Rijkswaterstaat Tidal waters division rijkswaterstaat dienst getijde wateron bibliotheek grenadiersweg 31 » 4338 PG middeiburg GREW\Q: an ecological model for Lake Grevelingen i documentation report addendum: tables and figures I. de Vries, F. Hopstaken, H. Goossens, M. de Vries, H. de Vries, J. Heringa rijkswaterstaai CONTENTS Tables and figures introduction and data base dionst getijdewateren bibliotheek grenadiersweg 31 • 4338 PG iTHddelburg 1 Tables and figures GREWAq model description 30 Tables and figures results 45 Tables and figures model applications 60 LIST OF TABLES Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table Table 1.1 Volumes and surface areas of seqments in QREWAQ . .3 1.2 Nutriënt loadings on Lake Grevelingen 3 1.3 Sampling locations Lake Grevelingen 4 1.4 Fytoplankton celvolumes and volume to carbon ratios 5 1.5 Concentrations of Phytoplankton and POC 6 1.6 Empirical carbon to chlorophyll ratios 6 1,7 Eelgrass standing erop and production 6 1.8 Griginal data on benthic fauna 1983-1986 7 1.9 Biomass of functional groups of benthic macrofauna 7 1.10 Production and mineralisation in Lake Brevelingen 8 I.ll Sediment - water exchange fluxes in Lake Grevelingen 8 II. 1 Modules of GREWAQ 31 II.2 State variables of GREWAQ 32 II.3 Coefficients in the GREALG module 33 II.4 Production of eelgrass and transport of detritus. 34 II.5 Functioning of the BOS 34 II.6 Coefficients in the COMPLX module 35 II.7 Coefficients in the CQNSUM module 36 II.8 Coefficients in the MICROB module 37 II.9 Mass exchange betwesn segments 37 11.10 Characteristics of pore water profiles 38 II.11 Coefficients in the OISPER and BOTTOM modules . 38 III, 1 Measured and calculated phytoplankton and POC . 46 III.2 Measured and calculated benthic diatoms and PQC 46 III,3 Measured and calculated pore water nutriënt conc. 47 III.4 Measured and calculated sediment - water exchange 47111,5 Measured and calculated production and respiration 48 III.6 Summary of calculated carbon budgets 48 III.7 Nitrogen cycling in Lake Grevelingen 49 III.8 Summary of calculated nitrogen budgets 49 III.9 Summary of calculated silicon budgets 49 III. 10 Parameter space for three parameters 50 III. 11 List of parameter vectors and goodness of fit . 51 III. 12 Optimal parameter vectors and goodness of fit . 52 III.13 Goodness of fit option of PC version GREWAQ . . 52 III.14 Nitrogen loadings of marine ecosystems .... 53 IV. 1 Nitro'gen budgets for three scenarios 81 ii LIST OF ILLUSTRATIQNS Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figurs Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure 1 The annual carbon balance of Lake Grevelingen . . . . 1.1 Map of Lake Grevelingen with sampling stations . 1.2 Segmentation of Laks Grevelingen 1.3 Area - depth curve for Lake Srevelingen 1.4 Ammonium concentration North Sea 1.5 Nitrate concentration North Sea . . . 1.6 Orthophosphate concentration North Sea 1.7 Silicon concentration North Saa . . . 1.8 Irradiation 9 Temperature 10 Chloride concentration 11 Qxygen concentration 12 Suspended solids concentration 13 Orthophosphorus concantration 14 Silicon concentration 15 Ammonium concentration 16 Nitrate concentration 17 Chlorophyll concentratian ...... 18 Particulate organic carbon concentration . . . . 19 Pore water concantrations P04, Si and NH4 ... 20 Pore water concentrations N03 + N02 21 Phytoplankton biomass measurements 22 Chlorophyll concentrations in the sediment . , . 23 Particulate organic carbon in the sediment . . . 24 Mean biomass benthic macrofauna 1972-1985 . . , 25 Location of mussel beds and sampling locations . II .1 Schematic representation of GREWAQ II 2 Flowchart of the DELWAQ - GREWAQ coupling 11.3 Flowchart of GREWAQ 11.4 photosynthetic efficiency curve 11.5 Rescaling incident irradiance 11.6 Nitrogen cycling in the benthic complex system 11.7 The sequence of processes in the BCS 11.8 Pore water profiles of nutrients 11.9 Calculated pore water profiles III. Model results ammonium . . III.2 Model results nitrate III. 3 Model results phosphorus 111.4 Model results silicon 111.5 Model results diatoms 111.6 Model results non diatoms III. 7 Model results chlorophyll III.8 Model results particulate organic carbon ... III. 9 Model results benthic diatoms 111.10 Spatial differences state variables watercolumn 111.11 Spatial differences state variables BCS ... 111.12 Spatial differences bottom detritus 111.13 Spatial differences nutrients shallow bottoms 111.14 Spatial differences nutrients deep bottoms . . 111.15 Model results N fluxes BCS 111.16 Model results Si fluxes BCS 111.17 Potential production benthic diatoms 111.18 Energy budgets phytoplankton and susp. feeders 111.19 Carbon cycling in Lake Grevelingen 111.20 Nitrogen balance of Lake Grevelingen 111.21 Results uncertainty analysis ammonium .... 2 .9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 28 29 29. 39 40 40 41 41 42 42 43 44 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 iii Figure Figure Figure Figure Figure Figure Figure III.22 Results uncertainty analysis nitrogen .... 75 III.23 Results uncertainty analysis silicon 76 III.24 Results uncertainty analysis chlorophyll . . . 77 III.25 Model results new nominal run 78 III.26 Model results new nominal run: 02 and P04 . . 79 IV.1 Model results scenario 1: increased loadings . . 82 IV.2 Model results scenario 2: biomanipuiation ... 83 TABLES AND FIGURES INTRODUCTION ANO DATA BASE PHYTOPLAMKTON net production:190 biomass : 1.3 57 29 ZOÖPLANKTON biomass POC-import from Morch Sea : 0.11 SUSPENSION FEEDING 30TT0MFAUNA . biomass : 3 1- N 'N EELGRASS + MACRO-ALGAE 50 net production: 50 biomass ; 15 136 SUSPENDED DETRITUS conoentration: 1.7 51 BENTH1C MICRO-ALGAE 14 DËPOSIT FEEDING and GRA2IK0 BQTTOMFAUNA biomass : 6 151 BOTTOM DETRITUS Ml Figure 1 The annual carbon balance of LakeGrevelingen. Situation 1980-1981. The components (rectangles) and processes (arrows) considered, the input data on biomass and annual net production, and the calculated values for fluxes (respiration, consumption, detritus formation, sedimentation, resuspension and mineralization) and concentrations (suspended and bottom detritus)'are indicated. Values are given in g C-m " 2 and gC-ra-2-a- 1 , 51 Table 1.1 Volumes and surface areas of segments used in GREWAQ (values in 10 6 m 3 or m 2 ) volume watersegm. area shallaw area deep total area eastern western middle segments segments segments 263 15.6 17.5 33.1 114 18.6 10,4 29.0 184 34.5 11.9 46.4 deep pit 21 2.7 2.7 total 582 68.7 42.5 111,2 Table 1.2 Nutriënt loadings on LaUe Grevelingen in g N,P,Si/m2.y atmospheric depos. of NH4 1977 197Ö 1979 1980 1981 1982 1983 1984 198S 1 1.04 0.38 1.18 1.03 1.03' 1.03' 1.0311 1.03 1.031 polderwater and shipping sluice N 2.44 2.16 3.46 2.62 2 3.20 3.16* 3.11 22 3.06 2 3.00 P 0.30 0.20 0.35 0.38 0.41* 0.40*2 0.40a 0.40 0.40* Si 3.69 2.03 4.37 3.76 3.8Oaa 3.76 3.62' 3.67a 3.67* ) For 1981-1985 no data were available on atmospheric deposition. The same values as for 1980 are assumed for these years. According to data from RIVM, the wet deposition of nutrients is highly variable, the standard deviation however is low, and no trend is visible from 1979 through 1982 (v.d. Meent et al, 1984). 2 ) Polderwater discharges are interpolated between 1981 and 1985, Table 1.3 Sampling locations, sampling depths and average sampling frequency per year during the period 1977-1985 in Lake Grevelingen. stations depth number af sampling depths sampling frequency source 6-3 GB-6 GB-7 0-5 0-28 0-37 1 3 3 10-13 10-13 10-13 RWS segment 4 (tniddle) GB-5 G-11U7) P-11U7) 0-12 0-22 0-3 3 10 3 10-13 30-45 30-45 RWS DIHQ GIHQ segment 7 (east) G-l G-2 GB-4 0-7 0-23 0-11 3 3 3 10-13 10-13 10-13 RWS RWS RWS segment 10 G-3 26-52 2 10-13 RWS segment 1 (west) RWS RWS Table 1.4 Phytoplankton species in Lake Grevelingen, their individua.l cell volumes (in nm3) and their carbon content according to reqressions equations of Eppley genus species Amphidinium Asterionella Biddulphia Öiddulphia Calycomonas Ceratauiina Chaetoceros Chaetoceros Ciliate Ciliate Coscinodiscus Coscinodiscus Cryptamonas Detonula Oj-nophysis Diploneis Disci Ditylum Ebria Euglana Eucampia Eutraptiella spec. japonica aurita regia spec. barghonnii spac. Favalla Flagellates Green rods Qymnodi.n3.um Gymnodinium Gyrodiniutn Gyrodinium Helloostomella Heterocapsa Leptocylindrus Licmophora Llthodesmiuni Masartia Mesadinium Mesodinium Nitzsohia Nltzschia Nitzschia Pannates Pannatas Peridinium Peridinium Peridinium Prorocentrum Prorocentrum Pseudopedinella Rhizosolenia Rhizosolenia Rhizosolenia Rhoicosigma Skeletonema Strombidium Strombidium Thalassiosira Thalassiosira Tintinnopais Tlntinnopsis Tlntinnopsis U-cells class calvolume spores spec, <5mall) spec, (large) qiqas granii spac. confarvacaa spec. spac. brightwallii spec. spac. zoodiacus spac. ehrenbergii N D 0 800000 D aooooo 10 N 0 0 0 22000 N N D D N 1000 9000 200000 100000 spec. delicatula hebetata setigera spec. costatum spec, (large ) spec. (small) nordenskioldi rotula beroidaa campanula cylindrica 500 300 500 D 2500 10000 20000 N 100000 4000 D N 0 D N 0 H N N N splendens spec (small) lachryma spirale subulata triquatra danicus gracills undulatum rotundata rubrum spec. (large) clostarium aeriata sigma (larqe) (small) spac. (large) spec. (small) triquetrum redfieldii micans 520 200 20 500 26000 1000 150000 300 100 H N N 65000 1000 200000 100000 N soooo 4000 D D 2000 3200 40000 N N D N N N D D D 0 D 200 4000 20000 200 2000 20000 15000 500 N N N N N N 30000 10000 4000 10000 30000 0 0 3000 20000 6000 120000 D 0 0 N N D 0 N N N N 100 200 50000 20000 10000 20000 70000 200000 3000 10 C/vol-ratio 0.1726 0.1247 0,0170 0.0170 0.2188 0.0403 0.1001 0.1131 0.1660 0.1465 0.0238 0.0281 0,1730 0.0680 O.144S 0.0413 0.2166 0.0281 0.1527 0.1730 0.0388 0,1660 0.1229 0.1784 0.1905 0.1292 0.1660 0,1208 0.1259 0.1312 0.1527 0.0717 0.0641 0.0350 0.1828 0.1527 Q.1387 0.1247 0.0717 0.0413 0.0442 0.1001 0.1353 0.1445 0.1527 0.1445 0,1353 0.1905 0.0651 0.0413 0.0551 0,0269 0,1247 0,1312 0,1387 0.0438 0.0413 0.1286 0.1208 0.1554 0.2188 Table 1.5 Annual average concentrations of phytoplankton and POC chlorophyll (mg/m3) phyto-C { g/m 3 ) ( g/m3) POC 1978 1979 1980 3.16 0.20 0,52 4.51 0.27 0,51 2.10 0.25 0,55 63 60 119 38 53 45 average C/Chl average % phytopl. of total POC Table 1.6 Long term (1978-1980) monthly averaged C/Chl-ratios of phytoplankton cancentratians > 200mg C/m3 and > 2 mg Chl/m3 mean C/Chl-ratio month May 79 95 258 June July August September October 157 101 1S2 131 76 March April number o£ observations 3 9 3 7 7 5 5 7 Table 1.7 Eelgrass standing erop and production in Lake Grevelingen during 1971-1986 (unpublished data from Pellikaan and Nienhuis) year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1965 1986 standing erop Total prod. Average prod. gC/m 2 ton AFOW/y gC/m2.y West Middle East 11,1 11.7 12.4 20.0 27.7 27.7 35.4 42.8 42.8 18.0 30.0 26.8 33.8 32.9 32.0 32.0 0.0 0.0 0.0 0,0 0.0 0.0 0.37 0.37 0.37 0.31 0.29 0.29 0.38 0-44 0.44 0.20 0.33 0.58 0.59 0.62 0.64 0.64 0.63 0.63 0.63 0.69 0.71 0.71 0.61 0.54 0.54 0.80 0.67 0.41 0.40 0.37 0.35 0.35 4.1 4.1 4.6 7.4 10.3 10.3 13.1 15.9 15.9 6.7 11.1 9.9 12.5 12.2 11.9 11.9 2676 2817 2973 4810 6647 6647 8510 10292 10292 4333 7204 6454 8125 7910 7698 7698 relative distribution of tot. prod. o^er segments 0.02 0.03 0.03 0.0 0,0 0.01 0.01 0.01 0,01 0.01 Table 1.8 Spring biotnass of taxonomie groups of benthic macrofauna, 1983-1986, in the segments west, middle and east in gADW/m2 {after Lambeck, unpublished data) N 4 15 5-15 13 3 >1S middle 0-1.5 14 2-5 13 5-15 8 east 0-1,5 7 2-5 11 5-15 3 west 0-1.5 2-5 biv gas pol 11.1 2.0 0.S3 48.5 21.9 0.87 0.1 1.7 0.57 0.0 0.8 0.01 1.8 0.7 0.04 5.5 11.8 0.37 0.1 0.9 0.51 0.9 0.9 0.31 53.4 15.8 2.01 0.5 6.4 0.15 1986 N biv gas pal west 1985 198« 1933 0-1.5 2-5 14 41.4 23.2 0.76 5-15 14 6.6 10.7 1.50 3 0.0 0.0 0.40 >15 middle 0-1.5 _ 2-5 14 31.4 20.2 0.40 5-15 8 1.2 7.8 0.62 east 0-1,5 _ _ _ _ 2-5 11 40.2 17.9 0.22 5-15 7 0.7 1.7 1.36 N biv 93 s pal 3,7 3.70 4 Zi.Q 13 19.7 16.3 0,29 14 2.4 3.4 0.45 3 0.0 0.0 0.0 14 0.5 2.2 1.11 13 38,5 21 .3 0.37 8 12.0 9.9 0.51 7 1.2 1.2 0,33 11 19.7 22.2 1.06 8 2.4 6.8 0.71 N biv gas pol 0.0 o-.o 0.0 29.4 18.8 0.82 7.6 3.2 4.21 0,0 0.0 0.22 13.9 7,8 1.71 55.8 37.9 0.36 21.7 9.3 4.04 0.7 4.4 1.58 60.2 27.2 0.69 8 6.3 13.0 2.90 0 14 14 3 5 10 9 3 11 mean N biv gas pol 8 16.1 2.8 2.12 56 35.3 20.2 0.69 55 4.3 12 0.0 33 3.1 50 31 .4 33 9.1 17 1.0 44 43.4 31 2.7 4.8 1.71 0.2 0.16 2.4 1.02 22.0 0.38 7.0 1.50 1.6 0.55 20.8 0.99 7.1 1.28 Table 1.9 Spring biomass of functional groups of benthic macrofauna, mean values for the segments west, middle and east, shallow (0-Sm), deep <5-15m) and deep pit <>15m> in gC/m a (revised data after Lambeck, as used in GREWAQ) suspension west shallow deep pit middle shallow deep east shallow deep surface deposit feeders feeders 9.9 2,2 0.0 5.8 2.2 4.5 8.3 2.6 0.7 0.06 2.5 0.7 1.8 0,5 sub surfsce deposit feeders 1.00 0.92 0.06 0.5 9 0.75 0.38 0,55 Table I.10 Production and mineralisation in Lake Qrevelingen (values in gC/m 2 .j) prim. production phytoplankton (DIHO) phytoplankton (RWS) benth. diatoms (i4C) benth. diatoms (02) 1977 1978 1979 1980 1981 60 90 171 156 35 194 172 32 70 225 mineralisation in water in the sediment 305 390 Table 1.11 Sediment - water exchange fluxes in Lake Grevelingen calculated from parewater concentration gradients (values in mgP,Si,N/m2.d) phosphate silicon ammonium shallaw (<7m) March Ouly 13 84 45 15 87 70 deep (>7m) March July 4 134 46 62 246 154 {..\ -X-P11 (17) (17) ,\ jijt G - SAMPUNB IOCAH0NS RWS AND OIHO t=4> a POLOERWAIER DISCHARGE POIHT | | | — —• I ' d«ptti contour lln«: • m depth contour llna: S m dtp IK contour llno: 20 m = | j BORDER UNES OF SEOUEHTS OF GREWAQ Figure 1.1 Map of Lake Qrevelingen with depth contour Unes, sampling Xocations and polderwater discharge points. WEST EAST 15 10 a) - SIPHON SLUICE b) - SLUICE 40 Figure 1.2 The schematization oj£ Lake Grevelingen into 11 segments —*0 2 ld N A P a.s ' 8 19 4fl (ha *105) 12 10 1 54 50 40 4Ï.S 40 ao 17 6 4 area L i n - ao « -20 / — i 1 depth -30 — 'Cm) Figure 1.3 Area-depth curve for Lake Grevelingen 10 O 75- 0I J A M ?• 0I J A N 7 ! 0.79- 0 7S- JICECII D*TE L CCEND STAT ION * SCHOUWEN a c;of f(f E Figure 1.4 Ammonium conoentration at the North Sea in U 2 . 0- I . 5- 0 . S- j i uEca.i LEGEND: Figure STAT ION A SCHOUWCN S COtfifE 1.5 Nitrate concentration at the North Sea in qN/m3 12 OPO + 0 11- Q i a- j \ j! Il 0 . 1 i- i! j\ \ i. 'ii \ fl • / 0 . 04- / /\ ;• i i ,' i i 1 \i 0.03- / \ i V / \ \ 06- • • • . ; K | i ) j \\ i ; / 0.1!- ii / : ' ; i ! i j | ' .-, i i\ i •. • '• f _ i • \ ï '., i ' '«i ; • i i ,-'' \( ' A1/ \ s^ \ \ J \\.. \\ P i f \ \ ..1 / V / \ \ T ' • Al .'i y V /': ;' W ' ^f •• \ • 0 . 00- .••••. / i / \ \ y / 0 I JAM7» O IJ «N94 Ptli LtCEBD : Figure S TAT ION A SCHOUWEN l) DOEREE 1.6 Ortho-phosphate concentration at the North Sea in gP/m3 13 O I JAN O S- 2 0- a 5- 'O OATE lEGEMD: Figure STATION SCHOUWCH 1.7 Silicon concentration at the North Sea in qSi/tn1» 14 I fiftAO ! 400 " 100 0 - 800 - 4 00 - O 1 JAM77 800 - aIJAHS) Figure OI J*N7« O I JAHBl 1.8 Incident irradiation data from station Bomtnenede, weekly avaraqes of daily totals in W/m 2 (400-700nm) 15 to 24- 22-, 10- A 1 8- \ 4 -A 1 6- f/\ 1 4- n '' 1 1- \ 0- II / a- V 64- i / 3- i 0- P \ \\ r \v •••. v y -2- 0IJAN77 OIJUL77 CHJAM7S 0 J J UL 7 » 01JAN79 01JUL7S J I0E 079 2 S30- 16I 41 2I 0- 6 l0-2 1 1 01 J/.M40 T" T" 0IJAN12 ü1 J UL d2 H 0 E U 3 O I J U L 3 Ei 1 1 1 I C1 b ~ 01 JULflO 0IJANS1 2220- 1 »1 4-H 1 2~ f 1 08-: 64~ 1- / \ \ \ï A/' \\ V \ /i / a-3~~ i OljASSJ 01 J U t t ] D1JAH84 0 I JUL 8 4 r O I J ANSS "•• OAïe U S C H D : L O C A T I OM wcsr ottf UIDUL1 WtST S H A L L OW Figure 1.9 Temperature data in °C 16 1 S - / / / \ y /' 1 7 ~ / ,;'' '; -1' / f' i' " / • . / / /' - ' tl / / 1i / // i - •' J ' • / t6 - 4 : 'ï : • " ^ / / / / .. 'i , \ 'S ! \ V - ••'1 V' '^ : t l ,•' ;' ' ', / V •••;V-'A/\, 1 1 1 1 1 O I J A N 7 7 ' f—-~ O I J U L 7 7 0 U A M 7 S O I J U L Ï J O I J A H O D OIJULID DIJANQ1 OlJULflJ 0IJANS4 '• OIJAN79 OIJ Ui J 9 O U 'J L « I O I J M t i O I J UU 32 0IJUL84 OIJANBS ••'• r J I O t C B ! l2 I)IJAH«1 OIJULÖt, JlOLCtS OA F C LECEND, I.DCAT I O N CAST WEST Figure OEEP UIOQ1E WES1 SHALlUW I.10 Chloride concentration in g/l 17 010 20 01 J A N H O1JUL77 LEGEND: Figure «1JAHJ» LÜCAllON 0 I J U L 7 D EAS f W£S T O1JAN79 iil U i , ' ) J1OEC79 oij uIj 1 iiuLCnj M 1 O O i t O£EP I.11 Oxygen concentration in g/m3 18 SEOO 50 m i\ OIJUL77 h 0 U A N 7 8 OIJU178 O 1 J U l. 7 9 JIOEC79 ouuiiz 3ioeca: * ••• m & V\-*' OIJULBI o i j*ne J OI j * n a i o i JUI. o J LÉCÉNO , L O C * I I ON H | UDL t W£ST DEEP Hl S 1 S I I A l l OW Figure 1.12 Suspended solids concentration in g/m: 19 OPO i e- "T" O IJUL ?J H 1 0IJANS0 O ' J A F I H O I J A N H 1 1 OlJULaO Q M A N 1 I 0IJULB1 O IJUL 8 3 01 JAN»' O I JULI* 1 QIJANBZ r O IJ Ul J9 JIOEC79 1 01JUIBI — T JIDEC02 0 1 J1IL4S .5 I O E C 8 5 QAI E LEGEND. LCCATION • H£St Figure QE EP 1.13 Qrtho phosphorus concentration in gP/m3 U I DOL E W6SI SHALLUW s i g 2 1- 1 • O 1 J UI. 7 7 D1JAH11 O I J U U 8 -J I O IJANT8 Oi JAN 8* O 1 J UL 7 8 ü I JUUS1 0 1 JAN 79 IHJ/.N8S O U u l ! » 1 I 0 £ C 73 01 J U L 3 2 J 0UUC1S JIDI'Clb DATE LEGEND- LOCATIÜH EAST WES T 0C EP Figure 1.14 Silicon concentration in qSi/m3 HlDOli w£s; iii*i i uw t i~ O 9- 1 OIJAN77 01JUL 77 0 I J .* I I 8 J <]>JAN7a O l J Ü L t ] LOC 0 1 J A H H 4 - i O I J A U 7 0 01 . ü i ! 9 51 J U L J I 0IJAN12 OIJULli O l j U L B t OlJAHfli • — r J I D E C 7 9 JI QECa 2 O l J L l B i J I U E C S 1 ATiON WE Sr Figure 1 D 1 J U L 7 6 «ESI SHA11O» I.15 Ammonium concentration in gN/m3 22 O 7S~ a , 40- Q\Jt.Hjl 0 ÜIJUL7? 0 I J A N 7 I 0 1 i J1.7J 91J A t ) t A ! i 1 \ \ \ t b\ / \ / / \ 0 0- L—, "—i OlJAHflO 4 / \ o 1/ ƒ ƒ ƒ i i \ Ij ij 1 ,7 I•i / 1 \ 10- f 1 1 \} A i 1i • f\ (1A \ il 0 A / t S \ m 45- 1 0 JIDEC70 6 0- /ï\-il \ 1 0 0IJUL70 \ \ il1 !I / jï E 1 1 1\ ft; 1' \ \ J—___ ! —i— OIJU1.U0 •f \ , il ^ _ ~ 01 JULS2 J I 0EC82 0IJUIB5 J U) t CflS Q . 60- O1JANB-! 0UUL11 01JANB4 UIJULSI Ü I J .4 N « 5 DAT E 4.E0END , l. O C A I I O N E/SST DE£P MIDDLC WES1 SHALLOW Figure 1.16 Nitrate concentration in gN/m3 23 CHLO 30 -I T 0 1 J A N JO " O 1 J A N 7 S -ï T- T T" 0 1 J U L M O I J U L J B O I J A N 7 O O I J U L 7 S J 1 O E C 7 9 J -r i -r 01JULS0 0IJAN8I OIJULfll 01 J A N S ) 01 j U L S 3 0 1 JAN«H 01JUL8+ a I JAM(5 1——— oiJAN as •—• ~r 1 01JUI82 i10ECS2 ! 0 1 JUi-BS r 3 1 QECfii DATE LEGEND: L O C A T 1 ÜN — CAST DEEP Figure 1.17 Chlorophyll concentration in mgChl/m3 M l UDLE WEST SHAi.LDW PQCO J.H 2 H 01 J A N 7 7 01 J U L 7 ? 01 J A N 7 8 01 J U L 7» O 1 J U L 7« JIDËC79 ï .0- 1 5- l 0- 0 a 5- f A IA ,/' l ff ''E {ƒ5 oj , <M,MN«[ AA f, \ <"\ n \/< 'T /•/AM' HA,. A / v —r T~ 11 a iJ U L S I <M J U L S I • T Jroecsi . 0;! 2 (1 5- lii •\\ 2 a- 1 5- i 1 .0- 0 II I | ff A s- r Ai a 0~"~" ' 1"" O I JAH44 ~— j _ — guuLtt K A l Al t i ,— ~ 01 J*NUJ o i JUI. ai T j i D t cai DATE : LOCATION wesr Figure DCEP Ml O D L C WES1 SHALLOW 1.18 Particulate organic carbon (POC) concentration in gC/m3 25 20 s101520250 250 SOO 750 O 280 500 7S0 O 51015 2025250 < 7m (n. iel 500 75Oyiigat I-1 >7m (n.S) Figure 1.19 Nutriënt concentrations (^Rat'1*1) at different dcpths (cm) in the sediment pore water fora. OrihopliospJmte; b. Re.tctive siiicate and c Ammofiium ut the 24 pi-muinent stations duriny tlte survey at' Octolier-November 1980 (water tumpt'ruture — 10"G). Average, minimum and maximum values are given ( • ) , and a shaded area covering 50% of all values (25% is smaller, 25% ia larger). A suhdivisiou is made into stations witli water deplha < 7 m (n » Ifi) and > 7 rn (n =• 8). Conccntratiuiis in die overlying water were dorived from RIJKSWA'I'KRSTAAT (unpublishcd quurierly 60 5- 100 160 i 200«gal I-' ox. laysr May 10- 16ox.layer Jan./Feb. 20- 26- 30- 35-1 cm Figure 1.20 I'ore water concentrations of n'fmte + nitrite (jtgat (NO 3 + NO»)-N-I~') in the: sediment of station Archipel f4 m water dcnthl Trom January to May 1979. I, 17-1-79, Watertemperaiure T - -U,5 a C (•); lï. 15-2-79, T » -0.5°C (A); III, 29-3-79, T - 4.9°C(A); IV. 17-5-79, T - 11.5°C(O); V. 31-5-79, T - 14,3 O C(D). The light brown oxidiKetl top zone in the sediment gradually decreased in thicknesa from —20 cm in Jaiuiary/February to ~B cm in May. Concentrationa in the overlying water were derived frotn RIJKSWATERSTAAT (unpublislicd quarterly reports). 26 aiOVOUWE (UMJ . I O « U / M J ) 4 0/28 21 10 16 12 1 0/12 ItETFfiOtROPHIC SPCCIES 0/3 M . RtSUSP, DENIHIC SPECIES OIJWB OIJAM/8 OIJUL78 0IJUL78 OIMN79 0IJANÏ9 0IJUL79 01JUL 79 3IJAN8D JIJANflO 0IJUU0 01M80 JIDECBO J Ifll'cBO Chlüföphyl (mq/m.5) OtJAM/8 OIJUW8 0IJAN79 0IJU179 JIIILC80 DA (E Figure 1.21 Phytoplankton biovolumes, carbon content and chlorophyll 17 i« Figure 1.22 Ghlorophyll a concentratie™ in the top cm of the sediments at stations 1, 2, 3, 4 and 5 in Lake Grevclingen (1977-1980) and phaeopigment cnnccntrations at the aume stations in 1977, exct-pt station 1 (interruptcd line), Verticat lines intlicate ± stantlard devia'tions tbr 1979 and 1980 only. " J j ' F ' M ' A ' M ' j ' j ' A ' g ' O ' N ' O J ' F ' M ' A ' M ' j ' j ' A ' 9 ' Q ' N ' o " 1 SUIion 3 ' F ' M U ' l l ' ] ' j ' A ' 3 ' O ' W ' O j J F FT M' A ' M ' J ' J ' A OI " > r-—I"-T"~ 1 i i 1 ) r—T r ••' i '" i 1 J f M A U si J A S O N D J f M A % «JC •»,•! i 9 ; a J F Figure M A M J J A 3 O N D J F M A i M I J M j j ' ' S ' O ' N i——ï ' A j A 1 S a 1 O ' Ü 1 1——i— H l O N 0 1.23 Parliculaie organic carbon ( P O C ) (.-(Jnrentrations in tlic top ci„ of the ai stations 2, 3, i and 5 in Lak- Gi-cyelingun duririB 1977 and |<)7)l, uxpi percentage ot'.Sfduni'iu ilr-y woiylit. 28 50 species EïjTJl muasel 40 30 irm 20 zz 10 1 h1 '71 '72 '73 '74 '75 '76 '77 '78 '79 '80 '81 '32 '83 '34 '85 '86 f L- closure Figure 1.24 Mean biomass of benthic macrofauna in the period 1972-1985 in g AFDW/ma Cafter Lambeck and Pouwer, 1966) 1966 1_L_1 1BU5-H9B4 t \ SAMPLING L0CAT10H MUSSEL 8IOMAS5 < 10 q AFDW / m BLACK SEGMENT: MUSSEl, flrOMASS > 10 g AFOW / SEBMEMT: m 2 2 NATURAL MUSSEL BEP SAMPUHO TRANSECT Figure 1.25 Mussel densities during 1983-1986 at sampling locations of the zoobenthos surveys by Lambeck and the locations of naturai musselbeds after RIVO 29 TABUES ANO FIGURES 6REWAQ MODEL DESCRIPTIQN 30 Table II.1 Modules of GREWAQ module function Connection to DELWAQ frame OLWQ99 BALANS coupling of GREWAQ to DELWAQ frame calculation of mass balances Main modules GRWQOO QRWQO1 GRWQ02 GRWQ03 QRWQ06 GRWQO7 GRWQ08 GRWQ09 DISPER main module governing branching to other modules deolaration of coefficients initialisation of state variables from OELWAQ arrays initialisation of cumulative variables dimensioning of process terms to the right units calculation of derivatives calculation of (cumulative) data for output calculation of mass balances for groups of processes calculation of disparsion coefficients Functional group modules COMPLX EELGRA GREALQ GRWQO5 MICROB CONSUM BOTTOM simulation of benthic complex dynamics simulation of eelgrass influences simulation of phytoplankton dynamics calculation of stoichiometric ratios of algae simulation of microbial processes simulation of zoöplankton and zoobenthos influences calculation of conc. profiles in bottom segments Input/Output modules EELGRA SAMPLE COEF GRWQ04 NBALAN TABLEX input of data generated by the model EELGRASS input of field data for loadings and fysical parameters output of settings of coefficients. output of calculated state variables and fluxes output of calculated nitrogen balance output of cumulative fluxes and average concentrations 31 Table II.2 State variables of GREWAQ name unit description Suspended particulate and dissolved substances in the water segments OPHY' DIAT11 DETF PDINI PDIAMM PDIPHO POISI OXY g/m3 g/m33 g/m3 g/m3 g/m g/m33 g/m g/m3 phytoplankton Cnon diatoms) phytoplankton (diatoms) suspended detritus nitrate-N ammonium-N phosphate-P silicon-Si oxygen Dissolved substances in the bottom segments SHNO3 SHNH4 SHPO4 SHSIO SHO2 DENO3 OENH4 DEP04 DESIO DEO2 g/m3 g/m33 g/m3 g/m3 g/m g/m33 g/m3 g/m g/m33 g/m nitrate-N in shallow bottoms ammonium-N in shallow bottams phosphate-P in shallow bottoms silicon-Si in shallow bottoms oxygen in shallow bottoms nitrate-N in deep bottoms ammonium-N in deep bottoms phosphate-P in deep bottoms silicon-Si in deep bottoms oxygen in deep bottoms Solid substances on sediment aurface and in bottom segmentJ5 XMFBO1 SFSH11 SFÜP DFBM1 1 •ETBS OETBO1 BOTQS11 BOTDO g/m2 g/m2 g/ma2 g/m2 g/m g/m2 g/ma2 g/m microfytobenthos suspension feeders - shallow bottoms suspension feeders - deep bottoms deposit feeders - shallow and deep bottoms benthic complex detritus - shallow bottoms benthic complex detritus - deep bottoms bottom detritus - shallow bottoms bottom detritus - deep bottoms ') each comprising 4 state variables, for the elements C, N, and Si 32 Table II.3 Coefficients in the GREALQ module name unit Pgmax l/d l/d J/cm2/h J/cm2/h J/cma/h Isl Is2 J/cmVh 2 Itnax c(I) J/cm /h nominal value 4.00 3,50 35.0 50.0 60.0 60.0 100.0 4 ko l/m EPSD EPSO EPSD DLSATD DLSATO mVgC a Ro(20> l/d l/d m /gC ma/gC h h b CNSU gN/m33 gP/m 3 gSi/m gN/gC gN/gC gN/gC CPSP gN/gC gP/gC Ks CNSP gp/gc CPSU gP/gC gp/gc 0.30 0.50 0.40 0.10 12 14 0.036 0.045 0.25 0.40 0.01 0.001 0.027 0.20 0.22 0.11 0.11 0.034 0.019 0.026 0.015 0.50 0.20 30.0 CSiSP CSiSU CtoChl gSi/gC gSi/gC gC/gChl DVSETM c<N) o(S) EXDtnax EXOmax m/d - 5.0 5 l/d l/d 3 0.5 0.5 0.5 l/d l/d 0.05 0.05 CEX RTMD RTMO 1. 2. 3. 4. 5. 6. raf. definition max. spec. prod. diatoms max. spec. prod, non diatoms sat. light int, diatoms sat. light int. non diatoms inhib. light int. diatams inhib. light int. non diatoms maximum light intensity scaling coeff. light stress background extinction specific extinction diatoms specific ext. non diatoms specific ext. susp. detr. satur. daylength diatoms satur. daylength non diatoms maintenance resp. diatoms maintenance rasp. non diatoms growth resp.ratio diatoms 1 ,cal 1, cal 2,3,cal 2,3,cal 2,3,cal 2,3,cal data cal data,4 4,5 4,5 4,5 cal cal 6 growth resp.ratio non diatoms 6, cal 7 half sat. const. nitrogen half sat. const. phosphorus half sat. const. silicon maximum N/C ratio diatoms maximum N/C ratio non diatoms 6 6 8 9 10 10 minimum N/C ratio diatoms 10 minimum N/C ratio non diatoms maximum P/C ratio diatoms maximum P/C ratio non diatoms minimum P/C ratio diatoms minimum P/C ratio non diatoms maximum Si/C ratio diatoms minimum Si/C ratio diatoms max. chlorophyll content sinking rate diatoms scaling coeff. N stress index scaling coeff.sediment.stress max. excretion rate diatoms max. excr. rate non diatoms allocation excr, products mortality rate diatoms mortality rate non diatoms 10 10 10 10 10 10 Qoldman et al, 1979 Colijn, 1982 Parsons et al, 1978 Baveco et al , 1986 Peterson and Festa, 1984 Wetsteyn, 1984 7. 8. 9. 10. 11. 10 data 11 cal cal cal cal cal cal cal Lehman et al, 1975 Nalewajko and Lean, 1980 Paasche, 1980 deVries et al, 1984 Smauda, 1970 33 Table II.4 Production of eelgrass (in tons AFDW/segment) and transport of eelgrass detritus in percentages. segment West (Seg. 1) Middle (Seg. 4) Sast (Seg. 7) production Transported detritus to segment 1 4 7 131.1 3232.8 5145.5 30% 10% 0% 70% 70% 15% 0% 20% 85% Tabie II.5 Examples of efficiency of the coupling regeneration nitrification - denitrification in the BCS (in %) 1 2 3 potential nitrification/regeneration potential denitrification/nitrification 5S 42 34 28 potential denitrification/regeneration 24 37 48 22 actual denitrification/regeneration 18 21 IS 25 34 Table II.6 Coefficients in the CQMPLX module name unit nominal value definition ref. coefficients for benthic diatoms <mfb) Pnmax Isl l/d J/cm2/h ÊPSB mVgC DLSATB h Ro(20) b eb l/d - CN cp gN/gC RTMB l/d gP/gC gSi/gC CSi 1.50 35.0 2.0 12 0.036 0.25 0. 10 0.17 0.034 0.50 0.05 max. spec. prod. rate mfb sat, light intensity mfb spec. extincticn mfb cal sat. daylength mfb maint. respiration mfb growth rasp. ratio mfb excretion ratio mfb N/C ratio mfb P/C ratio mfb Si/C ratio mfb mortality rate mfb 1,2 3,4 5 GREALG GREALG 4,6 GREALG GREALG GREALG GREALG other coefficients for the • BCS eden cnit OBL mm Zw(de) mm mm Zb P(bot) D-CO2 10-llo mVs o 2 D-NO3 D-NH4 D-P04 D-SiO ew kl(m) kl(a) k2(m) k2<a) Ksmin Kaff 1. 2. 3. 4. 5. 10- l o m a /s 10- lom 2/s 10-, m /s 10- l o m 2 /s — gC/mVd - 0.5 1.0 0.4 5.0 20.0 0.5 6.4 10. 4 10.8 4.6 5.4 3.0 0.6 0.2 0.75 0.2 0.1 2.25 max. denitr. efficiency max. nitrif. efficiency thickness dif.layer water(sh) thickness dif.layer water(de) thickness dif.layer bottom porosity of the bottom molecular dif. C02 molecular dif. NO3 molecular dif. NH4 molecular dif. P04 molecular dif. S104 exponent windinfl. on DBL min. 02 dependency of nitr. extra kl at high mineral. max. 02 dependency of denitr. reduction k2 at high mineral. half sat. of mineralisation aff. ratio nit/diat Admiraal, 1977 Admiraal and Peletier, 1960 Davis, 1982 Cadee and Hegeman, 1974 Admiraal et al, 1982 6, 7. 8. 9. 7 a cal cal cal cal 9 9 9 9 9 cal cal cal cal cal cal cal Nienhuis and de Bree, 1984 Jenkins and Kemp, 1984 Smits, 1984 Manheim, 1976 35 Table II.7 Coefficients in the CONSUM module name nominal value definition ref. CLRZPm m3/gC/d FDETZP gC/m3 ZPFs — EXZP 2 gC/m CLRSFm FDETSF SFFs m^/gC/d 0. 100 clear. rate zoöplankton edible fract. detr. tor zoopl threshold food conc zoopl. excreted fraction by zoopl. rel. amplitude biomass fluctuation susp. feeders clear, rate susp.feeders edible fract. detr. for suspf thresh. food conc. susp.f. routine excretion coeff. standard excretion coeff. clear. rate dep.feeders rel. amplitude biomass fluctuation dep. feeders ingest. eff. benth.diatoms ingest. eff. complex detr. ingest, eff. bottom detr. excretion fract. dep.feeders 1 AMPSF 1.50 0.050 0.50 0.40 0.333 RESF SESF CLRDF AMPDF DFIEM DFIED DFIEB REOF 1. 2. 3. 4. unit gC/m3 gC/gC/d gC/gC/d m3/gC/d gC/m2 _ - o.so 3.00 0.025 0.025 0.001 0.333 4.0 0.5 0.5 0.25 Peters and Downing, 1984 Tackx, 1987 Bayne and Widdows, 1978 Wolff et al, 1975 5. 6. 7. 8. cal 2 cal 4 3 cal cal 5 5 6 7 cal cal cal 8 Verhagen, 1979 Cadee, 1976 Beukema, 1982 Heringa et al, 1988 36 Table II.8 Coefficients in the MICROB module unit nominal value definition ref. min-C min-N l/d l/d l/d mineralisation rate water C mineralisation rate water N mineralisation rate water P mineralisation rate water Si mineralisation rate BGS C mineralisation rate BCS N mineralisation rate BCS P mineralisation rate BCS Si mineralisation rate bottom C mineralisation rate bottom N mineralisation rate bottom P mineralisation rate bottom Si temperature coëfficiënt scaling coëfficiënt scaling coëfficiënt standard N/C ratio detritus nitrificatlon rate water nitrification rate bottom denitrification rate water denitrification rate bottom 1 min-P 0. 10 0.12 0.12 0.08 0.05 0,06 0.06 0.04 0.005 0.006 0.006 0.004 1.09 1.00 0.70 0. 15 0.07 0.005 0.002 0,005 name min-Si l/d l/d l/d l/d l/d l/d l/d l/d l/d k kl k2 _ - NCm gN/gC min-Si min-C min-N min-P min-Si min-C min-N min-P nit den l/d l/d l/d l/d 1 ,cal 1 ,cal 1F cal cal cal cal cal 1 1 ,cal 1, cal l.cal 1 cal cal 2 cal cal cal cal 1, Smits, 1980 2. deVries et al, 1984 Table II.9 Mass exchange between segments based on segment properties and dispersion coefficients. mVs Do Darea m2 Ssg. 1 - 4 Seg. 4 - 7 120. 120. 38250. 19450. 6000. 5500. Seg. 1 - 10 .0008 2720000. 14.95 Segment Volume IQ 6 m a Max.Exchange %/day Interface ll 4a 7 10 Olength ro Min.Exchange %/day 262.9 183.7 113.7 33.9 64.9 37.4 19.6 43.4 25.0 21.3 59.0 1.5 M without exchange with North Sea (up to 3.8*10 6 m a /d) ) exchange with segments 1 and 7 2 37 Tabie 11.10 Input data far the calculation of pore water profiles, Conc. (mg/l) at -SQcm deep shallow bottoms bottoms Nutriënt NH4-N N03-N P04-P Si 14.0 0.2 0.6 5.0 depth-ratio below/above intersection (IR) 8.0 0.2 0.3 6.0 2. 8. 5. 4. Table 11.11 Goefficients in the DISPER and BOTTOM modules name unit nominal definition ref. horizontal disp. coeff. water vertical disp, coeff. water calibration coeff. vert.disp. calibration coeff. vert.disp, effic. of exchange Grev-N.Sea effic. of exchange N.Sea-Grev. disp. coeff, bottom-watsr <sh) disp. coeff. bottom-water (de) sinking rate detritus resuspension rate b.complex coeff biogenic sed.reworking N/C-ratio refr, detritus P/C-ratio refr. detritua soluble fraction organic Si refr. fraction burried detr, cal 1 cal cal cal cal cal cal cal cal cal 2 cal cal cal value mVs a 120 m /s B/10" _ 50 0.9 xa XN - Do Do 0.57 0.87 2/108 ffla/s i/io a Do Do a b csed cres m/d l/d CN(r ) mVgC/d gN/gC cbur CP(r) SOLSi fref gN/gC - 0.3 0.04 0.0015 0.040 0.010 0.35 0.40 1. vanPagee en ESmits, 1984 2. Blackburn and Henriksen, 1983 38 load phyto- suspended detrltus zoo— plankton suspension feeders BENTHIC COMPLEX SYSTEM benthic diatorns detritus deposit feeders uptoke transformation bottom detritus 1 | regeneration Figure II.1 Schematic representation of GREWAQ, its components (state variables) and uptake, transformation and regeneration processes. within one compartment, i.e. a watercolumn with underlying bottom and the sediment ~ water interface 39 ( 0RWQ1A PREPRQCESSINC OF INPUT DATASETS OLWQ1A READING GENERAL INFO. FORMATTING ARRAYS DLWQ2A OPENING OF FILES, CONNECTING TEXTUBS, UNKING PROGRAMS START PROGRAM GREWAQ ) <CALL DLWAQ SUBROUTINES> RËADING GENERAL INFO, INITIAUZING ARRAYS I T « T +AT <CALL DLWAQ SUBHOUTINEs)> <CALL DLWQ99> ISEO » 1 TO NBOX <CALL QRWqOO> TIME5TEPS TRANSPORT AND DISPERSION CALCULATIONS CONNECT1ON OF OELWAQ TO GHEWAQ SEOMENTS CREVEUNGEN ECOSYSTEM MODEL («es naxt diagram) I <CALL BALANS> CHECK FOR 8ALANCE ERRORS ANNUAL AVERAGES STATE VARIA9LES, ANNUAL VALUES PROCESSES Figure II.2 Flowchart of the DELWAQ - GREWAQ coupling GREWAQ MAIN MODULE DEO.ARAT10N OF COEFFIOENTS <^CALL GRWQÖT> READINO NUTRIËNT FLUXES OF EËLGRASS CAI.CULAT1ON OF MlNERALIZATtON RATÏS PRINT COËFFICIËNT VALUES < CALL COEF > CAICUWTION OF PKYTOPLANKTOM OWAMICS DECLARATON OF C0NCENTOA7WNS DECLARAT1ON OF PARAMETERS <CALL COMPLEX MODULE CALCULAUON OF BENTHIC NUTRIËNT OHADIENTS PRINT CONCEMTRAT1OHS, R.UXES <fcALL PRINT TOTAL NITOOOEN POOLS <CALL HBALA?r> <J:ALI. CONSUM> CONSUMERS MODULE <CALL OI5P"ËF]> OISPERSION MODULE NISEO - * C <CALI, PREFORMULAT1ON OF FLUXES CALCULAUON OF STOICHIOMETRIC CHANOES <CALL 0LWQ9T> BACK TO DELWAQ (SEE 'FREVtOUS DIACRAM) Figure II.3 Flowchart of GREWAQ 40 EFFICIENCY 1.0 E1 0.8 0.6 0,4 / 0.2 0.0 f / i l i 1 S1 l i i l l Tl S2 LIGHT SNTENSITY Figure II.4 Photosynthatic efficiency as a function of light intensity DAILY TQTAL.S (W /HJ) RESCALED JSP-*PIAMCET (J/CMJ.Hft) fl H It td 114 131 III |1t t* T I4C Figure I I . 5 Incident irradiance; left: original data for 1980; right: rescaled data for use in P/I curves 0HGAN1C SUBSTRATE Anaeroblc Aerobic/Anawoblc Aerobic (NO3 consumptlon) (Oa COnsumption) (O2 product ion ) Figure II.6 Nitrogen cycling in the benthic complex system honthlo dlatam blomaatt • potantlal = > production (|Ight,CO2) • = NO3 Ni f 1 ^^ octual production -jj, actual n!trifloatlon compotttlon prod, \ nitr. 2.2S raganerotlon ^ ^ ^^ potanttal ^_ nttrlfloatlon 1 - ki (mln/Cmln+prot0) =Bt> denltri Icatlon 1 - k j Cprod/'(prod+mln)) Figure II.7 The sequence of processes in the BCS 42 • F04 •Si Surface water conc. «NH4 •N03 Newly spttled detritus WsrO i . H.r.B. Benthic Complex 10 Boetom 20 30 30 in cm t 1 1 ( 1.0 2 .0 2.0 4.0 6.0 2 1° 0 I6 4.p 6r0 1 ..2 1.8 i N03-N 10.0 , '2-0 NH4-N Si P04-P Nutriënt conc. in pore water in mg/1 Figure II.8 Pore water profiles of nutrients as derived from Kelderman (1984) for deep bottoms <>7m). Annual average concentrations in overlying water from deVries and Hopstaken (1984). 43 average 0 2.0 V. average 10..0 14.0 .0 14.0 «SN/1 1 1 l 0 0.5 0.2 • ., il V, s NH4+-N i I 4 N03 -N 50 en average average 6.0 7.5 er- I 1 .f 50 cm 2.9 tngtf/1 1 3 . 5 mg S i / l 0 .6 oS mg P / l I f 1 U> PO4 3 "-P Si 50 cm .l.J._ 50 e * - . J l . . . . - . Figure I I . 9 Oalculated pore-water profiles 44 TABLES AND fIGURÊS RESULTS 45 Table III.1 Comparison of measured and calculated annual average concentrations of phytoplankton and particulate organic carbon chlorophyll (mg/m 3 ) 1978 1979 1980 phytoplankton-carbon 197S <g/m:3> 1979 1980 POC 1978 (g/m3) 1979 1980 measured calculated 3.16 4.51 2.10 0.20 0.27 0.25 0.52 0.51 0.55 1.55 2.37 2.10 0.18 0.27 0.25 0.55 0.73 0.68 Table III.2 Comparison of measured and calculated annual average concentrations of benthic diatoms and detritus on the sediment surface (avaraged over the whole bottom area) bottom chlorophyll <mg/m a ) measured calculated 47 39 34 38 36 POC upper layer 1977 1978 1979 1980 1977 43 50 32 100 (g/m3) 1978 125 10.5 10.2 46 Table III.3 Comparison of measured' and calculated2 pore water nutriënt concentrations (1979 - 1980) (in gN,P,Si/m 3 ) spring-summer measured calculated autumn-winter measured calculated shallow bottoms ammonium nitrate silicon phosphate 0. 1-0.2 0.1-0.23 1.5-2.5 0.5-1.5 1.0 -3.0 0.05-0.1 2,0 -4.0 2.5-7.0 0.2-0.5 3.5-5.0 0.2-0.3 2.0-4.0 0.2-0.4 3.0-7.0 deep bottoms ammonium nitrate siiicon phosphate 0.7-2.53 0.2-0.53 4.0-6.0 0.6-0.8 2.5 -4.0 0.15-0.2 5.0 -8.0 4.0-11.0 2.5-4.0 0.2-0.25 5.0-8.0 6.0-13.5 0.6- 1.8 M measured values are roughly estimated from figures 1.19 and 1.20, and additional data given by Kelderman (1984) a ) calculated values are obtained from figures III.13 and III.14 3 ) these data refer to the topiayer of lcm, in stead of being an average value over 20-50cnn Tabls III.4 Comparison of measursdJ and calculated2 sediment - water exchange fluxes (1979-1980) (in mgN,P,Si/m2/d ) Maren measured calculated July measured calculated shallow bottoms ammonium nitrate silicon phosphate deep bottoms ammonium nitrate silicon phosphate 45 -3 70 - 5 50 25 50 84 13 -20 0 87 15 46 25 0 154 80 5 134 4 55 4 246 62 120 11 1 ) measured values are obtained from Kelderman (1984) (see table 1.11) 2 ) calculated fluxes include benthic complex - water exchange (see figures III.15 and III.16) and dispersive bottom - water exchange (not shown elsewhere) 47 Table III.5 Comparison of measured and calculated annual production and total ecosystem respiration (in gC/m 2 /y) measured primary production phytoplankton primary production benthic diatoms 1977 1978 1979 1980 1981 1979 1980 respiration water 1981 respiration sediment 1981 calculated 60 90 156-171 172-194 225 35-70 32-70 156 305 390 120 205 134 180 175 164 SI 50 Table III.6 Summary of calculated carbon budgets, 1978 and 1983 (in gC/in2, gC/m 2 /y and 1/y) 1978 1983 total carbon content 1 ) total net production POC exchange North Sea refractory carbon 41 208 0.2 17 47 268 0.7 20 total turnoverf) turnover phytoplankton3> 0 turnover benthic diatoms > turnover susp. detritus") turnover complex detritus") turnover bottom detritus 4 ) 5 138 34 13 8 2 6 122 34 14 9 2 M pool content of producers, consumers and detritus quotiënt of total production and total carbon content quotiënt of production and pool content ) quotiënt of mineralisatjon and pool content 2 ) 3 ) 4 48 Table III.7 Nitrogen cycling in Lake Grevelingen (calculated values), 1978 (in gN/m2/y, averaged over the whole area, and %} watercolumn net load exchange North Sea production mineralisation excretion nitrification denitrification denitr, efficiency benthic benthic complex complex shallow deep bottom 2.5 0.1 2.5 0.1 16.9 7.9 3.4 6.7 2.4 3.8 0.4 4.4 1.7 0.6 0.2 4 % 19 % 10 % 5.S total 2.3 0.8 0.0 0.0 0 % 24.8 16.8 6.6 8.8 2.3 10 % Table III.8 Summary of calculated nitrogen budgets, 1978 and 1983 (in gN/mVy, and %) 1978 . net load exchange with North Sea total regeneration benthic regeneration refractory nitrogen denitrification denitr. efficiency 1983 0.1 4.1 0.7 23.4 14.2 30.4 20.5 0.8 2.3 0.9 3.4 10 % 11 % 2.5 Table III.9 Summary of calculated silicon budgets, 1978 and 1983 (in gSl/mVy) net load exchange with North Sea refractory silicon 1978 1983 2.0 -0.1 2.5 3.6 -0.2 3.0 49 Table III.10 GREWAQ - computerized calibration, parameter space for three parameters Pgmax Excr Clr naminal 3.5 0.5 0.15 series 1 20 runs 2.5 3.5 4.0 0.2 0.5 0.7 0.1 0.15 0.25 series 2 40 runs 3.0 3.5 3.75 4.0 0.2 0.35 0.5 0.7 0.1 0.15 0.20 series 3 48 runs 3.75 4.0 4.25 4.5 0.3 0.4 0.5 0.125 0.15 0.175 0.2 50 Table III.U Complete listing of parameter vector with their goodness of fit Autocaltbration QREWAQ, Series 1 Autacalibration QREWAQ, Series 3 nr Pgmax Excr Clr aoore nr 1 3.S0 4.00 4.00 •4.00 4.00 3.S0 4.00 4.00 3.50 3.50 3.S0 3.50 2,50 2.50 2.50 2.S0 2.S0 2.50 2.S0 2.50 0.70 0.50 0.70 0.20 0.20 0,20 0.70 0.20 0,70 0.50 0.20 0.70 0.20 0.20 0.70 0. 150 0. 100 0. 100 0. 150 0. 100 0, 100 0,250 0. 2S0 0. 100 0. 100 0. 2S0 0,250 0. 100 0. 150 0. 150 0. 100 0. 100 0. 250 0. 250 0. 2S0 5.533 1 2 3 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 17 ia 19 20 o.so 0.70 0,20 0.50 0.70 6 .549 5 .549 5 .616 S ,653 5 .679 5 .781 5 , 849 5 .852 5 .679 6.340 6 .5B5 4 5 6 7 a 9 10 11 12 7 .115 7 .120 13 7 .426 7 .471 15 1& 17 13 19 20 21 7 .542 ,927 a 9 ,283 9 .451 14 22 Autocalibration QREWAQ, Seriaa 2 23 nr Pgmax Excr Clr score 25 26 1 4.00 4.00 3,75 4.00 3.50 4.00 3.75 3,75 3.50 4.00 3.75 3.75 3.50 3.75 4.00 4.00 3.75 3.75 3,75 3.75 3.75 4.00 3.50 3.50 3,50 3.SO 3.50 3.75 3,00 3.00 3.00 3,00 3.00 3.00 3,00 3.00 3.00 3.00 3.00 3,00 0.70 0.35 0.70 O.SO 0.3S 0.20 0.35 O.SO 0.50 0,35 0.20 0.20 0.20 0.35 0.70 0.50 0.50 0.35 0.50 0.20 0.70 0.35 0.20 0.35 O.SO 0.70 0.35 0.70 0,20 0.20 0.36 0.35 0,50 0.50 0.70 0.70 0.20 0.35 0.50 0.70 0.1S0 0. 150 S.324 5.355 S. 391 S.396 5.423 5.425 6.431 5.446 5.446 5. 455 5. 461 5.470 5. 471 5. 486 5.493 5.493 5.497 5.508 5,530 5.540 5.554 5,580 5.647 5.701 5.714 5.790 5.900 5,901 6.194 6.219 6.253 6.269 6.314 6.3SS 6.429 6.500 6.663 6.750 6-892 6.996 27 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 ie 19 20 21 22 23 24 2S 26 27 26 29 30 31 32 33 34 35 36 37 3B 39 40 0. ISO 0.150 0.150 0,200 0,150 0,150 0,150 0.200 0,150 0.200 0.150 0.200 0.200 0.200 0.100 0. 100 0.200 0. 100 0.200 0.100 0.200 0.200 0.200 0.200 0.100 0.100 0.1S0 0.100 0.100 0, ISO 0,150 0.100 O.100 0.150 O.20O Q.200 0.200 0.200 24 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 4S 46 47 48 J gmax Excr Clr 0. 175 0. 30 0, 40 0, 175 0.50 0. 175 0. 175 4.2S 0. 50 4,50 0. 40 0. 200 0. 50 0,200 4.50 4.50 0. 30 0. 200 0. 17S 4.26 0. 30 4.25 0. 40 0, 175 0 30 0. 150 4 SO 4,2S 0 40 0. 200 0. 200 4.25 0 30 3 75 0 SO 0. 175 4 25 0 SO 0 200 3 75 0 40 0 175 4 00 0 50 0 175 4 00 0 40 0 175 0 175 0 30 4 00 4 50 0 30 0 125 4 00 0 30 0 ISO 4 00 0 40 0 150 3 75 0 30 0 175 0 40 0 125 4 SO 4 00 0 50 0 150 4 SO 0 40 0 ISO 4 25 0 40 0 126 4 SO 0 50 0 150 0 200 3 7S 0 30 4 00 0 30 0 125 4 25 0 125 0 30 3 75 0 SO 0 ISO 0 40 3 75 0 150 3 .75 0 50 0 .125 3.75 0 40 0 .125 4 .00 0 .40 0 .125 4 .50 0 .50 0 .125 0 .30 0 .200 4 .00 0 ,40 0 . 200 4.00 3 .75 0 . 150 0 ,30 3.75 0 .40 0 ,200 3 .75 0 .125 0 .30 0 .150 0 .30 4.25 0 .50 0 .200 4.00 3 .75 0 .50 0 .200 4 . 25 0 .SO 0 .125 4.25 0 .60 0.ISO 4 .25 0 . 40 0 ,150 0 ,S0 0 .125 4.00 4.50 4.50 4.50 score 4.957 5. 059 5.089 5. 096 5. 140 5 142 5 162 S.184 S 196 s 265 267 s 5 261 5 290 5 299 5 330 5 335 5 336 5 342 5 343 5 343 S 347 S 369 5 394 5 396 5 409 S 417 S 427 5 427 S 432 S 436 5 446 5 .447 5 .448 5.454 5.455 5 .464 5 .470 5 .475 S .477 5 .483 5 .485 S .490 5 .493 S .530 S .531 S .561 6 .062 6.096 51 Table III.12 GREWAQ - computerized calibration, optimal parameter vectors with their 'Qoodness of fit' run nr. l Pgmax Excr Clr qoodness of fit 39 43 4.5 4.5 0.3 0.4 0.5 0.5 0.4 0.5 0.3 0.3 0,4 0.3 0.175 0.175 0.175 0,175 0.2 0.2 0.2 0.175 0.175 0.15 4.957 5.059 5.089 5.096 5, 140 5.142 5.162 5.184 5.196 5.265 3.5 0.5 0.15 5.448 4.5 47 4.5 35 44 48 40 4.25 27 4.25 4.25 31 38 18* 4.5 4.5 4.5 l ) a Series 3 (see table III. 11) ) Nominal run (series 2 ) . Table III.13 Goodness of fit option of PC version GREWAQ (the nominal run (reference) in this example is run 39 from table III.12, the actual run is the 'new nominal run' presented in the next chapter) actual run nitrate ammoniun silicon chiorophyil goodness of fit reference mean time residue mean conc. rasidue normalized score normalized score 7.34 9.02 13.54 12.14 0.021 0.028 0.080 0.448 0,328 0.457 0,694 0.711 1, 178 1 ,568 1,128 1 .083 2.189 4,957 52 Table III.14 Nitrogen loadings (in gN/m2/y, averaged over the whole area) of Dutch coastal waters and {parts of) the North Ssa Cafter deVries et al, 1988) North Sea, Southern Bight North Sea, Dutch coastal zone North Sea, German Bight Dutch Western Wadden Sea Western Scheldt Lake Grevelingen Lake Veere 15 40 24 5.0 235 4 34 53 0.2- o.o 1977 1978 0.6-1 0.+ 0.2- 0.01980 19S1 1982 1963 1984 1935 19S6 0.0- 1983 YEAR Figure III.1 Comparison of simulation and data for ammonium 54 0,0 1979 1977 1980 Q.a-i '0.2 0,0 1930 1981 1982 19B4 1985 0.3 4 Q.2 0.0 1983 1986 YEAR Figure I I I . 2 Comparison of simulation and data for nitrate 55 0.01977 1978 1979 1960 1961 1962 1985 1984 1985 1086 1.0-1 0.6- 0.6- 0,4- 0.2- 0.019BÜ 1.0 0.8- 0.6 0.4 0.2 0.0 19SJ YEAR Figure III.3 Comparison of simulation and data for phosphorus 56 SILICON (gSI/m.3) 1.2 0.6- 0.0 1977 1978 1973 1980 1981 1982 1983 1984 1985 1986 1.8 1.2 0.6 0.01980 1.2 0.6- 0,01983 YEAR Figure III.4 Comparison af aimulation and data tor silicon 57 1.2-I DIATOMS (gC/m3) 0.9- 0.6 0.3 0.0 1977 1979 (980 1962 19BJ 1985 1936 1.2-1 0.9 0.6 19SD 198 V 1.24 0.9 0,6. 0.3 0,0 1983 YEAR Figure III.5 Comparison of simulation and data for diatom biomass 68 1.5 NQN-DIATOMS (gC/m3) 1.2 0.9 0.6 0,3. 0.0- 1977 1978 1980 1963 1964 1979 1960 1982 1983 1985 1966 YEAR Figure I I I . 6 Comparison of simulation and data tor non diatom biomass 59 2 * CHLOROPHYL (mC/mï) 10 * 8- * * • * • * * 6- * i * A II * * ƒ ML * • | 7 *t 2- 0- • K \_ .W\ • hf u i, * L 1979 1980 1982 1961 019B3 1984 1985 1966 YEAR Figure III.7 Comparison of simulation and data for chlarophyil 60 PART. ORGANIC CARBON ( f l C / m 3 ) 2.0- 1.5- 1.0- 0.5- 0.0 1977 1978 1979 1930 taai 19B2 1963 1984 1985 1936 2.0 t.5- 1.0 0.5- 0,0 1— 1930 2.SH 2.0- 1.S- 1.0- 0.5- 0.0 1933 Figure I I I . 8 Comparison of simuiation and data for particulate organic carbon 61 8-1 L BENTHIC DIATOMS (flC/m2) l— 1978 1S79 1980 1980 1981 1382 1983 I98J 1984 198S 1986 1977 4 o-4 YEAR Figure III.9 Comparison of simulation and data tor biomass of benthic diatoms 62 O.S-i 1979 1961 1980 SEGMENT 1 SEGMENT + SEGMENT 7 SEGMENT 10 a o1979 1980 1931 ,1 -.„.. 1980 SEGMENT I 5EGMENT 4 SEGMENT 7 SEGMENT IQ 1931 Figure III.10 Spatial differences in calculated values tor nitrate, silicon and cnlorophyll in the watercolumn 63 5 SEGMENT 2 StGMENTS SEGMENTfl BENTHIC OIATQHS ( j C / m ï ) 2- O1979 50 1980 1981 SEGMENT 2 SEGMENT 5 SEGMENT 3 COMPLEX DETS1TUS 5HALLOW (gC/m2) 50 A 40 J0 - \ 20- 10- Ji """•wv II 1— 1979 1960 COMPLEX DETRITUS OEEP ( g C / m 2 ) 1979 \ "'s 1980 • ' i r 1981 SECWENT 1 SEGMENT 6 SEGMENT 9 SEGMENT t1 1931 Figure III.11 Spatial differences in calculated values for benthic diatoms and detritus in the benthic-complex layer 20- _ SEGMENT 2 SEGMENT 5 ... SEGMENT 8 aOHOM DETRITUS 5HAUQW ( g C / m 2 ) ******* <^\ 16/ \ ....—., x \ J f' 12- ^_ J / y-\ '" ••8_ // --"V 'S ^ y' 4i 0- 10 1981 1980 1979 BOTTOM DETRITUS DEEP CgC/m2) SEGMENT SEGMENT SEGMENT SEGMENT 3 6 9 11 2- 01979 ->—r 1980 1981 Figure III.12 Spatial differences in calculatec) values for bottom detritus in shallow and deep bottoms 65 AMMONIUM SOTTOM SHALLOW (gft/mi) SEGMENT 2 SEGMENT 5 SEGMENT 8 2- [• a1979 1991 1980 0.4 NlTRATE SOTTOM SHALLOW ( g N / m 3 ) SEGMENT ï SEGMENT 5 SEGMENT 3 0.J- 0.2- 0.1 • o.o198! 1979 SEGMENT 2 SEGMENT 5 SEGMENT 3 1979 1980 1931 Figure III.13 Spatial differences in calculated values for ammonium, nitrate and silicon in shallow bottoms 66 6 AMMONIUM aOTTOM OEEP (.gtt/mi) SEGMENT 3 SEGMENT S SECMENT 9 SEGMENT t 5 4 HI 1 J- — - . _._ b_i . . . • — - f-^**' Tz^^>^~-~~ . ~^~^Z- •— 2- 1- 0r~~> • '—i . . i 1979 0.3 i i " " ' ' • >'—•••—•—T-—i—-T——r 1980 198! NITRAfE 3OH0M OEEP g N / m 3 ) ! 0.2 0.1- 0.0. 1979 1981 I9B0 _ _ SIUCON aOTTOM OEEP ( g S I / m J ) 3EOMENT 3 SEGMENT 9 SEGMENT 11 1979 1930 1961 Figure III.14 Spatial differences in caiculated values for ammonium, nitrate and Silicon m deep bottoms 67 N-FLUXES SHALLOW COMPLEX (g/mZ/d) ,. NOJ-liu* O.H „ '-••«„. NH4-r*«, f ram d»trttui N-up|gk# by kwithlc dia. Nltrlfloatlon D«nHr1flcatlon -0.00051979 N-FLUXES DEEP COMPLEX 1981 1980 (g/m2/d) NH4-flux NO3-flux 0. tram cMrttu* NIMflcatlon Dtnltriftoatlon O.l- 0.05 - 0.0 «M-flux 0.0 -0.0005i T979 1980 i ' i 1981 YEAR Figure III.15 Internal nitrogen fluxes in the BCS and exchange fluxes with water column and pore water, on the surface of shallow and deep bottoms 68 SI-FLUXES SHALLOW COMPLEX ( g / m 2 / d ) SI-f(UK 0.2 0.1 0.0 -0.1- S(-r*g. from dtfrftui Sl-tiplok» by bwrthlc dia -0.20.20.1- 0.0 0.005- Sl-flux 0.0 -0.0051979 1980 1981 SI-FLUXES DE£P COMPLEX (G/M2/D) sr-fiux 0,2 0.1 0.0 Sl-r*g. from datritua -0.1-0.20.20,1 • 0,0 0.005- SJ-flux 0.0 -0.005- 1979 1980 1981 Figure III.16 Internal silican fluxes in the BCS and exchange fluxes with water column and pore water, on the surface of shallow and deep bottoms POTENTIAL BENTHIC DIATOMS PROOUCTION ( g C / m 2 * d ) as a functlon of Itrnitatton factors 0.8- Llght Umitdtlon Isval C02 Limitation lavei N Umltatton leval SI Limitation Isvel 0.70.60.50.40.30.20. 0.01979 1980 1981 YEAR 1979 - 1980 Figure III.17 Calculated potential production of benthic diatoms as a function ot possible limitation by available energy Uiqht), carbon, nitrogen or silicon 70 FYTOPUNKTON SEGMENT 4 (gC/m2/day) — GROSS PRODUKTION 2.0 S GRAZING ZOOBENTHOS £ t GRAZtNG ZOÖPLANKTON D SEDIMENTATION • 1.5- MORTALITY EXCRETION RESFIRATION 1979 1930 1981 SUSPENSION-FEEDERS SEGMENT 4 (gC/m2/day) 2.0 H FIUTRATION BIODEPOSITION EXCRETtON 1.5- 1.0- 0.5- 0.0^ 1979 1981 Figure III.18 Calculated energy budgets for phytoplankton (diatoms + non diatoms, processes are plotted in a cumulative way, except gross production) and suspension feeders (lines are independent, i e not plotted in a cumulative way). 71 f PHYTOPLANKTON • biomass 1.3 • net. prod. 170 35 ZOÖPLANKTON • biomass • resp./excr. 15 SUSP. DETRITUS • c on een tra t Ion 2.2 • minarail zat Ion 40 20 i k 185 150 EELGRASS • biomass 10 • nat. prod. 30 20 90 >f SUSP. FEEDERS • biomass 7.5 • resp./excr. 25 215 1C BENTH. DIATOMS • bfomasa 1,4 • net. prod. 50 15 10 QEPOS1T FEEOERS • biomass 1.5 • resp./excr. 5 f COMPL. DETRITUS • concantratlon 12,1 • rnlnerqllzatlon 125 i k 10 > 35 > 10 f BOTTOM DETRITUS • cancentration 8,0 • mineralfzatlon 20 • refractory 20 r 5 J-k SUSP OtTHIRJa ! • cantnrxratKfn l 7 • tiomfi*i I* *n«L p/na ipS j _ j< ' I tcünt(nlfoilOft 13 1 —j • miflw-gilialliin ü ö 5 j OtPÜill Figure III.19 The calculated annual carbon balance and cycling in 1980, in gC/m a /y, for the whole lake (large upper scheme) and for the different parts o£ the lake (middle-left: segment 1, bottom-ieft: segment 10, middle-rightt segment 4, bottom-right: segment 7) NITROGEN SALANCE ( g N / m 2 / d o y ) Ê3 Ü3 9 153 D 1978 DISSOLVËD INORGANIC FYTOPLANKTON SUSPENDED DETRITUS BENTHIC DIATOMS EELGRASS B • @ B 1980 1979 BOTTOM FAUNA COMPLEX DETRITUS 0OHOM DETRITUS OISS. IN PORE-WATER 1981 YEAR 1 9 7 8 - 1 9 8 0 15 1983 1986 YEAR 1 9 8 3 - 1 9 8 5 Figure III.20 The calculated nitrogen balance for the years 1978 through 1980 and 1983 through 1985, averaged over the whole lake 73 AMMONIUM ( g N / m 3 ) 1979 0.5- ..,.. i Enj * NOMINALRUN OPTIMALRUN UNCERTAINTY RANGE MEASUREMENTS 0.4- * * 0,3- f ,0" N». 0.2- k" * • SU 1 * * 1IL 'ir in * 0,1* * 0,00 30 60 90 120 150 180 210 240 270 300 J30 360 time residttes in days DAGEN 30 20 10 0 1. '1' -10 . 111 -20 0 37 73 110 M6 183 219 256 292 329 J6Ti concentration residues in gN/m3 0.15 0. 10 Q.Q5- ..,! 0.00 It M 1 I I I III' " -0.05 -0.10 -0.15 -0.20 1 1 ' 1 | r i•i i i | i i « i i l • i Figure III.21 uncertainty analysis f o r ammonium ( s e e t e x t f o rsx- NITRATE ( g N / m ï ) 1979 0.8-I NOMINALRUN OPTIMALRUN UNCERTAINTY RANGE MEASUREMENTS 0.0 120 150 180 210 240 270 300 330 360 time residues in days DAGEN 30 20 10 0 -10 -20- -30 '' 1 ' ' 'M" 37 110 M6 183 219 ' '"i 256 i 292 329 ' 'T 365 concentratlon residues in gN/m3 0.20 0.15 0. 10 0.05 0.00 -0.05 -OIO -0 15 -0 20 -0.25 -0.JO -0.J5' i >• 73 110 146 183 'M'' 219 < - M '••''' I '-' 256 292 J.29 36b Fiqure III.22 Uncertaint y for nitrogen (see text for ex- 75 SILICON ( f l S I / m 3 ) 1979 NOMINALRUN OPT1MALRUN D UNCERTAINTY RANGE * MEASUREMENTS 0 30 60 90 120 150 180 210 240 270 300 330 360 time residues in days DAGEN 30 20 10 0 -10-20-30- ' I ' ' ' '• M 17 73 ' I • • "• ' ' I ' ' • ' • I 110 146 163 | i • i i • | i I'I'I i p 219 256 292 329 I ' ' • ' ' I 365 concentration residues in g/m3 0.6 0.5 0.4 0.3 0.2 0.1 . -0.01 ' 1 •• • 1 , ,1 1 1 ' • 219 256 1, ' • ' • -o.t -0.2 -0.3 37 73 110 146 183 292 3Ï9 r 365 iqure III.23 esults of the uncertainty analysis tor silicon (see text for lanation ) CHLOROFYL <mg/m3) 1979 NOMINALRUN _ _ OPTIMALRUN U UNCERTAINTY RANGE * MEASUREMENTS 0 30 60' 90 120 150 180 210 240 270 300 330 360 time residues in days DAGEN JO 20 10 1 I 1 1 1 -10 -20 -30 1 37 11 110 1 1 • U6 1 I 18J 1 1 1 1 . 219 256 292 329 365 concentration residues in mg/tn3 9.0 7.5^ 6.0-1 4.5 3.0 t 5 0.0 TTT rrr -U-L. _L_L -I.S -3.0-1 • !•• il 1 I 71 ' I 110 " I 146 r | ••• • • 1 | 183 219 ) 756 | | ,| 292 129 Figure III.24 axpïanatiSn) th6 for ohlorophyll (see text for 77 I.! 0.6 OIATOMS ( g C / m 3 ) AMMONIUM (gN/nn3) _ . . . * _ „ Segment Segment Segment Segment Segment 1 Segment 4 Segment 7 Segment 10 Msasurements i 4 7 10 nflnts * * i 0.3 * A V\ * ** * J. * I 8.0 .ƒ T * u 0.2 r * 1 l I.S NITRATE ( g N / m 3 ) Segment 1 .... Segment 4 _.. Segment 7 . . . Segment 10 Measurements NON-OIATOM!3 ( f l C / m 3 ) . 1.2 O.i Segment t Segment 4 k _.- Segment 7 ,_. Segment 10 1 ^ Measurements i J1 O.J 0.0 CHLOROPHYL ( m g / m 3 ) 1,5 Segment I .... Segment 4 „,- Segment 7 Segment 10 * Measurements ^_ .... _„ — Segment t Segment 4 Segment 7 Segment 10 Measurements 0.5 Figure III.25 Results tor the main state variables of the new nominal run (measurements refer to the middle segment (no 4)) PHOSPHORUS (gP/m3) OXYGEN ( g O 2 / m 3 ) __ Segment 1 .... Segment * Segment 7 Segment 10 .... _.. ... * ge . * Measur«m*nta Segment 1 Segment 4 Segment 7 Segment 10 Measurements 0.4 0.2 OXYGEN BOTTOM SHALLOW (gO2/m3) Segment 1 .... Segment 4 _.. Sflgmenf 7 ._. Segment 10 Measuremonts 0.5 NITRATE BOTTOM SHALLOW ( g N / m 3 ) _ _ Segment 1 Segment 4 _..- Segment 7 A )4 I 0.J \\ \ \\ \\ \\ 0.? ).l .0 f \\ \\ \\ ' \ \ \ \ i / j h V \ V\ V \ / " r—~—r 1 Figure III.26 Preliminary results of the new nominal run tor oxyqen and phosphorus (measurements refer to the mictdle segment <no 4)) ' "ï TABLES AND FIGURES MODEL APPLICATIONS 80 Table IV.1 Calcuiated nitrogen budgets for three scenarios, and comparison with the nominal run for 1980. nominal scen. 1 N inputs *3 net load exchange with North Sea total regeneration benthic regeneration refractory nitrogen denitrification denitr. efficiency 3.8 0.6 scen. 2 scen. 3 extrab. : auna flushing *z 11.3 11.3 - 1.4 66.7 41.6 - 1.0 30.9 18.2 11.3 - 0.8 61.6 38.4 0.9 3.3 1.2 7.4 1.2 8.1 1.1 7.6 12 % 12 % 10 % 35.4 22.0 21 % 81 u 1,5 AMMONIUM ( 9 N / m 3 ) NITRATE (gN/m3) NQMINALRUN SCENARIO ONE / 0.1 . - ' \ l 1.3 *\ \l \ A/ % j 1 • t r i i u / / IJ J 1 1 1 i t \ ü.i •u NOMINAL RUN SCENARIO ONE V • 0.) • • • f r 1 \ u i i i 1 1 1 1 1 * \ 1 1 f / f i • / \ J > / / 0,0 U CHLOROPHYL ( m g / m 3 ) _ NOMINAL RUN ... SCENARIO ONE NOMfNALRUH . . . SCENARIO ONE 0.0 Figure IV.1 Model results of scenario lt the behaviour of main state variables at increased loadinqs (3 times higher) of nitrogen and phosphate AMMONIUM (gN NITRATE CflN/m3) _ NOMINAL RUN . . . SCENARIO THREE 1.5 ».(-. f \ 1 ( è* \ h n t t t i 0.1 j t i 9 1 1 1 1 t 1 \ i f \ f 1 1 i f * t u NOMINAL RUN SCENARIO THREE 1 t r f ƒ ƒ 1 1 l / t \ t y / 1 \ 1 • 1 1 1 l \ ( r / / / StUCON (gS)/m3) CHLOROPHYL ( m g / m 3 ) NOMINAL RUN SCENARIO THREE NOMINAL RUN . . . SCENARIO THREE 1.5 1.0 \ / \ J.5 ff • \ • \ // / / A / \ \ /^\**» L . » // J/ 0.0 Figure IV.2 Model results of scenario 3; the behaviour of main state variables at increased loadings (3 tiities higher) of nitrogen and phosphate, combined with increased standing stock of suspension feeders 83
© Copyright 2024 ExpyDoc