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figurs
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
1 The annual carbon balance of Lake Grevelingen . . . .
1.1 Map of Lake Grevelingen with sampling stations
.
1.2 Segmentation of Laks Grevelingen
1.3 Area - depth curve for Lake Srevelingen
1.4 Ammonium concentration North Sea
1.5 Nitrate concentration North Sea . . .
1.6 Orthophosphate concentration North Sea
1.7 Silicon concentration North Saa . . .
1.8 Irradiation
9 Temperature
10 Chloride concentration
11 Qxygen concentration
12 Suspended solids concentration
13 Orthophosphorus concantration
14 Silicon concentration
15 Ammonium concentration
16 Nitrate concentration
17 Chlorophyll concentratian
......
18 Particulate organic carbon concentration . . . .
19 Pore water concantrations P04, Si and NH4
...
20 Pore water concentrations N03 + N02
21 Phytoplankton biomass measurements
22 Chlorophyll concentrations in the sediment . , .
23 Particulate organic carbon in the sediment . . .
24 Mean biomass benthic macrofauna 1972-1985
. . ,
25 Location of mussel beds and sampling locations .
II .1 Schematic representation of GREWAQ
II 2 Flowchart of the DELWAQ - GREWAQ coupling
11.3 Flowchart of GREWAQ
11.4 photosynthetic efficiency curve
11.5 Rescaling incident irradiance
11.6 Nitrogen cycling in the benthic complex system
11.7 The sequence of processes in the BCS
11.8 Pore water profiles of nutrients
11.9 Calculated pore water profiles
III.
Model results ammonium
. .
III.2 Model results nitrate
III. 3 Model results phosphorus
111.4 Model results silicon
111.5 Model results diatoms
111.6 Model results non diatoms
III. 7 Model results chlorophyll
III.8 Model results particulate organic carbon
...
III. 9 Model results benthic diatoms
111.10 Spatial differences state variables watercolumn
111.11 Spatial differences state variables BCS
...
111.12 Spatial differences bottom detritus
111.13 Spatial differences nutrients shallow bottoms
111.14 Spatial differences nutrients deep bottoms . .
111.15 Model results N fluxes BCS
111.16 Model results Si fluxes BCS
111.17 Potential production benthic diatoms
111.18 Energy budgets phytoplankton and susp. feeders
111.19 Carbon cycling in Lake Grevelingen
111.20 Nitrogen balance of Lake Grevelingen
111.21 Results uncertainty analysis ammonium
....
2
.9
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28
28
29
29.
39
40
40
41
41
42
42
43
44
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
iii
Figure
Figure
Figure
Figure
Figure
Figure
Figure
III.22 Results uncertainty analysis nitrogen
....
75
III.23 Results uncertainty analysis silicon
76
III.24 Results uncertainty analysis chlorophyll . . . 77
III.25 Model results new nominal run
78
III.26 Model results new nominal run: 02 and P04
. . 79
IV.1 Model results scenario 1: increased loadings . . 82
IV.2 Model results scenario 2: biomanipuiation
...
83
TABLES AND FIGURES INTRODUCTION ANO DATA BASE
PHYTOPLAMKTON
net production:190
biomass
: 1.3
57
29
ZOÖPLANKTON
biomass
POC-import
from Morch Sea
: 0.11
SUSPENSION FEEDING
30TT0MFAUNA .
biomass
: 3
1-
N
'N
EELGRASS + MACRO-ALGAE
50
net production: 50
biomass
; 15
136
SUSPENDED DETRITUS
conoentration: 1.7
51
BENTH1C MICRO-ALGAE
14
DËPOSIT FEEDING and
GRA2IK0 BQTTOMFAUNA
biomass
: 6
151
BOTTOM DETRITUS
Ml
Figure 1
The annual carbon balance of LakeGrevelingen. Situation 1980-1981. The components (rectangles) and processes (arrows) considered, the input data on biomass and
annual net production, and the calculated values for fluxes (respiration, consumption,
detritus formation, sedimentation, resuspension and mineralization) and concentrations (suspended and bottom detritus)'are indicated. Values are given in g C-m " 2 and
gC-ra-2-a- 1 ,
51
Table 1.1
Volumes and surface areas of segments used in GREWAQ
(values
in
10 6 m 3 or m 2 )
volume watersegm.
area shallaw
area deep
total area
eastern
western middle
segments segments segments
263
15.6
17.5
33.1
114
18.6
10,4
29.0
184
34.5
11.9
46.4
deep
pit
21
2.7
2.7
total
582
68.7
42.5
111,2
Table 1.2
Nutriënt loadings on LaUe Grevelingen in g N,P,Si/m2.y
atmospheric
depos. of NH4
1977
197Ö
1979
1980
1981
1982
1983
1984
198S
1
1.04
0.38
1.18
1.03
1.03'
1.03'
1.0311
1.03
1.031
polderwater and shipping sluice
N
2.44
2.16
3.46
2.62 2
3.20
3.16*
3.11 22
3.06 2
3.00
P
0.30
0.20
0.35
0.38
0.41*
0.40*2
0.40a
0.40
0.40*
Si
3.69
2.03
4.37
3.76
3.8Oaa
3.76
3.62'
3.67a
3.67*
) For 1981-1985 no data were available on atmospheric deposition.
The same values as for 1980 are assumed for these years. According
to data from RIVM, the wet deposition of nutrients is highly variable, the standard deviation however is low, and no trend is visible from 1979 through 1982 (v.d. Meent et al, 1984).
2
) Polderwater discharges are interpolated between 1981 and 1985,
Table 1.3
Sampling locations, sampling depths and average sampling
frequency per year during the period 1977-1985 in Lake
Grevelingen.
stations
depth
number af
sampling
depths
sampling
frequency
source
6-3
GB-6
GB-7
0-5
0-28
0-37
1
3
3
10-13
10-13
10-13
RWS
segment 4 (tniddle)
GB-5
G-11U7)
P-11U7)
0-12
0-22
0-3
3
10
3
10-13
30-45
30-45
RWS
DIHQ
GIHQ
segment 7 (east)
G-l
G-2
GB-4
0-7
0-23
0-11
3
3
3
10-13
10-13
10-13
RWS
RWS
RWS
segment 10
G-3
26-52
2
10-13
RWS
segment 1 (west)
RWS
RWS
Table 1.4
Phytoplankton species in Lake Grevelingen, their individua.l cell
volumes (in nm3) and their carbon content according to reqressions
equations of Eppley
genus
species
Amphidinium
Asterionella
Biddulphia
Öiddulphia
Calycomonas
Ceratauiina
Chaetoceros
Chaetoceros
Ciliate
Ciliate
Coscinodiscus
Coscinodiscus
Cryptamonas
Detonula
Oj-nophysis
Diploneis
Disci
Ditylum
Ebria
Euglana
Eucampia
Eutraptiella
spec.
japonica
aurita
regia
spec.
barghonnii
spac.
Favalla
Flagellates
Green rods
Qymnodi.n3.um
Gymnodinium
Gyrodiniutn
Gyrodinium
Helloostomella
Heterocapsa
Leptocylindrus
Licmophora
Llthodesmiuni
Masartia
Mesadinium
Mesodinium
Nitzsohia
Nltzschia
Nitzschia
Pannates
Pannatas
Peridinium
Peridinium
Peridinium
Prorocentrum
Prorocentrum
Pseudopedinella
Rhizosolenia
Rhizosolenia
Rhizosolenia
Rhoicosigma
Skeletonema
Strombidium
Strombidium
Thalassiosira
Thalassiosira
Tintinnopais
Tlntinnopsis
Tlntinnopsis
U-cells
class calvolume
spores
spec, <5mall)
spec, (large)
qiqas
granii
spac.
confarvacaa
spec.
spac.
brightwallii
spec.
spac.
zoodiacus
spac.
ehrenbergii
N
D
0
800000
D
aooooo
10
N
0
0
0
22000
N
N
D
D
N
1000
9000
200000
100000
spec.
delicatula
hebetata
setigera
spec.
costatum
spec, (large )
spec. (small)
nordenskioldi
rotula
beroidaa
campanula
cylindrica
500
300
500
D
2500
10000
20000
N
100000
4000
D
N
0
D
N
0
H
N
N
N
splendens
spec (small)
lachryma
spirale
subulata
triquatra
danicus
gracills
undulatum
rotundata
rubrum
spec. (large)
clostarium
aeriata
sigma
(larqe)
(small)
spac. (large)
spec. (small)
triquetrum
redfieldii
micans
520
200
20
500
26000
1000
150000
300
100
H
N
N
65000
1000
200000
100000
N
soooo
4000
D
D
2000
3200
40000
N
N
D
N
N
N
D
D
D
0
D
200
4000
20000
200
2000
20000
15000
500
N
N
N
N
N
N
30000
10000
4000
10000
30000
0
0
3000
20000
6000
120000
D
0
0
N
N
D
0
N
N
N
N
100
200
50000
20000
10000
20000
70000
200000
3000
10
C/vol-ratio
0.1726
0.1247
0,0170
0.0170
0.2188
0.0403
0.1001
0.1131
0.1660
0.1465
0.0238
0.0281
0,1730
0.0680
O.144S
0.0413
0.2166
0.0281
0.1527
0.1730
0.0388
0,1660
0.1229
0.1784
0.1905
0.1292
0.1660
0,1208
0.1259
0.1312
0.1527
0.0717
0.0641
0.0350
0.1828
0.1527
Q.1387
0.1247
0.0717
0.0413
0.0442
0.1001
0.1353
0.1445
0.1527
0.1445
0,1353
0.1905
0.0651
0.0413
0.0551
0,0269
0,1247
0,1312
0,1387
0.0438
0.0413
0.1286
0.1208
0.1554
0.2188
Table 1.5
Annual average concentrations of phytoplankton and POC
chlorophyll (mg/m3)
phyto-C
{ g/m 3 )
( g/m3)
POC
1978
1979
1980
3.16
0.20
0,52
4.51
0.27
0,51
2.10
0.25
0,55
63
60
119
38
53
45
average C/Chl
average % phytopl.
of total POC
Table 1.6
Long term (1978-1980) monthly averaged C/Chl-ratios of
phytoplankton cancentratians > 200mg C/m3 and > 2 mg Chl/m3
mean
C/Chl-ratio
month
May
79
95
258
June
July
August
September
October
157
101
1S2
131
76
March
April
number o£
observations
3
9
3
7
7
5
5
7
Table 1.7
Eelgrass standing erop and production in Lake Grevelingen during
1971-1986 (unpublished data from Pellikaan and Nienhuis)
year
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1965
1986
standing
erop
Total
prod.
Average
prod.
gC/m 2
ton AFOW/y
gC/m2.y
West
Middle
East
11,1
11.7
12.4
20.0
27.7
27.7
35.4
42.8
42.8
18.0
30.0
26.8
33.8
32.9
32.0
32.0
0.0
0.0
0.0
0,0
0.0
0.0
0.37
0.37
0.37
0.31
0.29
0.29
0.38
0-44
0.44
0.20
0.33
0.58
0.59
0.62
0.64
0.64
0.63
0.63
0.63
0.69
0.71
0.71
0.61
0.54
0.54
0.80
0.67
0.41
0.40
0.37
0.35
0.35
4.1
4.1
4.6
7.4
10.3
10.3
13.1
15.9
15.9
6.7
11.1
9.9
12.5
12.2
11.9
11.9
2676
2817
2973
4810
6647
6647
8510
10292
10292
4333
7204
6454
8125
7910
7698
7698
relative distribution of
tot. prod. o^er segments
0.02
0.03
0.03
0.0
0,0
0.01
0.01
0.01
0,01
0.01
Table 1.8
Spring
biotnass
of taxonomie groups of benthic macrofauna,
1983-1986, in the segments west, middle and east in gADW/m2 {after
Lambeck, unpublished data)
N
4
15
5-15 13
3
>1S
middle 0-1.5 14
2-5
13
5-15
8
east
0-1,5 7
2-5
11
5-15
3
west
0-1.5
2-5
biv
gas
pol
11.1 2.0 0.S3
48.5 21.9 0.87
0.1 1.7 0.57
0.0 0.8 0.01
1.8 0.7 0.04
5.5 11.8 0.37
0.1 0.9 0.51
0.9 0.9 0.31
53.4 15.8 2.01
0.5 6.4 0.15
1986
N biv gas pal
west
1985
198«
1933
0-1.5
2-5
14 41.4 23.2 0.76
5-15 14 6.6 10.7 1.50
3 0.0 0.0 0.40
>15
middle 0-1.5 _
2-5
14 31.4 20.2 0.40
5-15
8 1.2 7.8 0.62
east
0-1,5 _
_
_
_
2-5
11 40.2 17.9 0.22
5-15
7 0.7 1.7 1.36
N biv
93 s
pal
3,7 3.70
4 Zi.Q
13 19.7 16.3 0,29
14 2.4 3.4 0.45
3 0.0 0.0 0.0
14 0.5
2.2 1.11
13 38,5 21 .3 0.37
8 12.0 9.9 0.51
7 1.2
1.2 0,33
11 19.7 22.2 1.06
8 2.4 6.8 0.71
N
biv
gas
pol
0.0 o-.o 0.0
29.4 18.8 0.82
7.6 3.2 4.21
0,0 0.0 0.22
13.9 7,8 1.71
55.8 37.9 0.36
21.7 9.3 4.04
0.7 4.4 1.58
60.2 27.2 0.69
8 6.3 13.0 2.90
0
14
14
3
5
10
9
3
11
mean
N biv
gas pol
8 16.1 2.8 2.12
56 35.3 20.2 0.69
55 4.3
12 0.0
33 3.1
50 31 .4
33 9.1
17 1.0
44 43.4
31 2.7
4.8 1.71
0.2 0.16
2.4 1.02
22.0 0.38
7.0 1.50
1.6 0.55
20.8 0.99
7.1 1.28
Table 1.9
Spring biomass of functional groups of benthic macrofauna, mean
values for the segments west, middle and east, shallow (0-Sm),
deep <5-15m) and deep pit <>15m> in gC/m a (revised data after Lambeck, as used in GREWAQ)
suspension
west
shallow
deep
pit
middle shallow
deep
east
shallow
deep
surface deposit
feeders
feeders
9.9
2,2
0.0
5.8
2.2
4.5
8.3
2.6
0.7
0.06
2.5
0.7
1.8
0,5
sub surfsce
deposit feeders
1.00
0.92
0.06
0.5 9
0.75
0.38
0,55
Table I.10
Production and mineralisation in Lake Qrevelingen
(values in
gC/m 2 .j)
prim. production
phytoplankton (DIHO)
phytoplankton (RWS)
benth. diatoms (i4C)
benth. diatoms (02)
1977
1978
1979
1980
1981
60
90
171
156
35
194
172
32
70
225
mineralisation
in water
in the sediment
305
390
Table 1.11
Sediment - water exchange fluxes in Lake Grevelingen
calculated from parewater concentration gradients
(values in
mgP,Si,N/m2.d)
phosphate
silicon
ammonium
shallaw (<7m)
March
Ouly
13
84
45
15
87
70
deep (>7m)
March
July
4
134
46
62
246
154
{..\ -X-P11 (17)
(17)
,\
jijt G - SAMPUNB IOCAH0NS RWS AND OIHO
t=4> a POLOERWAIER DISCHARGE POIHT
|
|
|
—
—•
I '
d«ptti contour lln«: • m
depth contour llna: S m
dtp IK contour llno: 20 m
=
|
j
BORDER UNES
OF SEOUEHTS
OF GREWAQ
Figure 1.1
Map of Lake Qrevelingen with depth contour Unes, sampling Xocations and polderwater discharge points.
WEST
EAST
15 10
a) - SIPHON SLUICE
b) - SLUICE
40
Figure 1.2
The schematization oj£ Lake Grevelingen into 11 segments
—*0
2
ld
N A P
a.s
'
8
19
4fl
(ha *105)
12
10
1
54
50
40
4Ï.S
40
ao
17
6
4
area
L
i n
-
ao
«
-20
/
—
i
1
depth
-30
—
'Cm)
Figure 1.3
Area-depth curve for Lake Grevelingen
10
O
75-
0I J A M ?•
0I J A N 7 !
0.79-
0
7S-
JICECII
D*TE
L CCEND
STAT ION
*
SCHOUWEN
a
c;of f(f E
Figure 1.4
Ammonium conoentration at the North Sea in
U
2 . 0-
I . 5-
0 . S-
j i uEca.i
LEGEND:
Figure
STAT
ION
A
SCHOUWCN
S
COtfifE
1.5
Nitrate concentration at the North Sea in qN/m3
12
OPO +
0
11-
Q
i a-
j
\
j!
Il
0 . 1 i-
i!
j\
\
i.
'ii
\
fl
•
/
0 . 04-
/
/\
;•
i
i
,'
i i
1 \i
0.03-
/ \
i V / \
\
06-
• • • . ;
K
|
i
)
j
\\
i
;
/
0.1!-
ii
/
:
'
;
i
!
i
j
|
'
.-, i
i\ i
•.
•
'•
f
_
i
•
\
ï
'.,
i '
'«i
;
• i i ,-'' \( '
A1/ \ s^
\ \
J \\..
\\
P
i f
\ \
..1
/ V
/
\
\
T
'
•
Al
.'i
y
V
/': ;'
W '
^f
••
\
•
0 . 00-
.••••.
/
i
/
\
\ y
/
0 I JAM7»
O IJ «N94
Ptli
LtCEBD :
Figure
S TAT ION
A
SCHOUWEN
l)
DOEREE
1.6
Ortho-phosphate concentration at the North Sea in gP/m3
13
O I JAN
O
S-
2
0-
a
5-
'O
OATE
lEGEMD:
Figure
STATION
SCHOUWCH
1.7
Silicon concentration at the North Sea in qSi/tn1»
14
I
fiftAO
! 400
"
100 0
-
800
-
4 00
-
O 1 JAM77
800
-
aIJAHS)
Figure
OI J*N7«
O I JAHBl
1.8
Incident irradiation data from station Bomtnenede, weekly avaraqes
of daily totals in W/m 2 (400-700nm)
15
to
24-
22-,
10-
A
1 8-
\
4 -A
1 6-
f/\
1 4-
n ''
1 1-
\
0-
II
/
a-
V
64-
i
/
3-
i
0-
P
\
\\ r
\v
•••. v y
-2-
0IJAN77
OIJUL77
CHJAM7S
0 J J UL 7 »
01JAN79
01JUL7S
J I0E 079
2 S30-
16I 41 2I 0-
6
l0-2
1
1
01 J/.M40
T"
T"
0IJAN12
ü1 J UL d2
H 0 E U 3
O I J U L 3 Ei
1 1 1 I C1 b
~
01 JULflO
0IJANS1
2220-
1 »1 4-H
1 2~
f
1 08-:
64~
1-
/
\
\
\ï
A/' \\
V
\ /i
/
a-3~~
i
OljASSJ
01 J U t t ]
D1JAH84
0 I JUL 8 4
r
O I J ANSS
"••
OAïe
U S C H D :
L O C A T I OM
wcsr
ottf
UIDUL1
WtST
S H A L L OW
Figure 1.9
Temperature data in °C
16
1 S
-
/
/
/
\
y
/'
1 7 ~
/
,;'' ';
-1'
/
f'
i'
"
/
• .
/
/
/'
- '
tl
/
/
1i /
//
i
-
•'
J
'
•
/
t6 -
4
:
'ï
:
•
"
^
/
/
/
/
..
'i
,
\
'S
!
\
V
-
••'1
V'
'^
:
t l ,•'
;' '
', /
V
•••;V-'A/\,
1
1
1
1
1
O I J A N 7 7
' f—-~
O I J U L 7 7
0 U A M 7 S
O I J U L Ï J
O I J A H O D
OIJULID
DIJANQ1
OlJULflJ
0IJANS4
'•
OIJAN79
OIJ Ui J 9
O U 'J L « I
O I J M t i
O I J UU 32
0IJUL84
OIJANBS
••'•
r
J I O t C B !
l2 I)IJAH«1
OIJULÖt,
JlOLCtS
OA F C
LECEND,
I.DCAT I O N
CAST
WEST
Figure
OEEP
UIOQ1E
WES1
SHALlUW
I.10
Chloride concentration in g/l
17
010
20
01 J A N H
O1JUL77
LEGEND:
Figure
«1JAHJ»
LÜCAllON
0 I J U L 7 D
EAS f
W£S T
O1JAN79
iil U i , ' )
J1OEC79
oij uIj 1
iiuLCnj
M 1 O O i t
O£EP
I.11
Oxygen concentration in g/m3
18
SEOO
50
m
i\
OIJUL77
h
0 U A N 7 8
OIJU178
O 1 J U l. 7 9
JIOEC79
ouuiiz
3ioeca:
* ••• m &
V\-*'
OIJULBI
o i j*ne J
OI j * n a i
o i JUI. o J
LÉCÉNO ,
L O C * I I ON
H | UDL t
W£ST
DEEP
Hl S 1
S I I A l l OW
Figure 1.12
Suspended solids concentration in g/m:
19
OPO
i e-
"T"
O IJUL ?J
H
1
0IJANS0
O ' J A F I H
O I J A N H
1
1
OlJULaO
Q M A N 1 I
0IJULB1
O IJUL 8 3
01 JAN»'
O I JULI*
1
QIJANBZ
r
O IJ Ul J9
JIOEC79
1
01JUIBI
— T
JIDEC02
0 1 J1IL4S
.5 I O E C 8 5
QAI E
LEGEND.
LCCATION
• H£St
Figure
QE EP
1.13
Qrtho phosphorus concentration in gP/m3
U I DOL E
W6SI
SHALLUW
s i g
2
1-
1
•
O 1 J UI. 7 7
D1JAH11
O I J U U 8 -J
I
O IJANT8
Oi JAN 8*
O 1 J UL 7 8
ü I JUUS1
0 1 JAN 79
IHJ/.N8S
O U u l ! »
1 I 0 £ C 73
01 J U L 3 2
J
0UUC1S
JIDI'Clb
DATE
LEGEND-
LOCATIÜH
EAST
WES T 0C EP
Figure 1.14
Silicon concentration in qSi/m3
HlDOli
w£s;
iii*i
i uw
t i~
O
9-
1
OIJAN77
01JUL 77
0 I J .* I I 8 J
<]>JAN7a
O l J Ü L t ]
LOC
0 1 J A H H 4
- i
O I J A U 7 0
01 . ü i ! 9
51 J U L J I
0IJAN12
OIJULli
O l j U L B t
OlJAHfli
• — r
J I D E C 7 9
JI QECa 2
O l J L l B i
J I U E C S 1
ATiON
WE Sr
Figure
1
D 1 J U L 7 6
«ESI
SHA11O»
I.15
Ammonium concentration in gN/m3
22
O
7S~
a , 40-
Q\Jt.Hjl
0
ÜIJUL7?
0 I J A N 7 I
0 1 i J1.7J
91J A t ) t
A
!
i
1
\
\
\
t b\
/
\
/
/
\
0 0-
L—,
"—i
OlJAHflO
4
/
\
o
1/
ƒ
ƒ
ƒ
i
i
\
Ij
ij
1
,7
I•i
/
1
\
10-
f
1
1 \}
A
i 1i
•
f\
(1A
\
il
0
A
/
t S
\
m
45-
1
0
JIDEC70
6 0-
/ï\-il \ 1
0
0IJUL70
\
\
il1
!I
/
jï
E
1
1
1\
ft;
1'
\
\
J—___
!
—i—
OIJU1.U0
•f
\
,
il
^ _ ~ 01 JULS2
J I 0EC82
0IJUIB5
J U) t CflS
Q . 60-
O1JANB-!
0UUL11
01JANB4
UIJULSI
Ü I J .4 N « 5
DAT E
4.E0END ,
l. O C A I I O N
E/SST
DE£P
MIDDLC
WES1
SHALLOW
Figure 1.16
Nitrate concentration in gN/m3
23
CHLO
30
-I
T
0 1 J A N
JO
"
O 1 J A N 7 S
-ï
T-
T
T"
0 1 J U L M
O I J U L J B
O I J A N 7 O
O I J U L 7 S
J 1 O E C 7 9
J
-r
i
-r
01JULS0
0IJAN8I
OIJULfll
01 J A N S )
01 j U L S 3
0 1 JAN«H
01JUL8+
a I JAM(5
1———
oiJAN as
•—•
~r
1
01JUI82
i10ECS2
!
0 1 JUi-BS
r
3 1 QECfii
DATE
LEGEND:
L O C A T 1 ÜN
—
CAST
DEEP
Figure 1.17
Chlorophyll concentration in mgChl/m3
M l UDLE
WEST SHAi.LDW
PQCO
J.H
2 H
01 J A N 7 7
01 J U L 7 ?
01 J A N 7 8
01 J U L 7»
O 1 J U L 7«
JIDËC79
ï .0-
1
5-
l
0-
0
a
5-
f A
IA
,/' l
ff
''E
{ƒ5
oj
,
<M,MN«[
AA
f,
\
<"\
n \/<
'T
/•/AM'
HA,. A /
v
—r
T~
11
a iJ U L S I
<M J U L S I
•
T
Jroecsi
. 0;!
2
(1
5-
lii
•\\
2
a-
1
5-
i
1 .0-
0
II I
| ff
A
s-
r
Ai
a 0~"~" ' 1""
O I JAH44
~— j _ —
guuLtt
K
A
l Al
t
i
,—
~
01 J*NUJ
o i JUI. ai
T
j i D t cai
DATE
: LOCATION
wesr
Figure
DCEP
Ml O D L C
WES1
SHALLOW
1.18
Particulate organic carbon (POC) concentration in gC/m3
25
20
s101520250
250
SOO
750
O
280
500
7S0
O
51015
2025250
< 7m (n. iel
500
75Oyiigat I-1
>7m (n.S)
Figure 1.19
Nutriënt concentrations (^Rat'1*1) at different dcpths (cm) in the sediment pore
water fora. OrihopliospJmte; b. Re.tctive siiicate and c Ammofiium ut the 24 pi-muinent stations duriny tlte survey at' Octolier-November 1980 (water tumpt'ruture
— 10"G). Average, minimum and maximum values are given ( • ) , and a shaded area
covering 50% of all values (25% is smaller, 25% ia larger). A suhdivisiou is made into
stations witli water deplha < 7 m (n » Ifi) and > 7 rn (n =• 8). Conccntratiuiis in die
overlying water were dorived from RIJKSWA'I'KRSTAAT (unpublishcd quurierly
60
5-
100
160
i
200«gal I-'
ox. laysr May
10-
16ox.layer Jan./Feb.
20-
26-
30-
35-1
cm
Figure 1.20
I'ore water concentrations of n'fmte + nitrite (jtgat (NO 3 + NO»)-N-I~') in
the: sediment of station Archipel f4 m water dcnthl Trom January to May 1979. I,
17-1-79, Watertemperaiure T - -U,5 a C (•); lï. 15-2-79, T » -0.5°C (A); III,
29-3-79, T - 4.9°C(A); IV. 17-5-79, T - 11.5°C(O); V. 31-5-79, T - 14,3 O C(D).
The light brown oxidiKetl top zone in the sediment gradually decreased in thicknesa
from —20 cm in Jaiuiary/February to ~B cm in May. Concentrationa in the overlying
water were derived frotn RIJKSWATERSTAAT (unpublislicd quarterly reports).
26
aiOVOUWE (UMJ . I O « U / M J )
4
0/28
21
10
16
12
1
0/12
ItETFfiOtROPHIC SPCCIES
0/3
M .
RtSUSP, DENIHIC SPECIES
OIJWB
OIJAM/8
OIJUL78
0IJUL78
OIMN79
0IJANÏ9
0IJUL79
01JUL 79
3IJAN8D
JIJANflO
0IJUU0
01M80
JIDECBO
J Ifll'cBO
Chlüföphyl (mq/m.5)
OtJAM/8
OIJUW8
0IJAN79
0IJU179
JIIILC80
DA (E
Figure 1.21
Phytoplankton biovolumes, carbon content and chlorophyll
17
i«
Figure
1.22
Ghlorophyll a concentratie™ in the top cm of the sediments at stations 1, 2, 3, 4 and 5 in Lake Grevclingen (1977-1980) and
phaeopigment cnnccntrations at the aume stations in 1977, exct-pt station 1 (interruptcd line), Verticat lines intlicate ± stantlard devia'tions tbr 1979 and 1980 only.
" J j ' F ' M ' A ' M ' j ' j ' A ' g ' O ' N ' O J ' F ' M ' A ' M ' j ' j ' A ' 9 ' Q ' N ' o "
1
SUIion 3
' F ' M U ' l l ' ]
' j ' A ' 3 ' O ' W ' O
j J
F
FT M' A ' M ' J ' J ' A
OI " > r-—I"-T"~ 1
i
i
1
)
r—T
r ••' i '" i
1
J
f M A U si J
A S O
N D
J
f M A
% «JC
•»,•! i 9 ; a
J
F
Figure
M A
M
J
J
A
3
O
N D
J
F
M
A
i
M
I
J
M
j
j
'
' S ' O ' N
i——ï
' A
j
A
1
S
a
1
O
' Ü
1
1——i—
H l
O
N
0
1.23
Parliculaie organic carbon ( P O C ) (.-(Jnrentrations in tlic top ci„ of the
ai stations 2, 3, i and 5 in Lak- Gi-cyelingun duririB 1977 and |<)7)l, uxpi
percentage ot'.Sfduni'iu ilr-y woiylit.
28
50
species
EïjTJl muasel
40
30
irm
20
zz
10
1
h1
'71 '72 '73 '74 '75 '76 '77 '78 '79 '80 '81 '32 '83 '34 '85 '86
f
L- closure
Figure 1.24
Mean biomass of benthic macrofauna in the period 1972-1985 in g
AFDW/ma Cafter Lambeck and Pouwer, 1966)
1966
1_L_1
1BU5-H9B4
t
\
SAMPLING
L0CAT10H
MUSSEL 8IOMAS5 < 10 q AFDW /
m
BLACK SEGMENT: MUSSEl, flrOMASS > 10 g AFOW /
SEBMEMT:
m
2
2
NATURAL
MUSSEL BEP
SAMPUHO TRANSECT
Figure 1.25
Mussel densities during 1983-1986 at sampling locations of the
zoobenthos surveys by Lambeck and the locations of naturai musselbeds after RIVO
29
TABUES ANO FIGURES 6REWAQ MODEL DESCRIPTIQN
30
Table II.1
Modules of GREWAQ
module
function
Connection to DELWAQ frame
OLWQ99
BALANS
coupling of GREWAQ to DELWAQ frame
calculation of mass balances
Main modules
GRWQOO
QRWQO1
GRWQ02
GRWQ03
QRWQ06
GRWQO7
GRWQ08
GRWQ09
DISPER
main module governing branching to other modules
deolaration of coefficients
initialisation of state variables from OELWAQ arrays
initialisation of cumulative variables
dimensioning of process terms to the right units
calculation of derivatives
calculation of (cumulative) data for output
calculation of mass balances for groups of processes
calculation of disparsion coefficients
Functional group modules
COMPLX
EELGRA
GREALQ
GRWQO5
MICROB
CONSUM
BOTTOM
simulation of benthic complex dynamics
simulation of eelgrass influences
simulation of phytoplankton dynamics
calculation of stoichiometric ratios of algae
simulation of microbial processes
simulation of zoöplankton and zoobenthos influences
calculation of conc. profiles in bottom segments
Input/Output modules
EELGRA
SAMPLE
COEF
GRWQ04
NBALAN
TABLEX
input of data generated by the model EELGRASS
input of field data for loadings and fysical parameters
output of settings of coefficients.
output of calculated state variables and fluxes
output of calculated nitrogen balance
output of cumulative fluxes and average concentrations
31
Table II.2
State variables of GREWAQ
name
unit
description
Suspended particulate and dissolved substances
in the water segments
OPHY'
DIAT11
DETF
PDINI
PDIAMM
PDIPHO
POISI
OXY
g/m3
g/m33
g/m3
g/m3
g/m
g/m33
g/m
g/m3
phytoplankton Cnon diatoms)
phytoplankton (diatoms)
suspended detritus
nitrate-N
ammonium-N
phosphate-P
silicon-Si
oxygen
Dissolved substances in the bottom segments
SHNO3
SHNH4
SHPO4
SHSIO
SHO2
DENO3
OENH4
DEP04
DESIO
DEO2
g/m3
g/m33
g/m3
g/m3
g/m
g/m33
g/m3
g/m
g/m33
g/m
nitrate-N in shallow bottoms
ammonium-N in shallow bottams
phosphate-P in shallow bottoms
silicon-Si in shallow bottoms
oxygen in shallow bottoms
nitrate-N in deep bottoms
ammonium-N in deep bottoms
phosphate-P in deep bottoms
silicon-Si in deep bottoms
oxygen in deep bottoms
Solid substances on sediment aurface and in
bottom segmentJ5
XMFBO1
SFSH11
SFÜP
DFBM1 1
•ETBS
OETBO1
BOTQS11
BOTDO
g/m2
g/m2
g/ma2
g/m2
g/m
g/m2
g/ma2
g/m
microfytobenthos
suspension feeders - shallow bottoms
suspension feeders - deep
bottoms
deposit feeders - shallow and deep bottoms
benthic complex detritus - shallow bottoms
benthic complex detritus - deep bottoms
bottom detritus - shallow bottoms
bottom detritus - deep bottoms
') each comprising 4 state variables, for the elements C, N,
and Si
32
Table II.3
Coefficients in the GREALQ module
name
unit
Pgmax
l/d
l/d
J/cm2/h
J/cm2/h
J/cma/h
Isl
Is2
J/cmVh
2
Itnax
c(I)
J/cm /h
nominal
value
4.00
3,50
35.0
50.0
60.0
60.0
100.0
4
ko
l/m
EPSD
EPSO
EPSD
DLSATD
DLSATO
mVgC
a
Ro(20>
l/d
l/d
m /gC
ma/gC
h
h
b
CNSU
gN/m33
gP/m 3
gSi/m
gN/gC
gN/gC
gN/gC
CPSP
gN/gC
gP/gC
Ks
CNSP
gp/gc
CPSU
gP/gC
gp/gc
0.30
0.50
0.40
0.10
12
14
0.036
0.045
0.25
0.40
0.01
0.001
0.027
0.20
0.22
0.11
0.11
0.034
0.019
0.026
0.015
0.50
0.20
30.0
CSiSP
CSiSU
CtoChl
gSi/gC
gSi/gC
gC/gChl
DVSETM
c<N)
o(S)
EXDtnax
EXOmax
m/d
-
5.0
5
l/d
l/d
3
0.5
0.5
0.5
l/d
l/d
0.05
0.05
CEX
RTMD
RTMO
1.
2.
3.
4.
5.
6.
raf.
definition
max. spec. prod. diatoms
max. spec. prod, non diatoms
sat. light int, diatoms
sat. light int. non diatoms
inhib. light int. diatams
inhib. light int. non diatoms
maximum light intensity
scaling coeff. light stress
background extinction
specific extinction diatoms
specific ext. non diatoms
specific ext. susp. detr.
satur. daylength diatoms
satur. daylength non diatoms
maintenance resp. diatoms
maintenance rasp. non diatoms
growth resp.ratio diatoms
1 ,cal
1, cal
2,3,cal
2,3,cal
2,3,cal
2,3,cal
data
cal
data,4
4,5
4,5
4,5
cal
cal
6
growth resp.ratio non diatoms
6, cal
7
half sat. const. nitrogen
half sat. const. phosphorus
half sat. const. silicon
maximum N/C ratio diatoms
maximum N/C ratio non diatoms
6
6
8
9
10
10
minimum N/C ratio diatoms
10
minimum N/C ratio non diatoms
maximum P/C ratio diatoms
maximum P/C ratio non diatoms
minimum P/C ratio diatoms
minimum P/C ratio non diatoms
maximum Si/C ratio diatoms
minimum Si/C ratio diatoms
max. chlorophyll content
sinking rate diatoms
scaling coeff. N stress index
scaling coeff.sediment.stress
max. excretion rate diatoms
max. excr. rate non diatoms
allocation excr, products
mortality rate diatoms
mortality rate non diatoms
10
10
10
10
10
10
Qoldman et al, 1979
Colijn, 1982
Parsons et al, 1978
Baveco et al , 1986
Peterson and Festa, 1984
Wetsteyn, 1984
7.
8.
9.
10.
11.
10
data
11
cal
cal
cal
cal
cal
cal
cal
Lehman et al, 1975
Nalewajko and Lean, 1980
Paasche, 1980
deVries et al, 1984
Smauda, 1970
33
Table II.4
Production of eelgrass (in tons AFDW/segment) and transport of
eelgrass detritus in percentages.
segment
West
(Seg. 1)
Middle (Seg. 4)
Sast
(Seg. 7)
production
Transported detritus to segment
1
4
7
131.1
3232.8
5145.5
30%
10%
0%
70%
70%
15%
0%
20%
85%
Tabie II.5
Examples of efficiency of the coupling regeneration nitrification - denitrification in the BCS (in %)
1
2
3
potential nitrification/regeneration
potential denitrification/nitrification
5S
42
34
28
potential denitrification/regeneration
24
37
48
22
actual denitrification/regeneration
18
21
IS
25
34
Table II.6
Coefficients in the CQMPLX module
name
unit
nominal
value
definition
ref.
coefficients for benthic diatoms <mfb)
Pnmax
Isl
l/d
J/cm2/h
ÊPSB
mVgC
DLSATB h
Ro(20)
b
eb
l/d
-
CN
cp
gN/gC
RTMB
l/d
gP/gC
gSi/gC
CSi
1.50
35.0
2.0
12
0.036
0.25
0. 10
0.17
0.034
0.50
0.05
max. spec. prod. rate mfb
sat, light intensity mfb
spec. extincticn mfb
cal
sat. daylength mfb
maint. respiration mfb
growth rasp. ratio mfb
excretion ratio mfb
N/C ratio mfb
P/C ratio mfb
Si/C ratio mfb
mortality rate mfb
1,2
3,4
5
GREALG
GREALG
4,6
GREALG
GREALG
GREALG
GREALG
other coefficients for the
• BCS
eden
cnit
OBL
mm
Zw(de) mm
mm
Zb
P(bot) D-CO2
10-llo
mVs
o 2
D-NO3
D-NH4
D-P04
D-SiO
ew
kl(m)
kl(a)
k2(m)
k2<a)
Ksmin
Kaff
1.
2.
3.
4.
5.
10- l o m a /s
10- lom 2/s
10-, m /s
10- l o m 2 /s
—
gC/mVd
-
0.5
1.0
0.4
5.0
20.0
0.5
6.4
10. 4
10.8
4.6
5.4
3.0
0.6
0.2
0.75
0.2
0.1
2.25
max. denitr. efficiency
max. nitrif. efficiency
thickness dif.layer water(sh)
thickness dif.layer water(de)
thickness dif.layer bottom
porosity of the bottom
molecular dif. C02
molecular dif. NO3
molecular dif. NH4
molecular dif. P04
molecular dif. S104
exponent windinfl. on DBL
min. 02 dependency of nitr.
extra kl at high mineral.
max. 02 dependency of denitr.
reduction k2 at high mineral.
half sat. of mineralisation
aff. ratio nit/diat
Admiraal, 1977
Admiraal and Peletier, 1960
Davis, 1982
Cadee and Hegeman, 1974
Admiraal et al, 1982
6,
7.
8.
9.
7
a
cal
cal
cal
cal
9
9
9
9
9
cal
cal
cal
cal
cal
cal
cal
Nienhuis and de Bree, 1984
Jenkins and Kemp, 1984
Smits, 1984
Manheim, 1976
35
Table II.7
Coefficients in the CONSUM module
name
nominal
value
definition
ref.
CLRZPm m3/gC/d
FDETZP
gC/m3
ZPFs
—
EXZP
2
gC/m
CLRSFm
FDETSF
SFFs
m^/gC/d
0. 100
clear. rate zoöplankton
edible fract. detr. tor zoopl
threshold food conc zoopl.
excreted fraction by zoopl.
rel. amplitude biomass
fluctuation susp. feeders
clear, rate susp.feeders
edible fract. detr. for suspf
thresh. food conc. susp.f.
routine excretion coeff.
standard excretion coeff.
clear. rate dep.feeders
rel. amplitude biomass
fluctuation dep. feeders
ingest. eff. benth.diatoms
ingest. eff. complex detr.
ingest, eff. bottom detr.
excretion fract. dep.feeders
1
AMPSF
1.50
0.050
0.50
0.40
0.333
RESF
SESF
CLRDF
AMPDF
DFIEM
DFIED
DFIEB
REOF
1.
2.
3.
4.
unit
gC/m3
gC/gC/d
gC/gC/d
m3/gC/d
gC/m2
_
-
o.so
3.00
0.025
0.025
0.001
0.333
4.0
0.5
0.5
0.25
Peters and Downing, 1984
Tackx, 1987
Bayne and Widdows, 1978
Wolff et al, 1975
5.
6.
7.
8.
cal
2
cal
4
3
cal
cal
5
5
6
7
cal
cal
cal
8
Verhagen, 1979
Cadee, 1976
Beukema, 1982
Heringa et al, 1988
36
Table II.8
Coefficients in the MICROB module
unit
nominal
value
definition
ref.
min-C
min-N
l/d
l/d
l/d
mineralisation rate water C
mineralisation rate water N
mineralisation rate water P
mineralisation rate water Si
mineralisation rate BGS C
mineralisation rate BCS N
mineralisation rate BCS P
mineralisation rate BCS Si
mineralisation rate bottom C
mineralisation rate bottom N
mineralisation rate bottom P
mineralisation rate bottom Si
temperature coëfficiënt
scaling coëfficiënt
scaling coëfficiënt
standard N/C ratio detritus
nitrificatlon rate
water
nitrification rate
bottom
denitrification rate water
denitrification rate bottom
1
min-P
0. 10
0.12
0.12
0.08
0.05
0,06
0.06
0.04
0.005
0.006
0.006
0.004
1.09
1.00
0.70
0. 15
0.07
0.005
0.002
0,005
name
min-Si
l/d
l/d
l/d
l/d
l/d
l/d
l/d
l/d
l/d
k
kl
k2
_
-
NCm
gN/gC
min-Si
min-C
min-N
min-P
min-Si
min-C
min-N
min-P
nit
den
l/d
l/d
l/d
l/d
1 ,cal
1 ,cal
1F cal
cal
cal
cal
cal
1
1 ,cal
1, cal
l.cal
1
cal
cal
2
cal
cal
cal
cal
1, Smits, 1980
2. deVries et al, 1984
Table II.9
Mass exchange between segments based on segment properties
and dispersion coefficients.
mVs
Do
Darea
m2
Ssg. 1 - 4
Seg. 4 - 7
120.
120.
38250.
19450.
6000.
5500.
Seg. 1 - 10
.0008
2720000.
14.95
Segment
Volume
IQ 6 m a
Max.Exchange
%/day
Interface
ll
4a
7
10
Olength
ro
Min.Exchange
%/day
262.9
183.7
113.7
33.9
64.9
37.4
19.6
43.4
25.0
21.3
59.0
1.5
M without exchange with North Sea (up to 3.8*10 6 m a /d)
) exchange with segments 1 and 7
2
37
Tabie 11.10
Input data far the calculation of pore water profiles,
Conc. (mg/l) at -SQcm
deep
shallow
bottoms
bottoms
Nutriënt
NH4-N
N03-N
P04-P
Si
14.0
0.2
0.6
5.0
depth-ratio
below/above
intersection (IR)
8.0
0.2
0.3
6.0
2.
8.
5.
4.
Table 11.11
Goefficients in the DISPER and BOTTOM modules
name
unit
nominal
definition
ref.
horizontal disp. coeff. water
vertical disp, coeff. water
calibration coeff. vert.disp.
calibration coeff. vert.disp,
effic. of exchange Grev-N.Sea
effic. of exchange N.Sea-Grev.
disp. coeff, bottom-watsr <sh)
disp. coeff. bottom-water (de)
sinking rate detritus
resuspension rate b.complex
coeff biogenic sed.reworking
N/C-ratio refr, detritus
P/C-ratio refr. detritua
soluble fraction organic Si
refr. fraction burried detr,
cal
1
cal
cal
cal
cal
cal
cal
cal
cal
cal
2
cal
cal
cal
value
mVs
a
120
m /s
B/10"
_
50
0.9
xa
XN
-
Do
Do
0.57
0.87
2/108
ffla/s
i/io a
Do
Do
a
b
csed
cres
m/d
l/d
CN(r )
mVgC/d
gN/gC
cbur
CP(r)
SOLSi
fref
gN/gC
-
0.3
0.04
0.0015
0.040
0.010
0.35
0.40
1. vanPagee en ESmits, 1984
2. Blackburn and Henriksen, 1983
38
load
phyto-
suspended
detrltus
zoo—
plankton
suspension
feeders
BENTHIC COMPLEX SYSTEM
benthic
diatorns
detritus
deposit
feeders
uptoke
transformation
bottom
detritus
1
|
regeneration
Figure II.1
Schematic representation of GREWAQ, its components (state variables) and uptake, transformation and regeneration processes.
within one compartment, i.e. a watercolumn with underlying bottom
and the sediment ~ water interface
39
(
0RWQ1A
PREPRQCESSINC OF INPUT DATASETS
OLWQ1A
READING GENERAL INFO. FORMATTING ARRAYS
DLWQ2A
OPENING OF FILES, CONNECTING TEXTUBS,
UNKING PROGRAMS
START PROGRAM GREWAQ
)
<CALL DLWAQ SUBROUTINES>
RËADING GENERAL INFO, INITIAUZING ARRAYS
I
T « T +AT
<CALL DLWAQ SUBHOUTINEs)>
<CALL
DLWQ99>
ISEO » 1 TO NBOX
<CALL QRWqOO>
TIME5TEPS
TRANSPORT AND DISPERSION CALCULATIONS
CONNECT1ON OF OELWAQ TO GHEWAQ
SEOMENTS
CREVEUNGEN ECOSYSTEM MODEL
(«es naxt diagram)
I
<CALL BALANS>
CHECK FOR 8ALANCE ERRORS
ANNUAL AVERAGES STATE VARIA9LES,
ANNUAL VALUES PROCESSES
Figure II.2
Flowchart of the DELWAQ - GREWAQ coupling
GREWAQ MAIN MODULE
DEO.ARAT10N OF COEFFIOENTS <^CALL GRWQÖT>
READINO NUTRIËNT FLUXES
OF EËLGRASS
CAI.CULAT1ON OF
MlNERALIZATtON RATÏS
PRINT COËFFICIËNT VALUES < CALL COEF
>
CAICUWTION OF
PKYTOPLANKTOM OWAMICS
DECLARATON OF C0NCENTOA7WNS
DECLARAT1ON OF PARAMETERS
<CALL
COMPLEX MODULE
CALCULAUON OF BENTHIC
NUTRIËNT OHADIENTS
PRINT CONCEMTRAT1OHS, R.UXES <fcALL
PRINT TOTAL NITOOOEN POOLS <CALL HBALA?r>
<J:ALI. CONSUM>
CONSUMERS MODULE
<CALL OI5P"ËF]>
OISPERSION MODULE
NISEO - * C
<CALI,
PREFORMULAT1ON OF FLUXES
CALCULAUON OF
STOICHIOMETRIC CHANOES
<CALL 0LWQ9T>
BACK TO DELWAQ
(SEE 'FREVtOUS DIACRAM)
Figure II.3
Flowchart of GREWAQ
40
EFFICIENCY
1.0
E1
0.8
0.6
0,4
/
0.2
0.0
f
/
i
l
i
1
S1
l
i
i
l
l
Tl
S2
LIGHT SNTENSITY
Figure II.4
Photosynthatic efficiency as a function of light intensity
DAILY TQTAL.S (W
/HJ)
RESCALED JSP-*PIAMCET (J/CMJ.Hft)
fl
H
It
td
114
131
III
|1t
t*
T I4C
Figure I I . 5
Incident irradiance; left: original data for 1980; right: rescaled
data for use in P/I curves
0HGAN1C
SUBSTRATE
Anaeroblc
Aerobic/Anawoblc
Aerobic
(NO3 consumptlon)
(Oa COnsumption)
(O2 product ion )
Figure II.6
Nitrogen cycling in the benthic complex system
honthlo
dlatam
blomaatt
•
potantlal
= > production
(|Ight,CO2)
•
=
NO3
Ni
f
1
^^
octual
production
-jj,
actual
n!trifloatlon
compotttlon
prod,
\
nitr.
2.2S
raganerotlon ^ ^
^^
potanttal ^_
nttrlfloatlon
1 - ki (mln/Cmln+prot0)
=Bt> denltri Icatlon
1 - k j Cprod/'(prod+mln))
Figure II.7
The sequence of processes in the BCS
42
• F04
•Si
Surface water conc.
«NH4
•N03
Newly spttled detritus
WsrO i .
H.r.B.
Benthic
Complex
10
Boetom
20
30
30
in cm
t
1
1
(
1.0
2 .0
2.0
4.0
6.0
2 1°
0 I6
4.p
6r0
1 ..2
1.8
i
N03-N
10.0
,
'2-0
NH4-N
Si
P04-P
Nutriënt conc. in pore water in mg/1
Figure II.8
Pore water profiles of nutrients as derived from Kelderman (1984)
for deep bottoms <>7m). Annual average concentrations in overlying
water from deVries and Hopstaken (1984).
43
average
0
2.0
V.
average
10..0
14.0
.0
14.0 «SN/1
1 1
l
0
0.5
0.2 •
.,
il
V,
s
NH4+-N
i I
4
N03 -N
50 en
average
average
6.0
7.5
er-
I
1
.f
50 cm
2.9 tngtf/1
1 3 . 5 mg S i / l
0
.6
oS
mg P / l
I
f
1
U>
PO4 3 "-P
Si
50 cm
.l.J._
50 e *
- . J l . . . .
-
.
Figure I I . 9
Oalculated pore-water profiles
44
TABLES AND fIGURÊS RESULTS
45
Table III.1
Comparison of measured and calculated annual average
concentrations of phytoplankton and particulate organic carbon
chlorophyll
(mg/m 3 )
1978
1979
1980
phytoplankton-carbon 197S
<g/m:3>
1979
1980
POC
1978
(g/m3)
1979
1980
measured
calculated
3.16
4.51
2.10
0.20
0.27
0.25
0.52
0.51
0.55
1.55
2.37
2.10
0.18
0.27
0.25
0.55
0.73
0.68
Table III.2
Comparison of measured and calculated annual average
concentrations of benthic diatoms and detritus on the
sediment surface (avaraged over the whole bottom area)
bottom chlorophyll
<mg/m a )
measured
calculated
47
39
34
38
36
POC upper layer
1977
1978
1979
1980
1977
43
50
32
100
(g/m3)
1978
125
10.5
10.2
46
Table III.3
Comparison of measured' and calculated2 pore water nutriënt
concentrations (1979 - 1980) (in gN,P,Si/m 3 )
spring-summer
measured calculated
autumn-winter
measured calculated
shallow bottoms
ammonium
nitrate
silicon
phosphate
0. 1-0.2
0.1-0.23
1.5-2.5
0.5-1.5
1.0 -3.0
0.05-0.1
2,0 -4.0
2.5-7.0
0.2-0.5
3.5-5.0
0.2-0.3
2.0-4.0
0.2-0.4
3.0-7.0
deep bottoms
ammonium
nitrate
siiicon
phosphate
0.7-2.53
0.2-0.53
4.0-6.0
0.6-0.8
2.5 -4.0
0.15-0.2
5.0 -8.0
4.0-11.0
2.5-4.0
0.2-0.25
5.0-8.0
6.0-13.5
0.6- 1.8
M
measured values are roughly estimated from figures 1.19
and 1.20, and additional data given by Kelderman (1984)
a
) calculated values are obtained from figures III.13 and III.14
3
) these data refer to the topiayer of lcm, in stead of being an
average value over 20-50cnn
Tabls III.4
Comparison of measursdJ and calculated2 sediment - water
exchange fluxes (1979-1980) (in mgN,P,Si/m2/d )
Maren
measured calculated
July
measured calculated
shallow bottoms
ammonium
nitrate
silicon
phosphate
deep bottoms
ammonium
nitrate
silicon
phosphate
45
-3
70
- 5
50
25
50
84
13
-20
0
87
15
46
25
0
154
80
5
134
4
55
4
246
62
120
11
1
) measured values are obtained from Kelderman (1984) (see
table 1.11)
2
) calculated fluxes include benthic complex - water exchange
(see figures III.15 and III.16) and dispersive bottom - water
exchange (not shown elsewhere)
47
Table III.5
Comparison of measured and calculated annual production
and total ecosystem respiration (in gC/m 2 /y)
measured
primary production
phytoplankton
primary production
benthic diatoms
1977
1978
1979
1980
1981
1979
1980
respiration water
1981
respiration sediment 1981
calculated
60
90
156-171
172-194
225
35-70
32-70
156
305
390
120
205
134
180
175
164
SI
50
Table III.6
Summary of calculated carbon
budgets,
1978 and 1983 (in gC/in2, gC/m 2 /y and 1/y)
1978
1983
total carbon content 1 )
total net production
POC exchange North Sea
refractory carbon
41
208
0.2
17
47
268
0.7
20
total turnoverf)
turnover phytoplankton3> 0
turnover benthic diatoms >
turnover susp. detritus")
turnover complex detritus")
turnover bottom detritus 4 )
5
138
34
13
8
2
6
122
34
14
9
2
M
pool content of producers, consumers and detritus
quotiënt of total production and total carbon content
quotiënt of production and pool content
) quotiënt of mineralisatjon and pool content
2
)
3
)
4
48
Table III.7
Nitrogen cycling in Lake Grevelingen (calculated values), 1978
(in gN/m2/y, averaged over the whole area, and %}
watercolumn
net load
exchange North Sea
production
mineralisation
excretion
nitrification
denitrification
denitr, efficiency
benthic
benthic
complex
complex
shallow
deep
bottom
2.5
0.1
2.5
0.1
16.9
7.9
3.4
6.7
2.4
3.8
0.4
4.4
1.7
0.6
0.2
4 %
19 %
10 %
5.S
total
2.3
0.8
0.0
0.0
0 %
24.8
16.8
6.6
8.8
2.3
10 %
Table III.8
Summary of calculated nitrogen budgets,
1978 and 1983 (in gN/mVy, and %)
1978 .
net load
exchange with North Sea
total regeneration
benthic regeneration
refractory nitrogen
denitrification
denitr. efficiency
1983
0.1
4.1
0.7
23.4
14.2
30.4
20.5
0.8
2.3
0.9
3.4
10 %
11 %
2.5
Table III.9
Summary of calculated silicon budgets,
1978 and 1983 (in gSl/mVy)
net load
exchange with North Sea
refractory silicon
1978
1983
2.0
-0.1
2.5
3.6
-0.2
3.0
49
Table III.10
GREWAQ - computerized calibration,
parameter space for three parameters
Pgmax
Excr
Clr
naminal
3.5
0.5
0.15
series 1
20 runs
2.5
3.5
4.0
0.2
0.5
0.7
0.1
0.15
0.25
series 2
40 runs
3.0
3.5
3.75
4.0
0.2
0.35
0.5
0.7
0.1
0.15
0.20
series 3
48 runs
3.75
4.0
4.25
4.5
0.3
0.4
0.5
0.125
0.15
0.175
0.2
50
Table III.U
Complete listing of parameter vector with their goodness of fit
Autocaltbration QREWAQ, Series 1
Autacalibration QREWAQ, Series 3
nr
Pgmax
Excr
Clr
aoore
nr
1
3.S0
4.00
4.00
•4.00
4.00
3.S0
4.00
4.00
3.50
3.50
3.S0
3.50
2,50
2.50
2.50
2.S0
2.S0
2.50
2.S0
2.50
0.70
0.50
0.70
0.20
0.20
0,20
0.70
0.20
0,70
0.50
0.20
0.70
0.20
0.20
0.70
0. 150
0. 100
0. 100
0. 150
0. 100
0, 100
0,250
0. 2S0
0. 100
0. 100
0. 2S0
0,250
0. 100
0. 150
0. 150
0. 100
0. 100
0. 250
0. 250
0. 2S0
5.533
1
2
3
2
3
4
5
6
7
a
9
10
11
12
13
14
15
16
17
ia
19
20
o.so
0.70
0,20
0.50
0.70
6 .549
5 .549
5 .616
S ,653
5 .679
5 .781
5 , 849
5 .852
5 .679
6.340
6 .5B5
4
5
6
7
a
9
10
11
12
7 .115
7 .120
13
7 .426
7 .471
15
1&
17
13
19
20
21
7 .542
,927
a
9 ,283
9 .451
14
22
Autocalibration QREWAQ, Seriaa 2
23
nr
Pgmax
Excr
Clr
score
25
26
1
4.00
4.00
3,75
4.00
3.50
4.00
3.75
3,75
3.50
4.00
3.75
3.75
3.50
3.75
4.00
4.00
3.75
3.75
3,75
3.75
3.75
4.00
3.50
3.50
3,50
3.SO
3.50
3.75
3,00
3.00
3.00
3,00
3.00
3.00
3,00
3.00
3.00
3.00
3.00
3,00
0.70
0.35
0.70
O.SO
0.3S
0.20
0.35
O.SO
0.50
0,35
0.20
0.20
0.20
0.35
0.70
0.50
0.50
0.35
0.50
0.20
0.70
0.35
0.20
0.35
O.SO
0.70
0.35
0.70
0,20
0.20
0.36
0.35
0,50
0.50
0.70
0.70
0.20
0.35
0.50
0.70
0.1S0
0. 150
S.324
5.355
S. 391
S.396
5.423
5.425
6.431
5.446
5.446
5. 455
5. 461
5.470
5. 471
5. 486
5.493
5.493
5.497
5.508
5,530
5.540
5.554
5,580
5.647
5.701
5.714
5.790
5.900
5,901
6.194
6.219
6.253
6.269
6.314
6.3SS
6.429
6.500
6.663
6.750
6-892
6.996
27
2
3
4
5
6
7
8
9
10
11
12
13
14
IS
16
17
ie
19
20
21
22
23
24
2S
26
27
26
29
30
31
32
33
34
35
36
37
3B
39
40
0. ISO
0.150
0.150
0,200
0,150
0,150
0,150
0.200
0,150
0.200
0.150
0.200
0.200
0.200
0.100
0. 100
0.200
0. 100
0.200
0.100
0.200
0.200
0.200
0.200
0.100
0.100
0.1S0
0.100
0.100
0, ISO
0,150
0.100
O.100
0.150
O.20O
Q.200
0.200
0.200
24
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
4S
46
47
48
J
gmax
Excr
Clr
0. 175
0. 30
0, 40
0, 175
0.50
0. 175
0. 175
4.2S 0. 50
4,50
0. 40
0. 200
0. 50
0,200
4.50
4.50
0. 30
0. 200
0. 17S
4.26
0. 30
4.25
0. 40
0, 175
0 30
0. 150
4 SO
4,2S 0 40 0. 200
0. 200
4.25 0 30
3 75
0 SO
0. 175
4 25 0 SO 0 200
3 75
0 40
0 175
4 00
0 50
0 175
4 00
0 40
0 175
0 175
0 30
4 00
4 50
0 30
0 125
4 00
0 30
0 ISO
4 00
0 40
0 150
3 75
0 30
0 175
0 40
0 125
4 SO
4 00
0 50
0 150
4 SO
0 40
0 ISO
4 25
0 40
0 126
4 SO
0 50
0 150
0 200
3 7S
0 30
4 00
0 30
0 125
4 25
0 125
0 30
3 75
0 SO
0 ISO
0 40
3 75
0 150
3 .75
0 50
0 .125
3.75 0 40 0 .125
4 .00
0 .40
0 .125
4 .50
0 .50
0 .125
0 .30
0 .200
4 .00
0 ,40
0 . 200
4.00
3 .75
0 . 150
0 ,30
3.75 0 .40 0 ,200
3 .75
0 .125
0 .30
0 .150
0 .30
4.25
0 .50
0 .200
4.00
3 .75
0 .50
0 .200
4 . 25 0 .SO
0 .125
4.25 0 .60 0.ISO
4 .25
0 . 40 0 ,150
0 ,S0
0 .125
4.00
4.50
4.50
4.50
score
4.957
5. 059
5.089
5. 096
5. 140
5 142
5 162
S.184
S 196
s 265
267
s
5 261
5 290
5 299
5 330
5 335
5 336
5 342
5 343
5 343
S 347
S 369
5 394
5 396
5 409
S 417
S 427
5 427
S 432
S 436
5 446
5 .447
5 .448
5.454
5.455
5 .464
5 .470
5 .475
S .477
5 .483
5 .485
S .490
5 .493
S .530
S .531
S .561
6 .062
6.096
51
Table III.12
GREWAQ - computerized calibration,
optimal parameter vectors with their 'Qoodness of fit'
run nr. l
Pgmax
Excr
Clr
qoodness
of fit
39
43
4.5
4.5
0.3
0.4
0.5
0.5
0.4
0.5
0.3
0.3
0,4
0.3
0.175
0.175
0.175
0,175
0.2
0.2
0.2
0.175
0.175
0.15
4.957
5.059
5.089
5.096
5, 140
5.142
5.162
5.184
5.196
5.265
3.5
0.5
0.15
5.448
4.5
47
4.5
35
44
48
40
4.25
27
4.25
4.25
31
38
18*
4.5
4.5
4.5
l
)
a
Series 3 (see table III. 11)
) Nominal run (series 2 ) .
Table III.13
Goodness of fit option of PC version GREWAQ
(the nominal run (reference) in this example is run 39 from table
III.12, the actual run is the 'new nominal run' presented in the
next chapter)
actual run
nitrate
ammoniun
silicon
chiorophyil
goodness of fit
reference
mean time
residue
mean conc.
rasidue
normalized
score
normalized
score
7.34
9.02
13.54
12.14
0.021
0.028
0.080
0.448
0,328
0.457
0,694
0.711
1, 178
1 ,568
1,128
1 .083
2.189
4,957
52
Table III.14
Nitrogen loadings (in gN/m2/y, averaged over the
whole area) of Dutch coastal waters and {parts of)
the North Ssa Cafter deVries et al, 1988)
North Sea, Southern Bight
North Sea, Dutch coastal zone
North Sea, German Bight
Dutch Western Wadden Sea
Western Scheldt
Lake Grevelingen
Lake Veere
15
40
24
5.0
235
4
34
53
0.2-
o.o
1977
1978
0.6-1
0.+
0.2-
0.01980
19S1
1982
1963
1984
1935
19S6
0.0-
1983
YEAR
Figure
III.1
Comparison of simulation and data for ammonium
54
0,0
1979
1977
1980
Q.a-i
'0.2
0,0
1930
1981
1982
19B4
1985
0.3 4
Q.2
0.0
1983
1986
YEAR
Figure I I I . 2
Comparison of simulation and data for nitrate
55
0.01977
1978
1979
1960
1961
1962
1985
1984
1985
1086
1.0-1
0.6-
0.6-
0,4-
0.2-
0.019BÜ
1.0
0.8-
0.6
0.4
0.2
0.0
19SJ
YEAR
Figure III.3
Comparison of simulation and data for phosphorus
56
SILICON (gSI/m.3)
1.2
0.6-
0.0
1977
1978
1973
1980
1981
1982
1983
1984
1985
1986
1.8
1.2
0.6
0.01980
1.2
0.6-
0,01983
YEAR
Figure
III.4
Comparison af aimulation and data tor silicon
57
1.2-I
DIATOMS (gC/m3)
0.9-
0.6
0.3
0.0
1977
1979
(980
1962
19BJ
1985
1936
1.2-1
0.9
0.6
19SD
198 V
1.24
0.9
0,6.
0.3
0,0
1983
YEAR
Figure III.5
Comparison of simulation and data for diatom biomass
68
1.5
NQN-DIATOMS (gC/m3)
1.2
0.9
0.6
0,3.
0.0-
1977
1978
1980
1963
1964
1979
1960
1982
1983
1985
1966
YEAR
Figure I I I . 6
Comparison of simulation and data tor non diatom biomass
59
2
*
CHLOROPHYL (mC/mï)
10
*
8-
*
*
•
*
•
*
*
6-
*
i
*
A
II
*
* ƒ ML
* •
|
7
*t
2-
0-
•
K
\_
.W\
•
hf
u
i, *
L
1979
1980
1982
1961
019B3
1984
1985
1966
YEAR
Figure III.7
Comparison of simulation and data for chlarophyil
60
PART. ORGANIC CARBON ( f l C / m 3 )
2.0-
1.5-
1.0-
0.5-
0.0
1977
1978
1979
1930
taai
19B2
1963
1984
1985
1936
2.0
t.5-
1.0
0.5-
0,0
1—
1930
2.SH
2.0-
1.S-
1.0-
0.5-
0.0
1933
Figure I I I . 8
Comparison of simuiation and data for particulate organic carbon
61
8-1
L
BENTHIC DIATOMS (flC/m2)
l—
1978
1S79
1980
1980
1981
1382
1983
I98J
1984
198S
1986
1977
4
o-4
YEAR
Figure III.9
Comparison of simulation and data tor biomass of benthic diatoms
62
O.S-i
1979
1961
1980
SEGMENT 1
SEGMENT +
SEGMENT 7
SEGMENT 10
a o1979
1980
1931
,1
-.„..
1980
SEGMENT I
5EGMENT 4
SEGMENT 7
SEGMENT IQ
1931
Figure III.10
Spatial differences in calculated values tor nitrate, silicon and
cnlorophyll in the watercolumn
63
5
SEGMENT 2
StGMENTS
SEGMENTfl
BENTHIC OIATQHS ( j C / m ï )
2-
O1979
50
1980
1981
SEGMENT 2
SEGMENT 5
SEGMENT 3
COMPLEX DETS1TUS 5HALLOW (gC/m2)
50
A
40
J0
-
\
20-
10-
Ji
"""•wv
II
1—
1979
1960
COMPLEX DETRITUS OEEP ( g C / m 2 )
1979
\
"'s
1980
•
'
i
r
1981
SECWENT 1
SEGMENT 6
SEGMENT 9
SEGMENT t1
1931
Figure III.11
Spatial differences in calculated values for benthic diatoms and
detritus in the benthic-complex layer
20-
_
SEGMENT 2
SEGMENT 5
... SEGMENT 8
aOHOM DETRITUS 5HAUQW ( g C / m 2 )
*******
<^\
16/
\
....—.,
x
\
J f'
12-
^_ J / y-\ '" ••8_ //
--"V
'S ^
y'
4i
0-
10
1981
1980
1979
BOTTOM DETRITUS DEEP CgC/m2)
SEGMENT
SEGMENT
SEGMENT
SEGMENT
3
6
9
11
2-
01979
->—r
1980
1981
Figure III.12
Spatial differences in calculatec) values for bottom detritus in
shallow and deep bottoms
65
AMMONIUM SOTTOM SHALLOW
(gft/mi)
SEGMENT 2
SEGMENT 5
SEGMENT 8
2-
[•
a1979
1991
1980
0.4
NlTRATE SOTTOM SHALLOW ( g N / m 3 )
SEGMENT ï
SEGMENT 5
SEGMENT 3
0.J-
0.2-
0.1 •
o.o198!
1979
SEGMENT 2
SEGMENT 5
SEGMENT 3
1979
1980
1931
Figure III.13
Spatial differences in calculated values for ammonium, nitrate and
silicon in shallow bottoms
66
6
AMMONIUM aOTTOM OEEP
(.gtt/mi)
SEGMENT 3
SEGMENT S
SECMENT 9
SEGMENT t
5
4
HI
1
J-
— - .
_._
b_i
.
.
.
•
—
-
f-^**'
Tz^^>^~-~~
.
~^~^Z-
•—
2-
1-
0r~~>
•
'—i
.
.
i
1979
0.3
i
i
" "
' ' •
>'—•••—•—T-—i—-T——r
1980
198!
NITRAfE 3OH0M OEEP g N / m 3 ) !
0.2
0.1-
0.0.
1979
1981
I9B0
_ _
SIUCON aOTTOM OEEP ( g S I / m J )
3EOMENT 3
SEGMENT 9
SEGMENT 11
1979
1930
1961
Figure III.14
Spatial differences in caiculated values for ammonium, nitrate and
Silicon m deep bottoms
67
N-FLUXES
SHALLOW COMPLEX
(g/mZ/d)
,. NOJ-liu*
O.H
„
'-••«„.
NH4-r*«, f ram d»trttui
N-up|gk# by kwithlc dia.
Nltrlfloatlon
D«nHr1flcatlon
-0.00051979
N-FLUXES
DEEP COMPLEX
1981
1980
(g/m2/d)
NH4-flux
NO3-flux
0.
tram cMrttu*
NIMflcatlon
Dtnltriftoatlon
O.l-
0.05 -
0.0
«M-flux
0.0
-0.0005i
T979
1980
i
' i
1981
YEAR
Figure III.15
Internal nitrogen fluxes in the BCS and exchange fluxes with water
column and pore water, on the surface of shallow and deep bottoms
68
SI-FLUXES SHALLOW COMPLEX ( g / m 2 / d )
SI-f(UK
0.2
0.1
0.0
-0.1-
S(-r*g. from dtfrftui
Sl-tiplok» by bwrthlc dia
-0.20.20.1-
0.0
0.005-
Sl-flux
0.0
-0.0051979
1980
1981
SI-FLUXES DE£P COMPLEX (G/M2/D)
sr-fiux
0,2
0.1
0.0
Sl-r*g. from datritua
-0.1-0.20.20,1 •
0,0
0.005-
SJ-flux
0.0
-0.005-
1979
1980
1981
Figure III.16
Internal silican fluxes in the BCS and exchange fluxes with water
column and pore water, on the surface of shallow and deep bottoms
POTENTIAL BENTHIC DIATOMS PROOUCTION ( g C / m 2 * d )
as a functlon of Itrnitatton factors
0.8-
Llght Umitdtlon Isval
C02 Limitation lavei
N Umltatton leval
SI Limitation Isvel
0.70.60.50.40.30.20.
0.01979
1980
1981
YEAR 1979 - 1980
Figure III.17
Calculated potential production of benthic diatoms as a function
ot possible limitation by available energy Uiqht), carbon, nitrogen or silicon
70
FYTOPUNKTON SEGMENT 4 (gC/m2/day)
— GROSS PRODUKTION
2.0
S
GRAZING ZOOBENTHOS
£ t GRAZtNG ZOÖPLANKTON
D SEDIMENTATION
•
1.5-
MORTALITY
EXCRETION
RESFIRATION
1979
1930
1981
SUSPENSION-FEEDERS SEGMENT 4 (gC/m2/day)
2.0 H
FIUTRATION
BIODEPOSITION
EXCRETtON
1.5-
1.0-
0.5-
0.0^
1979
1981
Figure III.18
Calculated energy budgets for phytoplankton (diatoms + non diatoms, processes are plotted in a cumulative way, except gross production) and suspension feeders (lines are independent, i e not
plotted in a cumulative way).
71
f
PHYTOPLANKTON
• biomass
1.3
• net. prod. 170
35
ZOÖPLANKTON
• biomass
• resp./excr. 15
SUSP. DETRITUS
• c on een tra t Ion 2.2
• minarail zat Ion 40
20
i
k
185
150
EELGRASS
• biomass 10
• nat. prod. 30
20
90
>f
SUSP. FEEDERS
• biomass
7.5
• resp./excr. 25
215
1C
BENTH. DIATOMS
• bfomasa
1,4
• net. prod. 50
15
10
QEPOS1T FEEOERS
• biomass
1.5
• resp./excr. 5
f
COMPL. DETRITUS
• concantratlon 12,1
• rnlnerqllzatlon 125
i k
10
>
35 >
10
f
BOTTOM DETRITUS
• cancentration 8,0
• mineralfzatlon 20
• refractory
20
r
5
J-k
SUSP OtTHIRJa
!
• cantnrxratKfn l 7
• tiomfi*i
I*
*n«L p/na ipS
j _
j<
'
I tcünt(nlfoilOft 13 1
—j • miflw-gilialliin ü ö
5 j OtPÜill
Figure III.19
The calculated annual carbon balance and cycling in 1980, in
gC/m a /y, for the whole lake (large upper scheme) and for the different parts o£ the lake (middle-left: segment 1, bottom-ieft:
segment 10, middle-rightt segment 4, bottom-right: segment 7)
NITROGEN SALANCE ( g N / m 2 / d o y )
Ê3
Ü3
9
153
D
1978
DISSOLVËD INORGANIC
FYTOPLANKTON
SUSPENDED DETRITUS
BENTHIC DIATOMS
EELGRASS
B
•
@
B
1980
1979
BOTTOM FAUNA
COMPLEX DETRITUS
0OHOM DETRITUS
OISS. IN PORE-WATER
1981
YEAR 1 9 7 8 - 1 9 8 0
15
1983
1986
YEAR 1 9 8 3 - 1 9 8 5
Figure III.20
The calculated nitrogen balance for the years 1978 through 1980
and 1983 through 1985, averaged over the whole lake
73
AMMONIUM ( g N / m 3 ) 1979
0.5-
..,..
i
Enj
*
NOMINALRUN
OPTIMALRUN
UNCERTAINTY RANGE
MEASUREMENTS
0.4-
*
*
0,3-
f
,0"
N».
0.2-
k"
*
•
SU
1
*
*
1IL
'ir
in
*
0,1*
*
0,00
30
60
90
120 150 180 210 240 270 300 J30
360
time residttes in days
DAGEN
30
20
10
0
1.
'1'
-10
.
111
-20
0
37
73
110
M6
183
219
256
292
329
J6Ti
concentration residues in gN/m3
0.15
0. 10
Q.Q5-
..,!
0.00
It
M
1
I I I
III' "
-0.05
-0.10
-0.15
-0.20
1
1 ' 1
| r i•i i i | i i « i i l • i
Figure III.21
uncertainty
analysis
f o r ammonium ( s e e t e x t
f o rsx-
NITRATE ( g N / m ï ) 1979
0.8-I
NOMINALRUN
OPTIMALRUN
UNCERTAINTY RANGE
MEASUREMENTS
0.0
120
150 180 210 240 270 300 330
360
time residues in days
DAGEN
30
20
10
0
-10
-20-
-30
'' 1 ' ' 'M"
37
110
M6
183
219
' '"i
256
i
292
329
' 'T
365
concentratlon residues in gN/m3
0.20
0.15
0. 10
0.05
0.00
-0.05
-OIO
-0 15
-0 20
-0.25
-0.JO
-0.J5'
i >•
73
110
146
183
'M''
219
< - M '••''' I '-'
256
292
J.29
36b
Fiqure III.22
Uncertaint
y
for nitrogen (see text for ex-
75
SILICON ( f l S I / m 3 ) 1979
NOMINALRUN
OPT1MALRUN
D UNCERTAINTY RANGE
* MEASUREMENTS
0
30
60
90
120 150 180 210 240 270 300 330 360
time residues in days
DAGEN
30
20
10
0
-10-20-30-
' I ' ' ' '• M
17
73
'
I • • "• ' ' I ' ' • ' • I
110
146
163
| i • i i • | i I'I'I i p
219
256
292
329
I ' ' • ' ' I
365
concentration residues in g/m3
0.6
0.5
0.4
0.3
0.2
0.1
.
-0.01 '
1
••
•
1 ,
,1 1 1
'
•
219
256
1,
'
• ' •
-o.t
-0.2
-0.3
37
73
110
146
183
292
3Ï9
r
365
iqure III.23
esults of the uncertainty analysis tor silicon (see text for
lanation )
CHLOROFYL <mg/m3) 1979
NOMINALRUN
_ _ OPTIMALRUN
U UNCERTAINTY RANGE
* MEASUREMENTS
0
30
60'
90
120 150 180 210 240 270 300 330
360
time residues in days
DAGEN
JO
20
10
1
I
1
1
1
-10
-20
-30
1
37
11
110
1 1 •
U6
1 I
18J
1 1 1 1 .
219
256
292
329 365
concentration residues in mg/tn3
9.0
7.5^
6.0-1
4.5
3.0
t 5
0.0
TTT
rrr
-U-L.
_L_L
-I.S
-3.0-1
• !••
il
1
I
71
'
I
110
"
I
146
r | ••• • • 1 |
183
219
)
756
|
| ,|
292 129
Figure III.24
axpïanatiSn) th6
for ohlorophyll (see text for
77
I.!
0.6
OIATOMS ( g C / m 3 )
AMMONIUM (gN/nn3)
_
.
.
.
*
_ „ Segment
Segment
Segment
Segment
Segment 1
Segment 4
Segment 7
Segment 10
Msasurements
i
4
7
10
nflnts
*
*
i
0.3
*
A
V\
*
** * J.
*
I
8.0
.ƒ
T
*
u
0.2
r
*
1
l
I.S
NITRATE ( g N / m 3 )
Segment 1
.... Segment 4
_.. Segment 7
. . . Segment 10
Measurements
NON-OIATOM!3 ( f l C / m 3 )
.
1.2
O.i
Segment t
Segment 4
k _.- Segment 7
,_. Segment 10
1 ^ Measurements
i
J1
O.J
0.0
CHLOROPHYL ( m g / m 3 )
1,5
Segment I
.... Segment 4
„,- Segment 7
Segment 10
* Measurements
^_
....
_„
—
Segment t
Segment 4
Segment 7
Segment 10
Measurements
0.5
Figure III.25
Results tor the main state variables of the new nominal run (measurements refer to the middle segment (no 4))
PHOSPHORUS (gP/m3)
OXYGEN ( g O 2 / m 3 )
__ Segment 1
.... Segment *
Segment 7
Segment 10
....
_..
...
*
ge
.
* Measur«m*nta
Segment 1
Segment 4
Segment 7
Segment 10
Measurements
0.4
0.2
OXYGEN BOTTOM SHALLOW (gO2/m3)
Segment 1
.... Segment 4
_.. Sflgmenf 7
._. Segment 10
Measuremonts
0.5
NITRATE BOTTOM SHALLOW ( g N / m 3 )
_ _ Segment 1
Segment 4
_..- Segment 7
A
)4
I
0.J
\\
\
\\
\\
\\
0.?
).l
.0
f
\\
\\
\\ '
\ \
\
\
i
/
j
h
V
\
V\
V
\
/
"
r—~—r 1
Figure III.26
Preliminary results of the new nominal run tor oxyqen and phosphorus (measurements refer to the mictdle segment <no 4))
' "ï
TABLES AND FIGURES MODEL APPLICATIONS
80
Table IV.1
Calcuiated nitrogen budgets for three scenarios,
and comparison with the nominal run for 1980.
nominal
scen. 1
N inputs
*3
net load
exchange with North Sea
total regeneration
benthic regeneration
refractory nitrogen
denitrification
denitr. efficiency
3.8
0.6
scen. 2
scen. 3
extrab. : auna
flushing
*z
11.3
11.3
- 1.4
66.7
41.6
- 1.0
30.9
18.2
11.3
- 0.8
61.6
38.4
0.9
3.3
1.2
7.4
1.2
8.1
1.1
7.6
12 %
12 %
10 %
35.4
22.0
21 %
81
u
1,5
AMMONIUM ( 9 N / m 3 )
NITRATE (gN/m3)
NQMINALRUN
SCENARIO ONE
/
0.1 . - ' \
l
1.3
*\
\l \
A/
%
j
1
•
t
r
i
i
u
/
/
IJ
J
1
1
1
i
t
\
ü.i
•u
NOMINAL RUN
SCENARIO ONE
V
•
0.)
• • •
f
r
1
\
u
i
i
i
1
1
1
1
1
*
\
1
1
f
/
f
i
•
/
\
J
>
/
/
0,0
U
CHLOROPHYL ( m g / m 3 )
_ NOMINAL RUN
... SCENARIO ONE
NOMfNALRUH
. . . SCENARIO ONE
0.0
Figure IV.1
Model results of scenario lt the behaviour of main state variables
at increased loadinqs (3 times higher) of nitrogen and phosphate
AMMONIUM (gN
NITRATE CflN/m3)
_ NOMINAL RUN
. . . SCENARIO THREE
1.5
».(-.
f
\
1
(
è*
\
h
n
t
t
t
i
0.1
j
t
i
9
1
1
1
1
t
1
\
i
f
\
f
1
1
i
f
*
t
u
NOMINAL RUN
SCENARIO THREE
1
t
r
f
ƒ
ƒ
1
1
l
/
t
\
t
y
/
1
\
1
•
1
1
1
l
\
(
r
/
/
/
StUCON (gS)/m3)
CHLOROPHYL ( m g / m 3 )
NOMINAL RUN
SCENARIO THREE
NOMINAL RUN
. . . SCENARIO THREE
1.5
1.0
\
/
\
J.5
ff
•
\
•
\
//
/ /
A
/ \
\ /^\**» L
.
» // J/
0.0
Figure IV.2
Model results of scenario 3; the behaviour of main state variables
at increased loadings (3 tiities higher) of nitrogen and phosphate,
combined with increased standing stock of suspension feeders
83