Quan%ta%ve proteomics Maarten Altelaar, 2014 Proteomics Altelaar et al. Nat Rev Gen 14, 2013, 35-‐48 Quan%ta%ve proteomics Quan%ta%ve proteomics Control Diseased, s%mulated, Knock down, etc. How quan%ta%ve is mass spectrometry? Quan1fica1on requires internal standards or controlled condi1ons • All pep%des and proteins will experience DIFFERENT levels of loss during a proteomic experiment • In most cases the level of sample loss changes in each proteomic experiment • Stable Isotope labelling was introduced to overcome the above obstacles. • Isotopomeric pep%des behave almost iden%cal throughout the experiment EXCEPT for the mass spectrometric analysis. Basics : Natural Elemental Isotopes In nature, most elements are present in more than one isotopic form: e.g. Carbon is present in two stable forms 12C and 13C and one unstable 14C which is radioac%ve and used for ‘carbon da%ng’. Mass spectrometry can dis%nguish these isotopes since they have different mass Isotope Relative Abundance Isotope Relative Abundance Carbon 12C 100 13C 1.11 Hydrogen 1H 100 2H .016 Nitrogen 14N 100 15N .38 Oxygen 16O 100 17O Sulfur 32S 100 33S Chlorine 35Cl Bromine 79Br Element Isotope Relative Abundance .04 18O .20 .78 34S 4.40 100 37Cl 32.5 100 81Br 98.0 Basics : Natural Elemental Isotopes Appearance of spectra: C20H40 CH4 CH4: C1 H4 p(gss, s/p:40) Chrg 1R: 1000 Res.Pwr. @FWHM 100 CH3Cl C20H42: C20 H42 p(gss, s/p:40) Chrg 1R: 10000 Res.... 16.03 100 CClH3: C1 Cl1 H3 p(gss, s/p:40) Chrg 1R: 10000 Res... 282.33 100 95 95 90 90 85 85 80 80 75 75 70 70 65 65 60 60 49.99 13CH 35Cl 3 95 90 85 80 70 65 55 50 45 60 55 50 45 40 40 35 35 13CH 30 25 Relative Abundance Relative Abundance Relative Abundance 75 12C 30 4 15 15 10 10 5 5 17.03 18.04 0 16.0 16.5 17.0 m/z 17.5 18.0 45 35 13CH 30 25 283.33 20 50 40 13 19 CH40 25 20 13CH 37Cl 3 55 51.99 3Cl 20 12C 13 18 C2H40 15 10 5 284.33 51.00 0 282.5 283.0 283.5 m/z 284.0 284.5 285.0 50.0 50.5 51.0 52.99 52.00 0 51.5 52.0 m/z 52.5 53.0 54.00 53.5 54.0 ADTQLLLLR Isotopically labeled Ra%o = 2 Unlabeled Mass difference Where and How to Introduce Stable Isotopes Biological incorpora1on Chemical incorpora1on (SILAC/Metabolic) (ICAT) (iTRAQ, MassTag) Absolute quan%fica%on instead of rela%ve quan%fica%on can be performed if the level of the internal standard is known. SILAC:Stable Isotope Labeled Amino Acids in Culture • Incorpora%on of ‘heavy’ isotopes is performed by uptake of amino acids by the cells from the media • Require the cell type to be auxotrophic for that amino acid. • Typical amino acid(s) chosen for SILAC are: • Leucine; one of the most common amino acids present in pep%des • Lysine and Arginine; all pep%des will have at least one labeled amino acid if trypsin is used. e.g. 12 13 C C 13 C C 13C 12 12 C 13 C O H2N 13C OH 13C 12 6 leucine C12 C 12 H2N C12 O C OH regular leucine SILAC:Stable Isotope Labeled Amino Acids in Culture SILAC:Stable Isotope Labeled Amino Acids in Culture Light Heavy Certain cell types can convert arginine into proline. In those systems pep%des that contain prolines will have mul%ple peaks for the ‘heavy’ pep%de. + Log ra%o reversed Label swap unchanged -‐ + Log ra%o forward -‐ Specific A B B A Pijnappel et al. Nature 2013 495(7442):516-‐519. A B Metabolic Labeling of Arabidopsis thaliana 1: Metabolic labeling with 15N (KNO3, <5% NH3) 14N 14N 15N • Requires cell types that do not extract amino acids from the media • Typical media use: • 15N Potassium Nitrate for Arabidopsis thaliana • 15N Ammonium Sulfate for Sacchromyces Cerevisiae Metabolic Labeling of C. elegans Metabolic Labeling of Mammals SILAC Labeling of Mammals Quan1ta1on through Chemical Deriva1sa1on There are many, many,...many ways and all have advantages and disadvantages. ICAT Chemical labeling : the iodoacetyl group reacts selec%vely with Cys residues of proteins. ICAT Reagents: Heavy reagent: d8-‐ICAT (X=deuterium) Light reagent: d0-‐ICAT (X=hydrogen) O N N S Bio1n tag O X X N O X X O O X X X X Linker (heavy or light) O N I Thiol specific reac1ve group Reagent has been modified to use 13C instead of 2H or D due to deuterium containing pep%des elu%ng earlier in reverse phase chromatography than their ’normal’ analogues. Dimethyla1on formaldehyde peptide + NH2 X X peptide O N + H X X O H NaCNBH3 peptide H O H + N X X X X + H peptide N H X H + X O X X NaCNBH3 X peptide N X H H X X • Dimethylates lysine residues and N-‐termini. • Current experimental condi%ons: (100 mM TEAB or sodium acetate) • Semi-‐tolerant towards ‘dirty samples’. (Some types of sample can ini%ate polymerisa%on.) • Allows labelling of whole digests in 10mins. Dimethyla1on RT: 9.21 - 52.05 90 NL: 3.68E6 Base Peak F: ITMS + c NSI Full ms [350.00-1500.00] MS 060825_SM3017_ 14 24.49 Normal 100 Relative Abundance 80 70 27.33 60 28.90 34.02 33.22 37.55 37.96 50 29.66 40 30 35.54 40.75 31.81 39.19 25.01 42.15 20 44.06 10 11.39 0 100 15.03 18.89 46.92 47.48 22.21 23.85 24.97 NL: 1.91E6 Base Peak F: ITMS + c NSI Full ms [350.00-1500.00] MS 060825_sm3017_ 15 38.28 90 Dimethyla%on 80 35.15 32.88 70 28.62 60 50 24.63 25.22 40 35.60 31.71 31.24 41.13 26.92 30 37.39 40.32 41.80 43.15 20 10 0 50.74 29.30 10.07 12.33 10 14.96 16.27 15 19.87 21.81 20 44.75 24.49 25 30 Time (min) 35 Likle change in hydrophobicity of methylated pep%des. Not necessary to clean up sample aler labelling. Likle change in MSMS spectra. 40 45 49.22 49.45 46.59 50 On-‐line dimethyla1on SoZware 678.34 z=2 100 Peak picking Peak integra%on Mass accuracy Resolu%on 80 Relative Abundance • • • • 90 680.35 z=2 678.84 z=2 70 60 681.80 z=2 676.33 z=? 50 40 682.30 z=2 676.83 z=? 30 20 0 674 682.81 z=2 677.33 z=? 675.47 z=? 10 679.34 z=2 676 685.83 z=2 686.33 z=2 686.83 z=2 684.21 685.26 z=? z=? 678 680 682 684 686 m/z 623.79 z=2 100 90 RT: 42.86 - 125.78 53.82 90 Relative Abundance 53.65 100 64.05 80 74.19 74.14 60 50 30 20 86.38 47.70 10 632.86 z=2 40 30 628.31 z=2 622.37 z=? 616.28 618.33 z=? z=? 615 98.93 101.25 637.86 z=? 636.80 z=? 639.33 z=2 643.05 z=1 67.87 620 625 630 m/z 635 640 645 122.34 108.77 59.17 50 0 92.94 76.32 632.36 z=2 624.29 z=2 627.81 z=2 60 10 81.51 40 70 20 83.93 623.76 z=2 115.96 100 0 90 50 60 70 80 Time (min) MS MSMS MS 90 100 110 120 Relative Abundance Relative Abundance 70 638.32 z=2 80 80 624.27 z=2 70 60 50 40 624.77 z=2 30 20 10 0 620.28 z=? 622.37 z=? 620 622 625.27 z=2 624 626 627.79 z=2 629.76 z=? 628 630 m/z 631.81 632.84 z=2 z=? 632 634 635.97 z=3 636 639.31 z=? 638 640 OR4_110703_EDG_11EDEG007_IP_3d #7693 RT: 81.10 AV: 1 NL: 1.84E4 F: FTMS + p NSI Full ms [350.00-1500.00] 622.63 z=3 100 Relative Abundance 90 Relative Abundance OR4_110703_EDG_11EDEG007_IP_3d # 7688 RT: 81.05 AV: 1 NL: 1.56E4 F: FTMS + p NSI Full ms [350.00-1500.00] 620.95 z=3 100 623.63 z=3 90 622.63 80 z=3 623.97 622.29 z=3 70 z=3 621.29 60 z=3 50 622.96 625.18 z=3 z=? 621.62 40 z=3 620.33 624.30 30 z=? 621.94 z=3 624.80 z=3 623.32 20 z=? z=? 10 625.84 z=? 60 50 622.96 z=3 620.84 z=? 40 620.33 z=? 30 623.97 z=? 621.98 z=? 624.30 z=? 10 625.18 z=? 625.04 z=? 0 620 621 622 623 m/z 624 625 626 OR4_110703_EDG_11EDEG007_IP_3d # 7699 RT: 81.17 AV: 1 NL: 2.02E4 F: FTMS + p NSI Full ms [350.00-1500.00] 620.95 z=3 100 623.63 623.97 z=3 z=3 622.29 z=3 70 621.28 z=3 621.62 z=3 60 50 40 30 621.95 z=3 620.33 z=? 20 622.63 z=3 622.96 z=3 Relative Abundance 80 625.18 z=? 623.30 z=3 624.30 z=3 620 621 622 623 m/z 624 625 626 OR4_110703_EDG_11EDEG007_IP_3d #7703 RT: 81.21 AV: 1 NL: 1.49E4 F: FTMS + p NSI Full ms [350.00-1500.00] 622.63 z=3 100 622.29 621.28 z=3 z=? 90 623.63 80 z=3 90 Relative Abundance 623.63 z=? 621.62 621.28 z=3 z=3 70 20 0 624.97 z=? 70 620.95 z=? 60 621.62 z=? 622.96 z=3 50 620.33 z=? 40 30 623.97 z=3 623.30 z=3 621.82 z=? 20 10 625.18 z=? 624.30 z=3 625.67 z=? 10 0 0 620 621 622 623 m/z 624 625 626 OR4_110703_EDG_11EDEG007_IP_3d # 7709 RT: 81.27 AV: 1 NL: 1.50E4 F: FTMS + p NSI Full ms [350.00-1500.00] 621.28 622.63 623.63 620.95 z=3 100 z=3 z=3 623.97 z=3 z=3 90 622.29 80 z=3 Relative Abundance 622.29 z=3 80 70 624.30 z=3 60 50 621.95 z=3 621.62 z=3 40 30 620.83 z=? 20 623.30 z=3 622.96 z=3 625.18 z=? 625.81 z=? 10 0 620 621 622 623 m/z 624 625 626 620 621 622 623 m/z 624 625 626 Large scale quan1ta1ve proteomics analysis; stem cells Munoz et al. Molecular Systems Biology 2011 Tech Rep 2: ESC/iPS Tech Rep 2: Progenitor/iPS Dimethyl – Technical Reproducibility Tech Rep 1: Progenitor/iPS Tech Rep 1: ESC/iPS
© Copyright 2025 ExpyDoc