INFO-SPECIAL VOOR Schip en W e rf - O fficieel orgaan van de Nederlandse Vereniging van Technici op Scheepvaartgebied De Centrale Bond van Scheepsbouwmees ters in Nederland CEBOSINE Het M aritiem Research Instituut Nederland MARIN. MARmEME-EN OffSHORHEGHNIEK SCHIP EN WERF Verschijnt vrijdags om de 14 dagen Redactie Ir. J. N. Joustra, P. A. Luikenaar, Dr. ir. K. J. Saurwalt en Ing. C. Dam Redactie-adres SHIP PRODUCTION’ Heemraadssingel 193, 3023 CB Rotterdam telefoon 010-4762333 The Search fo r Specialization in Unique P roduct Manufacturing Voor advertenties, abonnementen en losse num m ers Uitgevers W y t & Zonen b.v. Pieter de Hoochweg I I I 3024 BG Rotterdam Postbus 268, 3000 A G Rotterdam telefoon 010-4762566* telefax 010-4762315 telex 21403 postgiro 58458 by; Prof. Ir. S. Hengst* * SYNOPSIS The shipbuilding industry is usually considered as unique product manufacturing, characterized by a labour intensive, custom built approach. The production process has, up till now, been improved by introducing new fabrication technologies, however, without changing the basic organization o f the process. Cost savings were mostly realized by optimizing and improving certain stages in the production process such as numerically controlled processing o f the préfabrication, panel-line assembly, pre-outfitting o f blocks etc. Based on manhours per compensated gross ton the productivity o f some European shipyards is comparable to Japanese yards. A t the same time new shipyards are emerging in the Newly Industrializing Countries, applying low labour cost in combination with advanced technologies, taking away from the Japanese yards that part o f the international market, which was lost during the last decades, by the European yards. In strategical terms: new entrants in the market are not only a threat but also a fact. A number o f the factors which are preventing European yards to obtain an acceptable market position are not related to shipyard organization o r productivity and cannot be influenced by the European shipbuilders anymore. The actually depressed market, in combination with the above mentioned increase in shipbuilding capacity, makes it particularly difficult for the European shipyards to survive without government support. As a result the shipbuilding capacity in Western Europe has been reduced drastically. The threat o f this development is the loss o f know-how on the middle-long term, which in combination with e.g. the loss o f experience in shipmanufacturing and a reduction in efforts in the field o f Research and Development w ill finally make Western Europe entirely dependent on the Far-East where it concerns the ship design and building, and even, on the longer term, ship operation, particularly where it concerns technology. Which ways and means are available to change the process o f ship production from the conventional manufacturing methods into 'advanced ship production7 In order to establish what will be required to change from conventional manufacturing methods to more sophisticated production techniques some differences in - unique product manufacturing Is it still possible to - series production - reduce costs - mass production and - improve quality - process industry - realize shorter deliveries and will be discussed. - satisfy the customers ' needs Abonnementen Jaarabonnement 1987 ƒ 78,25 buiten Nederland ƒ124,50 (alle prijzen incl. BTW ) Bij correspondentie inzake abonnementen s.v.p. het 8-cijferige abonnementsnummer vermelden. (Zie adreswikkel.) Vormgeving en druk Drukkerij W y t & Zonen b.v. ISSN 0036 - 6099 Ysselwerf B.V. Scheepswerf en Machinefabriek Ijsseldijk 97 2901 BR Capelle a/d IJssel, Holland Postbus 272 2900 AG Capelle a/d IJssel, Holland Telefoon 010 - 45 95 100 Telex 24660 yw erf Telefax 010 - 45 85 136 Redactionele bijdragen Ship production I A new approach to semi-submersibles I3 Optimisation o f semi-submersibles design w ith constraints on motional behaviour and fabrication 23 m.v. Prins W illem van Oranje 4I Lijst van adverteerders 64 by introducing basic changes in the construction and production methods, and organiza tion o f shipyards, using the same type o f material and componentsI O r do we have to develop entirely new products, both from the point o f view o f materials as well as design. This paper will lim it itself to the construction and production o f ships with the same materials and components as applied today. First the market position will be discussed, then factors which influence the design by imposing manufacturing requirements will be analyzed leading to recommendations to establish the priorities for research and development. * Paper presented at the 6th WEMT Symposium 'Advances in Ship Design and Produc tion’ Travemünde 2-5 June 1987. ** Delfts University of Technology, department of Maritime Technology. 1 In Japan exists a very close co-operation between shipyard and shipyard suppliers. Subcontractors are working in a very close relationship with the shipyard and are assisting the shipyard in finding new techniques, ways and means to reduce costs (fig. 2). Japanese shipyards are also working in a captive market, where it concerns the home market and the barterdeal-market. As a result nearly all vessels for Japanese owners have been built by Japanese shipyards. Moreover, these shipowners form a part of the same industrial conglomerate as the shipbuilders. In this way the threat of new entrants and the development of substitute products or services is limited or controlled. Under these conditions competi tive forces are not working freely, because non-Japanese firms have no possibility to compete. On the other hand the rivalry between the Japanese shipbuilders keeps the prices at competitive levels. The situation in Europe (fig. 3) is entirely different: the industrial competition is spoiled by governmental subsidies which are - in many forms - supplied to shipowners, shipbuilders or even some times to sub-suppliers. The result is an industry where real industrial competition does not exist anymore and where possible opportunities to make new entries in the market are kept hidden or remain unused. Some of these opportunities are: - the introduction of economy of scale in research and develop ment as well as in manufacturing, - the search for the reduction of joint costs. An example is the intensifying of e.g. préfabrication or panel-line fabrication, - improving the relationship between shipowners and shipbuil ders in Europe with the aim to jointly develop new products on the long term. The threat might be that advanced technologies are transferred to yards elswhere in the world by the shipowners. This will require an appropriate answer by a joint operation from both suppliers and shipbuilders e.g. combined international spare part services and maintenance, MARKET A N D INDUSTRIAL C O M P E TITIO N Among the many factors which are influencing the competition between companies, Porter ( I) identified the following main driving industrial forces: - the rivalry and competition between the companies, - the potential entrants of new competitors into the market, - the threat of substitute products or services, - the bargaining position of the supplying industry. - the bargaining position of the buyers (i.e. the shipowners). As mentioned above also a new force entered into the competi tion: financial support by governments (fig. I ). Considering these forces in the industrial competition Porter's theory confirms, among other things, what everybody in the ship’s business knows i.e. that the loss of market of the European shipbuilding industry has been caused by the new entrants Japan and Korea. What is the influence of the other forces, and how does the industry respond? The supplying industry - to the shipbuilders - followed the shipowners, first to Japan and now to Korea, however, with the results that also they, in their own markets, are rapidly confronted with the threat of new entrants for their products from Japanese and Korean manufacturing. Due to the very slow changing of the products (2) the threat of substitute products o r services is growing gradual ly and slowly. An example is the development of Ro/Ro’s and containerships. The selling of ships into the second hand market - ships which are not disappearing from the transportation market, are adding tonnage and at the same time creating a substitute service in the trans portation sector - leads to new entrants coming into the market, stimulated by the sellers (shipowners) while they were buying larger, more economical and advanced ships. 2 Fig. 2. Strengths o f the Far East STRENGTHS OF THE FAR EAST • CREATION OF CAPTIVE MARKETS home m arke t - b a rte r deals (strong trade organizations are a p a rt of in d u s tria l conglom erates) fierce "lo c a l" co m petitio n m a rk e t forces are w orking - in te rn a tio n a l co m p e titio n is kept out of the game • STRONG COOPERATION BETWEEN SHIPYARDS AND SUBCONTRACTORS new technologies cost savings • POWERFULL, LARGE, DIVERSIFIED HEAVY INDUSTRIES THE REALLY • Thick-Pad bearing technology is the revo lu tio n a ry concept for bearing reliability. • T w in injection en sures the lowest fuel consum ption and re liable combustion on really heavy fuels. • S w irlE x tu rb o charging provides for reliable low-load per form ance and low fuel consumption. WARTSILA [I Oy W artsila Ab, Vasa Factory P.O.Box 244, SF-65101 Vaasa, Finland Tel. +358-61-242111, Telex 74250 w va sf. Telecopier ->-358-61-111 906 W artsila Diesel B Y , P.O.Box 19066, 3501 DB U trecht, Tel. (030) 332144, Telex 47577 wartd nl, Telecopier (030) 340870 • Anti-Shake technol ogy incorporates rigid engine structure, full balancing and an option fo r resilient m ounting. A ll m ake fo r onboard com fort. Compact in Size... Great in Performance, The demand for compact engines offering high power ratings and operating economy requires con tinuous development in the field of exhaust turbocharging. Two-stage supercharging by several controllable turbocharger groups as used on the Series 1163 engine furnishes ample proof of the high technical standard achieved by MTU. The Sequential Turbocharging System (STS) enables charger group ON/OFF control in response to the power and combustion air requirements, w ith the resultant benefits of lower thermal loads, reduced fuel consumption and a broader operating range. MTU 20V 1163 TB93 engine develop ing 7400 kW (10000 mHP). The 1163 series includes 12,16 and 20-cylinder models with power ratings from 2200 to 7400 kW (3 000- 10000 mHP). Major applications are marine pro pulsion, rail traction and electricity generation. 4 MTU Motoren - und Turbinen - Union Friedrichshafen GmbH Sole representative for the Netherlands: Goudsesingel 214, 3011 KD Rotterdam-Holland, Telephone 010-414.9755. Telex 22647, Fax 010-414.0740. - the development of uniform European standards by shipown ers, suppliers and shipyards leading to a reduction in costs of maintenance for shipowners, training of crews for ’high tech’ installation, etc. The target is to limit the possibilities for the owners to switch too easily to other products, particularly when sophisticated equipment, in view of (unavoidable) re duced manning, has been installed onboard. The attention should be focussed on those items of ship's operation which are cost-sensitive. The problem for the industry is that product know-how or designs can hardly be kept proprietary by applying patents or secrecy agreements. Moreover the importance of the geographical loca tion of a shipyard (or even a shiprepair yard) is decreasing. Shipowners are similarly struggling in an international competitive industry and are not in a position to create a commercial advantage from an - apparently attractive - geographical location. Finally experience. The developments in Korea show that expe rience is - on the long term - not resulting in a strategic advantage for a shipyard, or a significant lead over the competition. An example: In 1969 the fastest containerships in the world, the SL-7’s for SeaLand (33 knots 120.000 H.P.) were ordered in European ship yards. One of the major reasons was that the European shipbuil ding industry with regard to quality and special construction techniques, ranked among the best in the world. Nowadays no shipowner would hesitate and entrust the same order to a Korean shipyard which is only existing since 1980. The conclusion is that if the European shipbuilding industry will have to create a chance to remain in the market, government subsidy will only be a short term solution, unless it will be accepted as a ’usual’ way to keep an industry alive. The actual national policies are probably described properly by: ’the doctors are stating that the operation was difficult but successful, while the patient is slowly dying, unnoticed’. On the Fig. 3. European scenery EUROPEAN SCENERY 1. A "BALL - GAME" OF SUBSIDIES 2. NO FREE "LOCAL" MARKET 3. EUROPEAN MARKET IS DIVIDED A. NO COMMON "TRADING POLICY" 5. POLICIES DIFFER FROM coun try to country and s ta te to s ta te 6. THE EUROPEAN CIRCUMSTANCES ARE IDEAL FOR FAR EAST COMPETITION WHO EVEN DO long and middle long term other ways and means will have to be found to establish a shipbuilding industry which is competitive in the international market. Where the threat of new entrants cannot be avoided and the international competition is unlikely to be reduced, the search for revival-possibilities must be intensified. Areas of interest are: - Improve or change the design of the ships in such a way that the threat of new products or substitutes becomes difficult to realize; - Strengthen the relationship with the shipowners to an extent that high entry barriers are becoming a ’fact of life’ for the competition; - Create a strong relationship between suppliers and subcontrac tors on one side and the shipbuilding industry on the other side, thus providing a strong economical force; - Change, or at least start working, into a direction, whereby the structure of the West-European shipbuilding industry will convert itself (on the long term) into an industry that is able to provide entry barriers for the competition. Porter (I) describes some major sources for barriers to entry: 1. Economies of Scale One aspect can be found in Japan and Korea where large con glomerates are providing a diversified production and manufactur ing set-up containing many aspects of the Heavy Industry. How ever, economies of scale can be found in any functional area or part of a business. The ultimate goal of economy of scale is to reduce the unit cost of a product or a part of a product. So is vertical integration - i.e. successive stages of production o r distribution are in one hand or combined — able to create entry barriers. 2. Product Differentiation Product differentiation is described normally as ’brand identifica tion’ combined with a certain loyalty of the customer. Investments to set up a brand name are usually limited to the consumer market and hardly possible in the market of capital goods. 3. Capital Requirements An entry barrier to the market can be provided when large capital requirements are necessary to enter into a market. This can be related to cost for research and development but also to major investments for the set-up of a manufacturing or fabrication site. The major companies in the shipbuilding industry located in the Far East are corporations having the financial resources to generate almost any investment. This means that the capital requirements will hardly provide for a very successful entrance barrier for the shipbuilding industry in Western Europe. 4. Switching Costs Switching costs are related to one time costs which face the buyer if he is changing from one product to another. The relationship subcontractor-equipment supplier to the shipbuilding industry is in this case of great importance. Particularly when the shipowners will start to use advanced equipment in order to operate the vessel with minimum crew, the quality of the crew and training the crew to operate the ship will increase the need to supply the shipowner with identical operating systems making it possible to change crews without any operational problems. In case West European shipbuilders will not timely enter this type of market, the cost of switching may well be an argument against the application or use of European-built ships. NOT HAVE TO DIVIDE IN ORDER TO REIGN SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 5. Access to Distribution Channels It is clear that a good relationship with the owners is creating an entry barrier for the competition. 5 6. Cost Advantages Independent of Scale Some aspects are: - favourable access to raw materials, - favourable geographical locations, - proprietary product technology, - learning or experience curves. When analyzing these factors one may conclude that both the Japanese and Korean Heavy Industries are utilizing the advantages of some of these aspects with skill e.g. a strategic week - the need for raw materials - is in combination with: 1. the geographical location of Japan, 2. the potential of new technologies, transferred into a position, an element of strength and the possibility to organize large trade set-ups and barter deals in which products of the Heavy Industry are delivered to the trade part ners, in a protected market. 7. Governm ent Policy The government policy can limit the competition and provide for entry barriers not only by applying taxes but also by restrictions applied to pollution standards, product safety, etc. The shipbuilding industry is operating in an international global market. However, many conditions which are applicable for global markets can be found within the Common Market as well: - The market circumstances in the various countries are different and the roles played by the governments are different. - Labour cost can differ very much between countries. - The influences and possibilities to influence foreign competitors are sometimes rather limited, because of the local governmen tal protection. Reviewing the above one could say that the Japanese Heavy Industry, being followed by the new entrant Korea which is basically applying the same policies as the Japanese Industry, created in the world market a number of major (re)entry barriers for the competition, which, in combination with a highly efficient production system, will be difficult to beat. For the European shipbuilder some {rather limited) possibilities remain to stay in the market on the long term. The intensifying competition in the transportation market makes it also for the European shipbuilders more and more difficult to compete. One of the stronger items which remains in the European market is the access to distribution channels for both shipowners and shipbuilders, which combined with an European Government policy, might enable this part of the industry to regain that part of the market which controls one of the major economical strategic elements of the European com munity: a reliable maritime transportation and distribution s/stem which is able to operate independently. T H E O R G A N IZ A T IO N O F A S H IP Y A R D A N D S H IP Y A R D P R O D U C T IO N When we are defining how a business w ill remain in competition the objectives of profitability, the market share, the operating conditions for the company under the prevailing market circum stances etc. shall be adequately defined. This is the reason that some attention has been paid to the global and European scenery. Very little has been published about the possibilities for companies which are operating in the markets of the Heavy Industry to adapt themselves to a changing environment and the importance of these companies for an economy. Christensen and Andrews (3) formulated and investigated the concept of an explicit strategy for a company. The combination of 'objectives’ and 'means’ is defining the relationship between the formulation of a strategy and the operational attitude of the management. The means to realize the objectives are, according to Christensen and Andrews: - target-markets for products and product development, 6 - products which the company will have to develop o r actually is producing, - research and development which is related to product or production development, - marketing which is one of the major preparatory functions for product development, - sales, - manufacturing, - the availability of labour, - purchasing, - finance and control. The specific articulation of the operational means by the manage ment will depend on the nature of the business. Again very little can be found in the literature about the shipbuilding industry. Not much is being said either about the differences which occur between the various types of industries. Generally it is said that 'the organization will depend on the nature of the business’ and that management may be more o r less specific in defining the key operating policies and from there-on shape the organization to the purposes of the company. A very useful differentiation is made by Drucker (4), who defines: - unique product manufacturing, - series production, - mass production and - process industry. Drucker describes very carefully how one can recognize the differences in production systems and also what the consequences are for the organization, the quality of the people, the market approach and last but not least the management of an organization. As Drucker explains: ’Production is not the application of tools to materials. It is the application of logic work. The more clearly and rationally the right logic is applied, the less of a limitation and the more of an opportunity production becomes.’ Drucker developed principles of production i.e. some basic mo dels with rules, requirements and characteristics. He describes for each system of production which competence, skill and perform ance are required. The systems described by Drucker are: - unique product production - rigid mass production - flexible mass production - process or ’flow ’ production. A t the time Drucker gives tw o general rules to improve produc tion performance and - even more important - pushing back certain limitations. Those rules are: 1. by applying the principles of the system in use, limitations on production can be pushed back further and faster, the more consistently and thoroughly those principles are applied. 2. the systems represent different degrees of complexity. Unique product production is described as the least complex and process (flow) production the most complex production system. By developing - and learning to know - the specific application possibilities, requirements and limitations of each system one will be able to organize (parts of) the production efficiently. By organizing parts of production the principles of each system (and learning how we can apply and harmonize those systems within a production process) it should be possible according to Drucker to advance the whole process. Recognizing the type o f process is therefore one o f the most important factors in organizing the production. Organizing the production means then also organizing marketing, sales, manu facturing, purchasing, finance and control etc. Unique product manufacturing can be recognized by the organiza- tion of the w ork by homogeneous stages. This means that the production organization is dependent on: - the type of product, - the application of standardized tools, - the use of standardized materials. The shipbuilding industry showed this approach in the division of the work which consisted of: 1. building the hull, 2. installation of equipment, 3. outfitting. The specific requirements for specialized craftsmanship were depending on each stage. Even the building of large series of ships in the U.S. during the second world war was an example of well organized unique product production. Examples of unique product production are: - the building of a ship - the building of offshore platforms at sea - the building of a refinery. The characteristics of mass production are usually related to the organization of the w ork around line production. However, both rigid and flexible mass production are based on the application of standardized parts, next to the application of standardized tools and materials. The application o f mass production principles requires a systema tic analysis o f the product with the aim to find a common pattern which has no relation with the available tools (or even materials). Diversification is the result of intelligent assembly methods rather than fabrication methods. The possibilities of flexible mass produc tion have not been investigated in depth with the help of systema tic research in the shipbuilding industry. This is understandable if one considers the variety of ships, the large number of variables which can be used for the design of ships for an identical service and the relatively small number of sea-going vessels. Yet this is not the main reason which should be found in the 'individual approach’ of Fig. 4. - pEMAND C A P IT A L -P R O C E S jK N O W - HO W -C O M P L E X IT Y OF PRO CES - T IM E OF I P R E P A R A T IO N IN C R E A S IN G ---------------► N U M B E R OF PRODUCTS Î DEGREE PR O C ES OF IM P R O V IS A T IO N MASS C R A F T S M A N S H IP S E R IE F L E X IB IL IT Y COST PER UNIT UNIQ UE ____ DECREASING — ► NUMBER SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 OF M A N H O U R S both shipbuilders and shipowners. An interesting investigation is the research programme carried out by Goldan (5). The results of his study are very promising with regard to the manhour savings which can be realized through a modular arrangement of the steel structure. Examples of mass production are: - the building of automobiles - the manufacturing of electronical equipment - the manufacturing of furniture. The third system to be considered is process production, which probably can be described the best by 'producing in an integrated system, starting with one basic material, in one single process, different end products'. Examples are petrochemical plants and milk-factories. However airline companies, shipping companies, as a matter of fact any transportation or distribution system, are based on the same principles of production and should be consi dered as process industries. In shipbuilding the processes of pré fabrication, material handling and distribution are typical examples of process production. For each manufacturing system the organizational, capital, labour and other requirements as described above by Christensen and Andrews (3) will be different. This indicates that if ship design and production has to be reorganized the changes in production systems will have to be carefully analyzed and taken into considera tion. Whenever a rigid process was converted to flexible mass produc tion, major cost reductions have been realized sometimes reaching 50% - 60%. (4). The speed of production could increase drastically and again as a result the cost per unit was reduced drastically. Unique product production has a relatively low capital investment compared to the cost of labour. This is even the case when the process becomes highly mechanized. On the other hand the flexibility in the organization is high or has the potential to be high. A unique product is costly and the flexibility of an organization should be great in order to make it competitive. Mass production is still labour intensive but demanding more capital investments. In unique product production the skill of people is related to the manufacturing operations. In mass produc tion as well as process production the skill is in the design and maintenance of the process. Looking into the various types of production one must conclude that different principles of production demand different types of organizations and cost structures, have different limitations and, in general, will demand different qualities from the management. The complexity of the changes is great, and demands to be scrutinized in each area (fig. 4, 5). The question is if we can satisfy the customers' needs in the future by changing from unique product production towards mass pro duction or even process industry. Is it possible to reduce cost, improve quality and realize shorter deliveries by introducing changes in the production process and the total organization of a shipyard? The introduction of computer applications creates an opportunity to drastically change the production. Specifically where it con cerns the change from mechanization to automation and even further into robotization, the computer will have a great impact. A difficult, certainly time-consuming and probably a very expen sive analysis of the product and the process will be necessary for a type of research and development which is practically unknown in our industry, although very much is done in the airplane industry, the automobile industry and the process industry, both in the field of industrial engineering and R&D. It requires a great deal of creativity. Up till now the creativity of people in the shipbuilding industry has been geared towards the design of ships, resulting in a huge number of various types of vessels for many different 7 ƒ Dieselmotoren produceren is één ding maar motoren ma ken die onder alle omstandig heden optimaal presteren, is een heel ander verhaal. DAF Diesel is leverancier van derge lijke motoren. Iedere motor, die bij ons de fabriek verlaat, voldoet aan de hoogste kwaliteitscriteria. Min stens zo belangrijk is, dat DAF Diesel pasklare oplossingen biedt voor zijn cliënten. Maat werk dus. Iedere klant krijgt van ons ’t volle pond. Aandacht, adviezen en meedenken. Dit alles staat garant voor een juiste motorkeuze en -spe cificaties, ongeacht of de motor gebruikt wordt voor voortstu wing of voor hulpaandrijving. Zo bouwen we een goede ver standhouding op. Deze wetenschap, onze service plus de keuze uit een motorenrange van 45 tot 250 kW continuvermogen lijkt ons voldoende om een stevige rela tie met DAF Diesel aan te gaan. DAF Diesel EEN LANGDURIGE VRIENDSCHAP EUROPORT 87 STAND 330 St. Antonius-Houben B.V., Havenstraat 6, Maasbracht, Tel. 04746-3131 Vink Diesel B.V., Rivierdijk 78, Sliedrecht, Tel. 01840-15455. Machinefabriek & Technische Handel H. Zwart B.V., Middenhavenstraat 76, IJmuiden, Tel. 02550-30304. 8 M A S S -PRODUCTION COMPLEX t TYPE OF PRODUCT 4 SIMPLE PROJECT PRODUCTION ORGANIZATION CELLS + 1 1 1 UNMANNED 1 CRAFTSMANSHIP PROCESS . PRODUCTION ♦ 1 SMALL- -NUMBER-► GREAT * UNIQUE PRODUCT DEGREE OF IMPROVISATION DECREASING —► TECHNICAL KNOW-HOW OF WORKERS Fig 5. services. It must also be said that the total number of ships in the world, may-be 70.000 in total, is not a great incentive towards the application of mass production or process industry principles. However, mass production became possible because of stan dardization in the product and mass production is characterized by being an assembly industry and mostly an assembly industry of standard products (6, 7). Most probably, the greatest chances lie in those areas which are conflicting at first sight. The time of preparation for mass produc tion or process industry is very long, very complex and the decision making takes often a long time. A t the same time the numbers in the product shall be high in order to make the production process cost effective. The skill in mass production and process industry is in the design of the production process and the production process sets a number of criteria for the design of the product. By applying series o r mass production principles and designing the right process the quality of the product can be improved, because of the limited influence of the production process during the production. The most effective way of reducing the cost of a product lies in the design and engineering (8). Some guidance for designers and engineers should be developed: - The largest number of items with the lowest complexity in a ship (or similar construction) is at the component level of the product or parts thereof. When redesigning we shall therefore consider the possibilities which are offered at the lowest level (components and equipment) in the first place. - Looking into the possibilities of applying similar principles on a smaller number of items - with a higher complexity - is only possible if the principle of standardizing is rigidly continued throughout the design process. An example: the design of a deckhouse should be possible by using standardized compo nents only, both for steel construction and interiors. - The combination of standard sub-parts o r units should be such that mechanization and automation in the assembly process becomes possible. Those tw o steps have to be considered first before even robotization becomes feasible. SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 For the last step we have probably to go back to 19 12 to F. W, Taylor and his Scientific Management. Any step to improve production facilities or systems will demand an analysis of methods and systems as applied today, into the smallest detail. The research to be done in this field is gigantic, because at practically each shipyard methods and ways of working are - although superficially identical - basically different, most of the time. Going back to time and motion studies is probably one of the ways to obtain insight in how shipyard production can be organized faster and better. These studies should not be academic but carried out ’on the spot and on the site’. Taking into consideration that the industrial production processes are developing from unique product manufacturing into mass production and further to process industry, we can develop some specific requirements for shipyards how it will be possible - on the long term - to realize a similar development. It means a step by step analysis of the production process: from marketing and sales, design and engineering, through purchasing, material handling and -distribution, prefab, plate and profile assembly, panel-line production, etc., up to the final assem bly of the ship. Even testing, trials, delivery and after service shall then be considered as a part of a production process. In analyzing the different parts of the process, we find that based on criteria mentioned earlier, the parts of the production process have different characteristics and can be considered as unique production or process industry. Attention must be given to the level of complexity of the ship as a total unit going down to the individual components or part of components. Considering these factors some questions should be posed, e.g.: - 'What are the main functions of a shipyard?’ (Marketing, Design, Engineering, Assembly?) - ’What are the functions necessary to keep the main functions going?’ (Transport and Distribution of Material, Purchasing, etc.) - 'What are the supporting functions, which could be done elsewhere?' (Prefab, panel-line assembly, block assembly) - 'Does the management and type of control of some parts of the process need to remain in one location or should the different parts which require different type of management be sepa rated?’ By posing us questions like these we must realize that we start restructuring an industry, and that was not the purpose of this paper. References 1. Porter, Michael E.: Competitive Strategy. The free Press, 1980. 2. Hengst, Prof. ir. S.: Scheepsbouw Nu en Straks. Tweede Tideman Herdenking 1982. (Shipbuilding Now and In The Future). 3. Christensen, C. R., Andrews, K. R. and Bower, J. L.: Business Policy: Text and Cases, 1973. 4. Drucker, P: Management: Tasks, Responsibilities, Practices, 1977. 5. Goldan, M: The Application O f Modular Elements In The Design and Construction O f Semi-submersible Platforms. Doctor Thesis, Delft 1985. 6. Weiers, Bruce J: The Productivity Problem In U.S. Shipbuilding, journal of Ship Production, January 1985. 7. Frankel, Ernst G.: Impact of Technological Change On Shipbuil ding Productivity. Journal of Ship Production, August 1985. 8. Cauther, Tomming L.: Improving Shipyard Productivity Through The Combined Use O f Process Engineering and Industrial Engineering Methods Analyses Techniques. Journal of Ship Production, February 1980. 9 EEN VOORAANSTAAND PRODUCENT EN EXPORTEUR VAN ROESTVASTSTAAL Avesta is een Zweeds speciaalstaal concern dat zich gespecialiseerd heeft in de produktie en dis tributie van roestvaststaal. De produktie is geheel geïntegreerd, van grondstoffen tot eindprodukt. De staalproduktiebedrijven (Avesta Staal) met hun eigen metallurgie en walserijen vormen de ba sis voor Avesta's activiteiten. Zij leveren het basis materiaal - warm- of koudgewalste platen of bandstaal - aan de dochterondernemingen AST (75% Avesta) - de grootste producent ter wereld van gelaste roestvaststalen buizen - en de fitting producenten Calamo, Nords en ABE. Continu-gletmachlne Een rijdende vlamsnljmachlne volgt de gletlng en snijdt deze In de verlangde lengten. UNIEKE KENNIS VAN CORROSIE SAMENGEBRACHT ONDER ÉÉN PARAPLU Corrosie Avesta's bestaansrecht is gebaseerd op corrosie. Men is zeer concurrerend op de markt dank zij de kennis van corrosie en het vermogen om Pro dukten en speciaalstaal soorten te ontwikkelen en te produceren die bestand zijn tegen corrosie. Onder één paraplu bracht Avesta 17 produktie bedrijven in 9 verschillende plaatsen samen. Elk met zijn eigen karakteristieke eigenschappen en specialiteiten. Samen vormen zij een waardevolle partner voor iedere fabrikant en gebruiker van apparatuur die onderhevig is aan corrosie. DE PRODUKTEN Roestvaststalen: * warmgewalste platen * koudgewalste platen en bandstaal * gelaste en naadloze buizen * fittingen en flenzen Roestvast bandstaal voormaterlaal voor gelaste buizen. 10 * stafstaal * lasmateriaal * smeedstukken Uniek In de wereld, KBR 2000 koudgewalste platen. - 2 meter brede ONDERZOEK EN ONTWIKKELING De naam Avesta za! staan voor onovertroffen kennis van metallurgie en technologie op het gebied van roestvaststaal. Alles wordt in het werk gesteld om deze kennis te behouden en uit te breiden en beschikbaar te stellen aan degenen die met ons samenwerken en onze produkten kopen. Het centrale onderzoek- en ontwikkelingslaboratorium is in Avesta gevestigd. Velen beschouwen het als één van de belangrijkste in de wereld op het gebied van roestvaststaal. Een groot aantal ingenieurs en wetenschappers werken hier, zij breiden de kennis van materialen en proces-technologieën uit, ontwikkelen nieuwe produkten en kwaliteiten en geven service aan onze klanten. Centraal onderzoek- en ontwlkkellngslaboratorlum In Avesta. AVESTA IN NEDERLAND Svenska Staal BV, Amsterdam en A. Johnson & Co. BV, Zwijndrecht, beide dochterondernemin gen van Avesta AB, Zweden, zullen met ingang van 1 januari 1988 worden samengevoegd. Samen zullen zij vanuit Amsterdam gaan opereren onder de naam AVESTA BV. Deze fusie betekent voor de verbruikers van roestvaststaal, dat zij kunnen beschikken over het meest uitgebreide assortiment van speciaalstaal produkten in Nederland, alsmede een nog betere service ten aanzien van voorraden, distributie en technische kennis. Helneken Brouwerij In Zoeterwoude. MODERN STAALMANSCHAP Onze belangrijkste sterkte ligt in het woord partnership. Dit betekent dat wij niet alleen een leve rancier zijn van roestvaststaal, maar vooral een belangrijke partner voor samenwerking, tot wie men zich kan wenden met vragen op het gebied van corrosie en materiaalkeuze. Wij hebben lange ervaring en unieke kennis die wij graag willen delen met onze afnemers. Wij beschikken over moderne research laboratoria en in hoge mate geautomatiseerde en goed uitgeruste produktiebedrijven. Wij hebben een sterke ambitie om onze beloften ten aanzien van kwaliteit, service en betrouwbaarheid na te komen. Verdere informatie over Avesta kunt u verkrijgen bij: A. Johnson & Co. B.V. Postbus 51, 3330 AB Zwijndrecht Kantoor: H. A. Lorentzstraat 10 Telefoon 078-127200 Telex 29095 ajcon nl Telefax 078-120945 EN WERF INFO-SPECIAL. NOVEMBER 1987 11 Niestern Sander bv SCHEEPSREPARATfE- EN NIEUWBOUWWERF Scheepsnleuwbouw Alle soorten zee- en binnenschepen, sleepbo ten, suppliers, speciaalschepen etc. Scheepsreparatie Onderhoud en reparatie van zee- en binnen vaartuigen, motoren reparaties etc. 24 uur service Nieuwbouw Know-how, reparatie-aanpak en toepassing van meer dan 100 jaar ervaring garandeert de realisatie van de meest ingewikkelde verbouwingen, verlengingen, grote reparaties enz. binnen de kortst mogelijke tijd en tot volle tevredenheid van de opdrachtgever. Timmerwerk alle reparaties, in- en verbouw, complete betimmeringen. Niestern Sander bv Ook voor industrie- en particuliere opdrachten. DELFZIJL Eemskanaal NZ8 P.O. Box 108 9930 AC-Delfzijl Tel. 05960-17979* Telex 53932 Nisan nl.* Telefax 05960-14917 *(Atl divisions) A NEW APPROACH TO SEMI-SUBMERSIBLES' by: Dr. Ir. M G oldan** I. IN T R O D U C T IO N This paper presents a new approach for designers and builders of semi-submersible platforms with the intention to extend and improve the possibilities of performing their tasks in a more efficient way and at reduced costs. These tasks are included in a design process and a building process. The design process is concerned with the con version of the client’s objectives into a design solution which complies with all applicable rules, regulations and other possible constraints. The building process is concerned with the conversion of a de sign solution into the ’reality’, to the satisfaction of client and authorities. To obtain cost-efficient combinations of design solutions and building processes, alternatives have to be evaluated {fig. I). Complex structures such as semi-sub mersible platforms make the process of evaluation laborious, time-consuming and expensive. To overcome this it is necessary that: 1. generation and evaluation of informa tion and alternatives, performing of calculations, etc. should be done effi ciently in terms of time and costs; 2. the conditions of building locations form a part of the search for the optimal solution to client's objectives; 3. the relation between design solution and costprice must be sensitive to varia tions in design- and building para meters. These are the objectives of the new approach. The scope of this paper will be limited to the structure of semi-submersi ble platforms. 2. a low level concerning the methods and models necessary in the design process as well as the incorporation of the re sults of I. in this process. In general, design solutions are concerned with the location and function of all compo nents within the platforms; the identity and specification of these components is given by: a. the externa! geometry, here defined as the geometrical design solution; this is related to platform’s dimensions, shapes, etc.; b. an internal geometry, here defined as the structural design solution; this con cerns the arrangement of steel struc tures and their patterns throughout the platform; c. an arrangement of machinery, equip ment, outfit, etc. The identity and specification of compo nents within (c) above are mainly deter mined by client’s objectives and to a limited extent by the geometrical and structural design solutions. On the other hand there is a great deal of dependence and inter action between the geometrical and the structural design solutions (Oo and Miller, 1981; Masaru Mokumaka et al, 1985; Haslum and Fylling, 1985). These solutions are generated by means of combinations of STRUCTURAL LEVEL PRIMARY floater structure column structure deck structure SECONDARY external (shell) panel • horizontal: deck, bottom • vertical: side shell internal panel • horizontal decks • vertical bulkheads TERTIARY SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 web-frames stiffeners brackets crossties Table I Structural levels in semi-submersible plat forms components from an assortment which is usually divided over three levels o f com plexity (table I): • the primary level which consists of volume components related to the ex ternal geometry of platform; these components are the floaters, the col umns and the deck structure; • the secondary level which consists of Fig. I: Alternative combinations design/building solutions. 2. PROBLEM A N A L Y S IS The objectives involve tw o different levels of application: I. a high level concerning the interaction between design and building so that design objectives and capacities at a building location can be better matched; * Paper read at the W EM T Conference ’A d v ances in O ffshore Technology’, RAI A m ste r dam, 25-27 nov. 1986. ** Maritim e and Industrial Technology (H o l land) B.V. COMPONENTS y / ETC. product y 1__________ ETC. 13 two-dimensional components related to the structural composition and pat terns of primary components; in gene ral, the secondary level consists of an assortment of flat panels; • the tertiary level which consists of elementary components related to the structural composition of secondary components; the tertiary level consists of an assortment of plates, stiffeners, webframes, brackets, etc. The characteristics of all components are determined by geometrical and structural variables such as length, width, shapes, spacings, thickness, sectional areas, etc. A vast assortment of components implicates a large number and variety of variables. Since the computational effort concerning a design process depends on the number and variety of variables, a primary objective at the low level of application will be to simplify and order the assortment of com ponents on the basis of a limited number of variables. effort, the latter being usually given in manhours; • the possibility to establish the costprice of one manhour. Investigations on the matter of w ork con tent have indicated a number of para meters such as the weight of weld metal deposited, the number of parts and the length of joints or line connections be tween structural components (Hewitt, 1976). Further investigations have indi cated that a accurate definition of work content in relation with the structural solu tion is obtained by considering in addition to line connections also the so-called point connections (Goldan, 1985); these involve tw o or more structural components and a relatively short joint length (bracket/ crossties connections, etc.). The link between work content and labour effort is given by production performance data; production performance can be de fined as a measure of merit for the accomplishment of a production facility, given by the ratio: T p = T |/U p, where: Tp: production performance, per unit of production T|: input of labour effort Up: units of production. Labour effort input is usually given in manhours. Production output can be defined by various parameters such as weight of steel, panel area, the number of connections, etc. The choice of a particular parameter is judicious; however, the linking role of pro duction performance requires that the corresponding parameters are compatible with parameters defining w ork content. Methods for calculating manhour costs or Fig. 3: Integrated process design/building building The general practice at the high level of application is shown in fig. 2. Design and building are kept separated; material and labour costs are accepted as a consequence of the design solution. The conditions at the building location which should be in volved in the design process are produc tion- means, methods and performances; if these and all handlings and processes in volved in the building of the platform are known, the sequence of activities which form the building procedure for each de sign solution can be established. The possibility to quantify the amount of labour effort and cost will depend on the following conditions (fig. 3): • the possibility to determine the w ork content of the structure in relation with the structural design solution; • the possibility to establish a relation between w ork content and labour 14 tariffs were investigated by the Nether lands Shipbuilding Industry Foundation ( 1970), H ew itt ( 1976) and others. In prin ciple, the methods base the calculation of tariffs on contributions from wages, vari able and fixed overheads. A t known hourly tariffs, the total labour costs can be calcu lated. Furthermore, if the amount of steel mate rials can be determined in relation with any structural design solution, material costs and the costprice of the steel structure can be calculated. A primary objective at the high level of application will be to deter mine, in relation with the structural solu tion, the w ork content, the required labour effort at a particular building loca tion and the labour and material costs. 3. T H E N E W A P P R O A C H 3.1 General A possible way to simplify the design pro cess is to standardize the assortment of components used in the generation of de sign solutions; this can be achieved if the number of variables which determine the characteristics of components at all levels of complexity within the assortment is reduced; the possibility to reduce the num ber of variables concerns: • at the third level; the shapes, main di mensions (length, width, height) and characteristic dimensions (thickness, sectional area, etc.) of plates, stiffeners, webs, etc.; • at the secondary level; the dimensions and structural patterns of panels; • at the primary level; the shape and di mensions of volume elements. module, standard structural pattern By limiting the number of variables a new and more limited assortment of standard components is obtained. The scope of this paper is limited to standardization of com ponents at the secondary and primary structural levels. b. the conditions at the building location; this concerns the capacities of produc tion facilities. 3.3. Standardization at the prim ary levei In general, floaters and columns consist of circular or rectangular cylinders of similar 3.2. Standardization at the secon dary level The structural pattern concerns the con figuration of panel stiffening elements de termined by the ratio S/s, respectively the spacing between transverse and longitudi nal stiffening elements. Standardization of patterns implies the adopting of a constant ratio S/s for all panels throughout the en tire platform (fig. 4). The value of the ratio S/s, in combination with s (or S) will affect the structural design solution but also the work content and material costs. Fig. 6: Modular semi-submersible structure Ü Panel dimensions concern length and width; standardization of these dimensions throughout the entire structure implicates the breakdown of first-level components in a manner which yields the minimum possible variation in panel dimensions. The outcome of this breakdown will depend on factors related to: a. the design solution; this concerns the dimension of primary components and the internal arrangement of horizontal and vertical bulkheads; F irst-level mo d u l e width FLOATERS COLUMNS X X DECK STRUCTURE X f c L, - X ♦ b B, - Y + h 0 H c D IM E N S IO N S R E C T A N G U L A R AREA (m 2) X X 75 - 100 25 - ! 00 L E N G T H (m ) 8 0 - II0 2 5 - 35 LENGTH 60 - 90 m. W IDTH 50 - 80 m. HEIGHT 4 - 8 m. Table 2. Characteristic geometries o f first-level components in semi-submersible drill ing platforms SCHIP EN WERF INFO-SPECIAL, NOVEMBER 19B7 b: B_, L h e i g h t h ; Hf , Bc> Hd FORM O F C R O SS-SEC TIO N C IR C U LA R in deck structure dimensions and sectional areas (table 2 for drilling platforms). For boxtype decks it is possible to break down the structure into an assortment o f cylindrical elements of rectangular cross-sections and lengths cor responding with those of floaters and col umns providing that due consideration is given to the arrangement of longitudinal and transverse bulkheads within the deck structure (fig. 5). If all cylinders throughout the platform can be brought to a standard with respect to shape and sectional dimen sions, a common strucural system can be - 2h, 1 developed for floaters, columns and decks in terms of a unique cylindrical component. Furthermore, by choosing a suitable length, standardization of first-level com ponents can be obtained for the entire structure. The required dimensions of floater, col umn and deck structures as well as those of the entire platform are obtained by com bining a number of these components (fig. 6). An important aspect here is the transi tion and alignment of structural elements in connections because of the distribution of loads throughout the structure. Effec- 15 O HANDELMIJ l v ROESTVRIJ B.V. UIT VOORRAAD HELMOND LEVERBAAR rvs gelaste en naadloze buizen rvs naadloze precisie buizen, instrumentatie en hydrauliek buizen rvs hittebestendige buizen rvs machinepijp rvs vierkante en rechthoekige buizen rvs lasfittingen en beugels rvs BSP draadfittingen 150 Ibs rvs NPT en SW fittingen 3000 Ibs rvs snifringkoppelingen - rvs twin ferrule fittingen rvs snelkoppelingen rvs flenzen DIN en ANSI aluminium flenzen en rvs boordringen rvs kogelafsluiters rvs schuifafsluiters rvs klepafsluiters rvs terugslagkleppen rvs hoge druk kogel- en naaldafsluiters rvs vlinderkleppen ROESTVRIJSTALEN HOGEDRUK KOGELAFSLUITERS PN 400 Maximale druk 400 BAR kwaliteit huis en kogel 316Ti afdichting PTFE Verbindingen: -NPT/BSP binnen-/buitendraad - snijring volgens DIN 2353 - twinferrule - laseinden afmetingen: 1/8" t/m 1" ROESTVRIJSTALEN SNIJRINGFITTINGEN werkdruk tot 630 BAR. uitvoering volgens DIN 2353 BSP draad kwaliteit 316Ti van 6 mm t/m 38 mm ROESTVRIJSTALEN TWIN FERRULE FITTINGEN werkdruk tot 700 BAR kwaliteit 316 metrische en inch-afmetingen afmetingen: 6 mm t/m 25" 1/4" t/m 1" Handelmij ROESTVRIJ B.V. Vossenbeemd 109 5705 CL Helmond 16 Postus 1111 5700 BC Helmond Telefoon 04920-46555 Telex 59208 rvry Telefax 04920-33922 tive use of the structural pattern of panels is achieved by assuming a basic rule which brings the stiffening elements in-line, inde pendent of panel spacial orientation. This can be obtained if the ratio S/s observes the following rule throughout the entire platform: S/s=k (k = 1,2,3 ) 3,4 The interaction between design and building The conditions necessary to link design and building were discussed in par. 2. In the first place it is required to determine work content in relation with a structural design solution; the latter depends on the internal arrangement of bulkheads and the structu ral patterns. Once the internal arrange ment has been established, the structural design solution is mainly determined by the structural pattern of all panels; any varia tion in the structural pattern will: a. alter the characteristic dimensions of third-level components (plate thick ness, sectional area's, etc.); this results in a change of the type of connections or weid-type (l-weld to V or X-weld, in crease of throat thickness for filletwelds, etc.); b. alter the number of third-level compo nents (sections, webframes, brackets, etc.); this results in a change of the amount of line and point connections. If information concerning (a) and (b) is available, an accurate definition of w ork content in relation with the structural pat tern can be established; a necessary condi tion is that structural patterns throughout the platform are known. The use of stan dard components and structural patterns enable to define accurately all connections throughout the structure; any change in structural patterns and dimensions of com ponents will directly affect the type and amount of connections. Hereby, a relation between the structural design solution and the w ork content can be established. The distinction between line and point connections enables to identify and associ ate technology and w ork methods to a particular type of connection (Goldan, 1985). If the labour effort necessary to effectuate one unit of connection is estab lished by estimates, time measurement, etc. at a particular building location, a rela tion between the design solution and the required labour effort at that particular building location can be established. Furthermore, if the labour effort is neces sary to produce one unit of connection Tps of type i is known, the total labour effort T , is found from: T| = i(Tp| x NJ, where: N, = number of connections of type i If the unit price of one manhour (tariff) R at a particular building location is known, the SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 labour costs C, at that location are: C,=T,XR The amount of steel materials is pro portional with the characteristic dimen sions and numbers of third-level compo nents; these are determined by the structural pattern. By using standard pat terns, the amount of steel materials can be determined in relation with any structural design solution. The cost of steel materials can then be determined as follows: Cm = j (W| X Pmj), where: Cm = total material costs W| and Pnv are respectively the weight and price of j-type steel materials. Finally, the costprice of the platform Ct in relation with any structural design solution can be determined: ct = c, + cm Several possible applications of the new approach are demonstrated below. 4. A P P L IC A T IO N S 4.1 Generation of geometrical solu tions Some important characteristics derived from the geometrical design solution are the behaviour in waves and the stability. Since these characteristics impose con tradictory requirements to the underwa ter geometry of the platform (Oo and Miller) it is important to establish the boundaries of feasible geometrical solu tions at an early design stage. By using firstlevel standard components, the number of geometrical design variables is reduced; this symplifies the geometrical design pro cess and enables to establish boundaries of feasible solutions in a more efficient way. 4.2 The choice of a structural pat tern for panels Lateral pressure is a dominating factor in determining the scantling of most primary components such as floaters, columns and deck (Bainbridge, 1984). These compo nents consist mainly of second-level struc tures, i.e. panels. Panel design is, thus, a major activity within the structural design and includes the determination of char acteristics such as structural patterns and the scantling of plating, stiffeners and webs. The use of standard structural patterns reduces the number of variables and simpli fies panel design process; hereby, refer ence data for a large range of lateral load ings and stiffener spacing, s, can be pre pared. 4.3 W eight- versus cost-efficiency An important aspect governing the design process is that of weight- versus costefficiency of the steel structure. Designers and builders may adopt different views on this matter; a light construction may be advantageous in terms of payload capacity but may have a negative influence on the costprice (Moe and Lund, 1963; Caldwell and Hewitt, 1975; Kuo et al, 1983; and others). The governing problems related to this aspect are: • accurate estimate of steelweight, • establishing of the amount of labour required to build the structure which is sensitive to variations of design vari ables and the performances at a particu lar building location (see also par. 2.). The possibilities to overcome these prob lems by using standard components were discussed in par. 3.4. In principle, this aspect concerns the matching of conditions at building locations with design objectives so that a range of alternatives can be provided for clients, designers and builders, which represents the existing market conditions in terms of material prices and cost of labour. 4.4 The industrialization of the building process The building process of marine structures is labour-intensive and consists mainly of assembly processes at various levels of structural complexity; the introduction of some mechanized and automatic facilities in the past years has not resulted in a basic change of this building process. A real breakthrough towards industrialization in marine constructions requires a different approach to both design and building; in this respect, much can be learned from other enterprises with regard to: 1. design simplification by using pre-determined standard components and structural patterns; 2. advanced mechanization and automa tion in manufacturing of components and assembly of the final product; 3. increased efficiency in the entire build ing process due to 'learning effects’ associated with standardization of com ponents and patterns. Some aspects related to aspect I. above have been studied in connection with the design process. Regarding the building process, the new approach results in a structure consisting of a limited number of component series, at various levels of com plexity. The hereby created possibilities for advanced mechanization and automa tion are not dealt with in this paper. The matter of 'learning effects’ in ship building has been studied by Couch ( 1963), Krietemeyer (1967), McNeal (1969), Svendrup ( 1982) and others. These studies were however directed towards the com plete structure. The approach presented here creates conditions for introducing 'learning effects’ in building phases prior to the final assembly of the structure. This is of particular importance for the semi-sub- 17 Goede uitvindingen komen nooitte vroeg, ESAB bewijst dat al vele jaren. ESAB-ontwikkelingen zijn daarmee normstellend geworden voor de ^ M laswereld. Wie niet wachten wil op gemeengoed, maar wil profiteren van voor sprong in technische in novatie, kiest ESAB. Zeker als dat voordeliger uitpakt. Of 't nu gaat om automatisering, apparatuur of lasmaterialen: ESAB blijft als wereldconcern toonaange vend in technische vooruitgang. Wie de ontwikkelingen volgt, weet waarom. m sa m w 15! H M S T m S ESAB Nederland B.V. Neutronweg 11, 3542 AH Utrecht Postbus 8183, 3503 RD Utrecht Telefoon: 030-4659 22, Telex: 40139 ESAB De voorsprong groeit! mersibles' market which is governed by 'one-offs' and/or small series’ building. 5. N U M E R IC A L EXAM PLES Several numerical examples regarding the possibilities for application of the new approach in the design and building of semisubmersible platforms are given below. In general, the examples concern a semi-sub mersible drilling platform of which the main parameters are given in table 3. Table 3. Design parameters fo r semi-sub mersible platform displacement variable deckload natural period heave Th 22000 m3 3000 T 22 sec m b/h b (m) Lr (m) X (m) Y (m) 4 1.75 2.00 2.25 6 1.75 2.00 2.25 8 1.75 2.00 2.25 13.8 15.2 16.5 11.3 12.4 13.5 9.8 10.7 11.7 73.0 67.5 63.0 I09.3 10 1.3 94.5 146.0 I 35.0 126.0 54.6 52.6 60.9 65.7 63.3 6 1.3 71.2 68.6 66.5 54.6 52.6 60.9 53.6 51.7 50.0 53.0 51.1 49.5 5.2 The choice of a structural pat tern for panels A study to obtain reference data for design and building of second-level standard com ponents subjected to uniform lateral loadTable 4. Design variables fo r modular semi-submersible platform Table 6 Design variables for panels stiffener spacing ratio S/s lateral pressure hourly tariff basic steel prices ! h| = 14.0 m for all solutions Table 5. Geometrical solutions for modu lar semi-subm. platforms Fig. 5.1 Generation of geom etrical solu tions Geometrical solutions were generated for the platform data shown in table 3. The de-tuning method was used to control the heave motion. Design parameters were the underwatervolume V and the natural heave period Th. The independent and dependent design variables are given in table 4. A closed directing model was used (Deetman, 1984) which enabled to in corporate motion and stability constraints in the design process; a simplified flowchart is shown in fig. 7; the results are presented in table 5. ing was performed. Structural design criteria were taken in accordance with the Rules for the Classification of Mobile Offshore Units (Det norske Veritas. 1983). Design parameters were panel di mensions. criteria for structural strength and basic steel prices. The independent variables are given in table 6. 7: Flowchart geometrical design D E S I G N MODEL DESIGN MODEL WITH P,nb process I N P U T DIRECTING s k P R D A T A PHASE MOTION 7 1 CONSTRAINTS - 3 FREE VARIABLES - 2 DEPENDENT VARIABLES - 2 SATISFYING CONDITIONS INPUT DATA STABILITY DESIGN MODEL independent variables DIRECTING number of columns m column height H .3 t ^0 column height submerged colu m n height rat- first-level m o d u l e w idth first-level m o d u l e height moment heeling arm MODEL PHASE c K c /Ah j b/h DESIGN MODEL WITH STABILITY CONSTRAINTS ah m e t acentric height CM centre of gravity KG - 1 FREE VARIABLE - 6 DEPENDENT VARIABLES dependent variables - 5 SATISFYING CONDITIONS first-level m o dule w idth b first-level m o d u l e height h m e tacentric height BM long.distance c o rner columns X transv.distance c o rner columns Y submerged v o lume floaters submerged v o lume columns length of floaters submerged c o l u m n height - I INEQUALITY CONSTRAINT V2 T1 C O M P L E T E G E O M E T R Y w h SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 19 R = 75 fl./hr TOT. COSTS PANEL Cl 25 PRESSURE N/nnrT 20 360 k»3 15 ^ 27 q \ 180 10 5 SPA C IN G 0.4 0.6 0.8 1.0 B(m) SPACING s(m) Fig. 8: Total panel costs at different k-values, lateral pressure, spacing s and hourly tariff R The cost calculation results are given by means of the cost index Cl defined as (fig. 8 ): 5.3 Weight-versus cost-efficiency A study on the weight versus cost-efficien cy was performed for a complete platform. For a given geometry, material prices and manhour tariffs, the total building costs were calculated at various values of the stiffener spacing, s. The results are shown in fig. 9. The calculations were repeated for differ ent values of manhour wages; at each level of wages, the lowest total cost and the corresponding structural solution given by the spacing s were established. The rela tion wages-structural solution at minimum total costs is shown in fig. 10. Manhour tariffs were calculated according to the NSIF (1970). Hereby, the possibilities to match economical conditions with design variables in the course of the design pro cess are demonstrated. 5.4 Industrialization of the building process The effect of learning effects associated with the new approach in the building of semi-submersible platforms is demon strated in fig. II. The platform was broken down in series of second and first-level modules. Learning figures were assumed following general principles in industrial Fig. 9: a) Material, labour and total costs b) Distribution o f labour costs over types o f connections 20 processes (joustra, 1982; i n ’t Veld). The results from fig. 11 concern: 1. case I , where the effects o f learning were not included 2. case 2, where the effects of learning were included. The calculations were performed for dif ferent values of the stiffener spacing s. 6. Conclusions A new concept in design and building of semi-submersible platforms was pre sented. Following this concept, the plat form consists of a limited assortment of standard components. Standardization is obtained through uniformity of dimensions and shapes at tw o levels of structural comFig. 10: Relation wages-spacing s at minimum total costs Fig. 11: Effect o f learning on costs plexity. A standard structural pattern is adopted by assuming a constant ratio be tween transverse webspacing S and stiffener spacing s for the entire platform. Hereby, the number of geometrical and structural variables is reduced and the in formation regarding the steel structure with respect to weight and w ork content can be determined accurately. W ith respect to possible applications of this concept it should be mentioned that realization of objectives in design and buil ding of semi-submersible platforms re quires input from both disciplines. In the first place the concept presented in this paper can be used as a tool of design for: • generation of geometrical design solu tions; this enables to evaluate the effect of geometrical design variables and to establish boundaries for feasible geometrical solutions; • generation of structural design solu tions; this enables to evaluate the effect of structural design variables on the design. The concept is even more a useful tool in matching design solutions with the capabil ities of builders; hereby, a range of alterna tives is provided which can be used by the client in the search for an optimum tech nical/economical solution to his objectives. The concept can also be used as a tool of management by builders enabling to evalu ate their position with respect to altering market conditions in terms of material prices and cost of labour. Finally, the concept enables the industrial approach to the building process of unique products which yields a reduction of labour effort and cost due to learning effects associated w ith series fabrication of com ponents. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 References • Bainbridge C. A. (1984); Structural Certification of Floating Production Systems; Design and Operational Aspects of Floating Production Sys tems, London Press Centre. • Caldwell J. B„ H ew itt A. D. (1975); Toward Cost-effective Design of Shipstructures, International Conference on Structural Design and Fabrication in Shipbuilding, London. • Couch J. C. (1963); The Cost Saving of Multiple Ship Production; International Shipbuilding Progress. • Deetman E. (1984); The Computer in the Design Process; Paper presented at the postgraduate course The compu ter in the service of the Naval Archi tect', Sevilla. • Goldan M. (1985); The Application of Modular Elements in the Design and Construction of Semi-Submersible Platforms, Ph. D.-thesis, Delft Universi ty of Technology, Department of Marine Technology. • Haslum K., Fylling I. (1985); Design of Semi-Submersible Units, Main Para meter Selection; Second International Marine Systems Design Conference, Lyngby. • H ewitt A. D. (1976); Production Oriented Design of Ship Structures; Ph. D.-thesis, University of Newcastle upon Tyne. • Krietemeyer J. H. (1976); Standardiza tion and Series-Production in the Ship building Industry, Europort Am sterdam, • Kuo C. et al (1983); An Effective Approach to Structural Design for Pro duction, The Naval Architect. • Masaru Mokumaka et al (1985); O pti mum Design of Semi-Submersible D rill ing Rigs, Second International Marine Systems Design Conference, Lyngby. • McNeal J. K. (1965); A Method for Comparing Costs of Ships Due to Alternative Delivery Intervals and Mul tiple Quantities, Transactions SNAME. • Moe J., Lund S. ( 1968); Cost and Weight Optimisation of Structures with Special Emphasis on Longitudinal Strength of Tankers, Transactions RINA. • NSIF (1970); Uniform Administration for the Shipbuilding Industry (in Dutch), Netherlands Shipbuilding Industry Foundation. • Det norske Veritas (1983); Rules for the Classification of Mobile Offshore Units. • Oo K. M„ Miller N. S. (1981); SemiSubmersible Design; The Effect of Differing Geometries on Heaving Re sponse and Stability, The Naval Architect. • Sverdrup C. F. (1982); Considerations Regarding Improved Productivity Based upon Experience of Series Pro duction of Merchant Ships, Proceedings IREAPS Technical Symposium, San Diego California. • I n ’t Veld J. G.; Production Organiza tions (in Dutch), Lecture Notes bb4, Delft University of Technology. 21 Bescherming van heel Uw hebben en houden of het nu gaat om schepen, bruggen, raffinaderijen, opslagtanks, sluizen, boorinstallaties etc. Ons straatponton ,, Cornelis T" langszij de ,,Maassluis" in aanbouw bij Van der Giessen de Noord te Krimpen. RZB: grote capaciteit in alles en een grote nauwkeurigheid voor ieder detail. RZB stralend de beste 22 B.V. ROTTERDAMSCH ZANDSTRAALEN SCHILDERSBEDRIJF. Hoofdkantoor: Eemhavenweg 26, 3089 KG Rotterdam. Telefoon: (010) 429.12.88 (6 lijnen) Telex: 28271. Vestigingen te Dintelmond en Vlissingen. OPTIMISA TION OF SEMISUBMERSIBLE DESIGN WITH CONSTRAINTS O N MOTIONAL BEHAVIOUR AN D FABRICATION By: Ir. G. J. Schepman and Ir. J. L. A. M van der Hoorn** H. Isshiki and T. N a k a jim a * * * This lay-out has also been the basis for the design of the fourth generation drilling semi-submersible DSS-40. In the development of the semi-submersi ble DSS-40, Sumitomo Heavy Industries (SHI) and Marine Structure Consultants (MSC) opted for optimisation of the rigs’ overall performance considering impor tant factors as: - motions - capacity (Variable Drilling Load/Total Variable Load) - construction (system and costs) - stability. The design requirements of a semi-sub mersible can be split up into owner’s and shipyard requirements. O wner’s require ments are mostly related to operational aspects, such as: - environmental conditions (wind, wave and current) for operations and survival - Variable Drilling Load - Total Variable Load in transit - motional behaviour limitations e.g. heave and seastate for operating condi tions - stability - equipment sepcification. I. IN T R O D U C T IO N Although semi-submersibles have been in existence for over tw o decades as versatile mobile offshore units, it is still considered worthwhile to discuss their motional be haviour. Especially in todays technology, motional behaviour is better understood and optimisation has resulted in all kinds of hull forms, e.g. introduction of sponsoons and bulges to improve on heave motions in head waves. Penalties on other aspects as * Paper presented at the W E M T C o nfer ence 'Advances in Offshore Technology’, RAI Amsterdam 25-27 Novem ber 1986. ** Marine Structure Consultants (MSC) * * * Sumitomo Heavy Industries SCHIP EN WEHF INFO-SPECIAL. NOVEMBER 1987 construction, stability and inspection and maintenance are often not considered and could easily lead to ’unbalanced’ designs. In the early 80’s, MSC developed the four column design with special emphasis on simple construction and ease of inspection and maintenance. An example was the ’Stena Conqueror’ (type DSS-24, see ref. I)The four column semi-submersible design is composed of a limited number of con struction elements, (see figure I .): - tw o floaters - four columns - one buoyant, self-supporting upper hull structure - tw o or four horizontal braces. Shipyard requirements are mainly related to the construction: - optimum use of shipyard fabrication sys tem from panel dimensions up to assembly - maximum construction width due to building dock facilities o r waterway re strictions. To establish the particular set of main di mensions fulfilling the design criteria in a well-balanced manner, MSC applies an optimisation program, developed in house, as an important tool in the concept stage. The advantages of this procedure are: - parametric studies can be carried out quickly to determine the influence of design requirements changes - such a degree of accuracy is obtained 23 Se wi Total c W SPERRY’S SCAN RADAR routine returns to the main program which displays the optimum solution. 2.2. Free variables The present optimisation program is based on four column semi-submersible designs assuming a square upper hull and square columns. In addition the height of the upper hull is selected by the designer based on the equipment to be installed. So the following six free variables will define the unit's main dimensions (see figure 4): - upper deck: width - columns: width, height - floaters: width, height, length. Figure I: Fabrication scheme that no major modifications are envis aged in the next design states. In the optimisation program, as many para meters as needed are included to obtain a well balanced design. The program does not calculate only geometry stability and weights, but will also define a unit with a predicted and pre-engineered mocional behaviour at minimum steel weight. 2. O P T IM IS A T IO N PROGRAM 2.1. General description The use of optimisation techniques re quires a clear distinguishment of the vari ables involved, being: - free variables - parameters - constraints - objective function. Free variables can be changed by the pro gram during its search for an optimum solution, while parameters are fixed values defined in a separate input file remaining constant during the optimisation process. Constraints are the requirements to be fulfilled, while the objective function will be optimised. As the objective function can be very com plicated the optimisation technique must be a powerful algorithm to find the opti mum value. A t MSC, the general reduced gradient method is selected and incorpo rated in the optimisation routine GRG. The program structure is shown in figure 2 and described as afotlows: The main program (MAIN) reads the para meter values from file and then starts the optimisation routine (GRG). This routine varies a set of free variables (X-vector), until it has found the optimum set. This search is done by chosing an arbitrary Xvector, and then caculating in the sub routine (GCOMP) the values of the con straints and the objective function (G-vector). Checking of constraints could lead to chan ging the X-vector in the GRG routine and again calculating the corresponding G-vector. This process is repeated until all con straints are satisfied, and the objective function is optimised (see figure 3). When the optimum is found, the GRG 2.3. Param eters The parameters can be split into tw o groups, being parameters related to the construction system and parameters de fined by the owner. The construction para meters are height of the deck box and number and diameter of bracings. O wner’s requirements are concentrated on Vari able Drilling Load, Total Variable Load in transit and environmental conditions. This latter one refers to the required air gap in maximum operating conditions. Approxi mate formulae are used to establish the required air gap , based on extensive modeltest results of similar designs. 2.4. Constraints The constraints refer to owners require ments and some construction aspects. The owner’s requirements are: - stability - environmental conditions: maximum operating conditions Figure 3: Example o f optimisation technique Figure 2: Program structure p a ram e te rs )---------- - output MAIN p a ram e te r values ;a v-— * optimum X - v ec to r X GRG GCOMP G SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 25 SEMPRESS ZET HEEL WAT IN BEWEGING ie de kwaliteit van afstands bedieningen zelf in de hand wil hebben, komt tijdens Europort ’87 naar stand E 302. U maakt daar kennis met betrouwbare produkten van degelijke kwaliteit. Met een lange levensduur. Wat daarmee in beweging wordt gezet, weet bij wijze van spreken van geen ophouden.... W ig .D Q D ZET HEEL WAT IN BEWEGING M ach in e fa b rie k Sem press B.V. P ostbus 60 3340 AB H .l.A m bach t Tel. 01858-10444 Telex 29316 Telefax 01858-19812 26 meters defining the heave motions of a semi-submersible (see reference 2). The main conclusions are that heave motions are dependent on (see figure 5): 1. Natural heave period Th and 2. Submergence of the floaters zfl, according to the following formulae: I. Th = 2jt V ~ ;> ~ M Pg Figure 4: Free variables - Total Variable Load in transit: required freeboard. 2.4.1. Stability Based on the classification societies’ rules and regulations, required stability for in tact and damaged conditions should be regarded. Due to the buoyant upper hull structure, intact stability will be no prob lem, but the 15 degree heel ing angle limit in damaged condition allows only a limited inflow of water. Based on MSC’s experi ence in four column designs, this damaged condition can best be met by applying a double hull in the column. Thus the vessel’s restoring moment has to counteract the inflow of water. The linear approximation (Restoring moment = Displacement times GM-value times angle) is sufficiently accu rate up to the angle of upper hull submer gence, which will be around 15 degrees. In this way the GM-value is selected as a valuable measure for definition of the stability in the operating condition. 2.4.2. Heave motions O wner’s requirements will certainly con tain indications on workability or motional behaviour of the rig, by specifying max imum drilling conditions and maximum operating condition. By defining the allow able drill string compensator limit respec tively the telescopic joint limit, the allow able heave response of the rig can be deter mined. A t MSC, research studies have been car ried out to obtain an insight in the para Where: A = operating displacement of the vessel M = added mass, determined as a func tion of floater- and column dimen sions p = specific mass 1025 kg/m3 g = gravitational constant 9.8 m/s2 A = waterplane area z/s- = heave response in regular waves toe = 2 ji/T h = natural heavy frequency k = co2/g = wave number to = wave frequency zfl = submergence of floaters. The effects of selecting a natural heave period and/or a floater submergence are illustrated in figure 6. By specifying the natural heave period, Th, and the second hump response value, zIt,, as constraints, the optimisation program will determine the shape of the unit fulfilling owner’s motional behaviour requirements. Figure 5: Heave motions defined by Th and submergence 2 '3 wave frequency (radians I sec) SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 27 ------------------ Blohm • Voss A.G. Simpiex-Compact-atdichtingen. Simplex-Com pact-stabilisatievinnen, Sim plex-Com pact-stuurm achines, Simplex-roerkoningafdichtingen. Simplex-draag- en iooptagers, Simplax-stuwdruklagers, Simplex-schotdoorvoeringen. Simplex-achterstevens en balansroeren. Sim plex-roerdraaglagers. Carboplan-glijringaidichtingen, Centrax-radiaalafdichtingen, Reserveonderdelen voor systeem Huhn, SchroelaskokerToopbussen, Asletdingen en Schroefaskokers. Turbulo-olieafscheiders met en zonder filter, Turbulo-Kondensaat olieafscheiders, Oliegehaitemeters, Schroefaskokerboringsm achines, Hulp- en uitlaatgassenketels, M1000 Accommodatie9ysteem, Ankers, alle typen. Offshore Constructies en Tankbouw, Scoopkoelers Neuenfelder Maschinenfabrik GmbH Scheepskranen en Davits. Offshore kranen. Stuurm achines en Lieren Apparatebau Salzkotten GmbH Sewage Treatment installaties J. D. Thiele GmbH & Co. KG Anker- Hijs- en Transportkettingen Wlnel B V. Ont- en Beluchters. Ventilatiekappen, W aterdichte deuren. Hydr. W aterdichte Schuifdeuren. Luiken. Spuipotten. Vlamdovers en Dekdoppen Intertechnique Pneumatische Tankpeilsystemen Megator Pumps & Compressors Ltd. Pompen, Hydrophoorinstallaties, Olieskimmers CMI (Cockerill Mechanical Industries) Tandwielkasten, Vertandingen en Smeedstukken Lef Bishop Ltd. Kombuisinrichtingen en Cateringsinstallaties, Zoek- en Suezlichten. Mobiele verlichtingen Wardol Chem ie Belgium PVBA Ontvetters. Koudreinigers. Detergenten Frank Ayles & Associates Ltd. Dispersant sproei-instaltaties. Olie-opveegsystemen, Brandblusinstallaties B.V Technisch Bureau Crawford Precision Casting Ltd. Gietstukken volgens de verloren wasmethode UITTEM B O G A A R T Hinrich Mohr Blokken, Haken en Schakels. Panamakluizen en Verhaalrollen, Mangatdeksels en ringen Tanksystem A.S. Systematic-tankwasapparatuur, Hermetic Ullage. Temperatuur en Interface detectors, Hermetic dekafsluiters en ladingbemonsterings apparatuur J, H. Witzet B.V. Vlinderkieppen en Schuifafsluiters. Terugslagkleppen Dodwell & Co. Ltd. Brandstofblenders, Viscositeitsm eters, Brandstof Homogenizer 28 ■ Bierstraat 15b, 3011 XA Rotterdam. Telefoon 0 1 0 -4 1 1 4614. Telex 25120 tbu nl. Telefax 010 - 414 10 04. i (average zero-up crossing period) wave frequency ( radians I sec ) Figure 6: Influence o f draft and natural period on heave motions wave frequency ( radians / sec ) The advantage of including the motional behaviour as constraints is that design con cepts can be compared while motions are always similar. In the past designs have been compared without regard to the similarity of motions. 2.4.3. Freeboard at transit draft Besides defining the Total Variable Load in transit condition, the floater size depends on the freeboard in transit condition. Freeboard can be treated as a requirement for a positive freeboard or as a margin for weight increase during construction. As freeboard depends on the owner’s views, freeboard is considered as a con straint. One should realize that both selected freeboard and Total Variable Load determine the size of the floaters and consequently w ill have an important im pact on the overall displacement of the vessel. SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 (average zero-up crossing period) 2.4.4. Construction aspects The adopted design philosophy is to use flat panel shipyard practice construction sys tems. Some physical constraints in semisubmersible design are: - floater length should be equal or larger than the upper hull length, to avoid connection problems of floater to column - floater width should be equal to column width, to create a better continuation of the structural integrity and to reduce the number of longitudinal bulkheads in floaters - upper limits on the total width of the vessel due to the availability of existing building docks and/or repair docks. 2.5. Objective function The overall performance of the semi-submersible should be optimised. It will usually seconds be expressed in terms of investment costs. A typical cost breakdown of a semi-sub mersible (see figure 7) illustrates that the majority of costs is related to the drilling package and the machinery part. These items will be either owner furnished equip ment or owner specified equipment, so these costs can not be influenced by the shipyard. An other important cost item is the steel construction of the vessel, which can be fully controlled by the shipyard by an opti mum use of their fabrication system (manhours/ton) and by a minimum steel weight of the unit. Therefore, it has been con cluded that the ultimate and most practical variable to assess the costs is the vessel's steel weight, and consequently the objec tive function is to minimise on steel weight. 29 S C H R E D D E R ét C D Gildenweg 12 - Industrieterrein ’De G eer’ - Zwijndrecht Telefoon 078-100111 - Telex 29339 Postadres: Postbus 326 - 3330 AH ZW IJNDRECHT AFDELING: TECHNISCHE RUBBERARTIKELEN Continental Chemicaliën- en oplosmiddelenbestendige slang Olie- en benzinebestendige slangen, zoals tankwagenslang en haspelslang. Bunkerslang uit voorraad leverbaar tot 0 200 mm Avery-Hardoll Dry-Break koppelingen R efuelling Nozzles V loeistofm eters UGCtt S langkoppelingen en verloopstukken ook in R.V.S. Rubber compensatoren Vulpistolen ZV en ZVA Snelkoppelingen - type TW, ook in R.V.S. Pero/o Laadarmen voor vloeistoffen Toebehoren voor tankauto’s en tankstations AFDELING: INTERN TRANSPORT V o rkhe ftru cks R eachtrucks Z ijladers E xplosiebeveiligde he ftru cks Voorts: Metaalbewerkingsmachines Gereedschappen voor metaalbewerkingsmachines 30 Owner’s requirements are: - Variable Drilling Load in operational, survival and transit condition: at least 4,500 ton - Total Variable Load in transit including mooring spread: at least 8,300 ton - workability in operational condition: • drilling operation: up to 8 m signifi cant waves • riser disconnection: one year North Sea storm - workability in survival condition: 100 year condition, maximum waves 34 m - classification societies: DnV or LR or ABS - national authorities: NPD o r DEn. TYPICAL COST ANALYSIS OF SEMI-SUBMERSIBLE Drilling I S tructure I ! i Machinery Hull o u tfit I ! Electrical I i Painting Others General charge I I Material LT“ ] Labour ------------1 ------------------- ! F - - J ^ |js c ! Figure 7: Cost analysis 3. C A L C U L A T IO N PROCEDURE In the optimisation process the design calculations are carried out in subroutine GCOMP (X,G) which is entered with a specified set of free variables (X-vector), and which calculates the values of con straints and objective function (G-vector). This calculation is shown in figure 8 and is regarded to be self-explanatory. In the GRG subroutine first of all the con straints are checked. When the constraints are not fulfilled, the GRG method will change the X-vector(s) in an intelligent way and the GCOMP procedure will be repeated. Finally, the objective function is optimised in the GRG subroutine. Figure 8: Calculation procedure O 'J' o 00 o rsi o % Shipyard requirements: - optimise on construction with respect to: • fabrication system {shipyard prac tice, flat panel) • reduction of main connection numbers - maximum construction width due to building dock: 74,0 m - minimum steel weight. X-VE C TO R 4. EXAM PLE O F O P T IM IS A T IO N PROGRAM 4.1. Introduction In 1984 SHI and MSC decided to develop a fourth generation drilling semi-submersible vessel, called the DSS-40. The project team aimed for a development of a bal anced unit with respect to operational as well as construction aspects. For a better insight in the effects of design variables the optimisation program was developed and extensively used in the con cept design stage. Also main design criteria have been varied to study their effect on overall size and shape of the unit. In this section the design process of the DSS-40 and results of the variation study will be discussed. 4.2. Concept design of the DSS-40 Based on a market review, the extensive discussions within the project team have led to select the main design criteria for the design, divided in owners and shipyard rer quirements. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 31 Our congratulations to Anthony Veder and the crew from ’The Prince Willem van Oranje’ «Plug In unit-ready for use». The HYDRALIFT MCV-type deck crane is a «ready to install», «plug-ln» unit, self-powered by a built in electro-hydraulic power pack ready for connection to the ships main power supply. The cranes are delivered with wire and hook, shotblasted and coated with zinc epoxy, tested and adjusted Control features All motions are continuous. The controls may be operated at the same time (D o u b le HOLES * ro p e ) EQ U ALLY S fH C E D EE D E h We wish you a good sailing! UMEC VAN UOEN MARINE & ENGINEERING CONSULTANTS Tlx 22024, tel. 010-436 33 00, Veerhaven 14, Rotterdam 32 H E A V E RE S P O N S E 2 (J3 ( m/ ml A * m a x im u m d r illin g c o n d itio n B » m a x im u m o p e r a tin g c o n d itio n H E A V E R ESPO N SE 2 in /.StnlmJnO 067 0.45 L)B » 0.306 wave frequency (radians I sec) T (average zero-up crossing period) s«conds Figure 9: Heave response limits From this set of design criteria workability in operation and survival conditions need to be translated to the motional behaviour input data (natural heave period and second hump heave response). The 8 m significant waves and the one year N orth Sea Storm (i.e. 11 m significant waves) criteria in operating conditions are com bined with allowable strokes of the drill string compensator and the telescopic joint respectively. Presently available equipment has effective strokes of: - 20 ft for the drill string compensator - 45 ft for the telescopic joint. The combination of these values will indi cate tw o points in the heave motion curves in irregular seas as illustrated in figure 9. Based on initial studies, the combination of a 20.5 seconds natural heave period and a response value of 0.46 at the second hump will fulfill the motion requirements. I. Free variables 60 m < deck width < 74 m (due to available building dock width) 0 m < column height 0 m < floater lenght 0 m < floater/column width 0 m < floater height. As explained in section 2.3., the airgap in operating condition is based on approxi mate formulae, and set to be 12 m. 2. Parameters VDL TVL Airgap Height of deck box Bracings: number diameter The full set of input data for the concept design of the DSS-40 was: 4,500 8,300 12 8 4 2.5 ton ton m m m Figure 10: Physical size o f DSS-40 3. Constraints GM operating = 4.00 m GM transient = 0.30 m Natural heave period = 20.5 s Second hump response = 0.46 m/m Transit freeboard = 0.50 m The results of the final design, based on the optimisation program results, are shown in figure 10 and table I. Main characteristics of the design are its steel weight ( 11,500 ton), its operating displacement (39,200 ton) and its overall width (71.25 m). 4.3. Variation study of main input data versus steelweight 4.3.1 Owners requirements (VDL, TVL, workability and stability) Variable Drilling Load In figure 11 the effect of VDL on steel weight is dearly shown: the larger the VDL, the larger the steelweight. Interest ing parameter is the gradient of the curve defined by the increase of steelweight per ton increase of VDL, being 0.253 (ton/ton). SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 33 Korte levertijd is belangrijk (vooral in scheepvaart en industrie) Daarom hebben wij ruim 25 vooraanstaande merken filters en filterelementen op voorraad. Voor een optimale service, leveren wij tevens filters volgens elk model in elk gewenst materiaal. 7 dagen per week, 24 uur per dag IS A C A T E R P IL L A R nacoR >4RLON Cuno VOKES LUBERF1NER flu id te c h BOSCH ucc FAIREY A RLO N M n rl DlillWII) I HUBS HENGST Filtertechnik BOLL & KIRCH REPARATIE SERVICE KANTOOR: Van der Takstraat 72, 3071 LM ROTTERDAM - (010) 412 54 39-412 54 51 Telex 22 099 Lufil nl - Postbus 174 - 3200 AD SPIJKENISSE BIG 34 Total variable load in transit In figure 12. this effect is shown, while the gradient is 0.191 (ton/ton). required motional behaviour level on steelweight, the impact of the owner’s requirements will be discussed. Workability In order to get an insight in the influence of In the design process of the DSS-40 tw o operating conditions are specified, i.e. Rules and Regulations Det norske Veritas American Bureau of Shipping Norwegian Maritime Directorate U.K. Department of Energy United States Coast Guard Principal Dimensions: Length of Main Deck Breadth to Main Deck Depth to Main Deck Depth to Flush Bottom Deck Length of Lower Hull Breadth of Lower Hull Depth of Lower Hull Length of Column Breadth of Column Column Space (Longi) Column Space (Trans.) Draft (Operating) Draft (Survival) Draft (Transit) Capacities: Bulk Mud & Cement Liquid Mud Drill W ater Fuel Oil Potable W ater Brine Sack Storage Drill Pipe Storage Casing Pipe Storage Riser Storage maximum drilling condition (8 m significant waves) and maximum operation (I I m significant waves). The selection of these tw o conditions combined resulted in de sign 2. (Th = 20.5 s and z/Ç = 0.46) (see figure 13). Table I: Technical specifications o f DSS-40 71.25 71.25 43.00 35.00 119.00 13.75 9.00 13.75 13.75 57.50 57.50 23.00 19.00 8.50 800 700 2,440 2,900 420 420 190 390 320 600 SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 m m m m m m m m m m m m m m 233.8 233.8 141.1 1 14.8 390.4 45.1 29.5 45.1 45.1 188.6 188.6 75.5 62.3 27.9 ft) ft) ft) ft) ft) ft) ft) ft) ft) ft) ft) ft) ft) ft) m3 (28,250 f t 3) m 3 ( 4,400 bbl) m* (15,350 bbl) m3 (18,240 bbl) m3 ( 2,640 bbl) m3 ( 2,640 bbl) m2 ( 2,040 ft2) m2 ( 4,200 f t 2) m2 ( 3,440 ft2) m2 ( 6,460 ft2) Variable Load (metric tons) Operating Deck + Column 4,500 Lower Hull 5,500 Mooring Survival 4,500 5,500 T ransit 4,500 1,800 2,000 Design Criteria Operating Water Depth 914 m (3,000 ft) Wind (I min.) 70 knots Wind (I hr.) 60 knots Sig. Wave Height/Period 8 m (26 ft ) / 10 sec. Max. Wave Height 15 m (49 ft) Surface Current 2.5 knots Temperature — 20° C Survival 914 m (3,000 ft) 94 knots 80 knots 18 m (59 ft)/16 sec. 34 m ( I I I ft) 2.5 knots - 20° C Machinery/Equipment/Fittings Anchors 8 - 15 T Mooring Lines 8 - 7 6 mm dia chain x 1,000 m plus 97 mm dia wire x 2,000 m Cranes 2 - 60 T Heli-deck For chinook Accommodation For 100 persons in 2-persons cabins Ballast Pump Room Four (4) Main Generators 6 - 2.500 kW Azimuth Thrusters 4 - 2,200 kW 35 HOEVER DENKT U TE KUNNEN KOMEN ZONDER VERKEERSBORDEN? Om uw produkten efficiënt te kunnen laten expedië ren moet u op een breed terrein over goede informatie beschikken. Wat voor soort transport moet u kiezen? Passen vertrek- en aankomsttijden in uw produktieschema? Waar zijn er havencongesties te verwachten? En wat voor politieke ontwikkelingen kunnen uw imof export beïnvloeden? Vragen waarop het Nieuwsblad Transport u in ex tenso en op zeer actuele wijze antwoord geeft: maar liefst driemaal per week. Nieuwsblad Transport geeft u de goede richting aan. Geïnteresseerd in deze nieuwe krant voor verlader en vervoerder? Bel 010-4053130 voor een vrijblijvende kennis making met dit nieuwsblad. O f schrijf naar: Transportuitgaven B.V. Beurs-World Trade Center Postbus 30180 3001 DD Rotterdam Transport Nieuwsblad 36 The operating conditions are varied as follows: - keep one condition constant, i.e. maxi mum drilling - vary the other one, i.e. maximum operating. The influence of varying the maximum operating condition is shown in figure 13 by selecting the following conditions: - maximum drilling condition constant (8 m waves at 10 s period) - maximum operating condition • 11.7 m waves at I 3.5 s period • 11 m waves at 13 s period • 10.8 m waves at 12.5 s period. The major impact is shown in the steelweight of the unit (105% to 97%). The reduction of maximum operating condi tions allows for a lower second hump and heave period, which accounts for the steelweight reduction. However, the disadvan tage of reducing the maximum operating condition is that the probability of having to disconnect the riser will be some what higher. In this way the owner is able to quantify the pro (lower investment) and the con (lower workability in higher waves). The other variation is by: - maximum condition constant ( I I waves at I 3 s period) - maximum drilling condition: • 8.86 m waves at 11.75 s period • 8.0 m waves at 10 s period • 6.56 m waves at 9.5 s period. The increase of the maximum drilling con dition has a significant impact on steelweight, while the advantage of workability is very minor. Thus, this is not the right direction.The decrease of the drilling con dition has a significant advantage on steelweight combined with a modest decrease of workability. As a conclusion on the variation of owners operational requirements, one can see that the identification of tw o operational con ditions will determine the required w ork ability. Variation of either condition leads Figure 13: W orkability limits versus steel weight T a r f a tlo n In maximum d r i l l i n g c o n d it io n V a r ia tio n 1n maxlmur o p e ra tin g c o n d itio n Maximum o p e ra tin g c o n d itio n c o n s ta n t Maximum d r i l l i n g c o n d it io n c o n s ta n t 11 m waves a t 13 s p e rio d 8 m waves a t 10 s p e rio d Desi gns no. 1 C o n d itio n Waves P e riods maximum o p e ra tin g 11 .7 m 11 m 13.5 s 13 s no. 2 no.3 10.8 m 12.5 m C o m bination o f tw o c o n d itio n s le a d s t o th e f o llo w in g : N a tu ra l heave p e rio d Second hump response 22 s 0 .4 9 2 0.5 s 0 .46 19 s 0 .41 S te e l we1 g h t 12,075 to n 11,518 to n 11,148 to n j 105* 100* 97* 100* 100* 9 9 .8 * D iffe r e n c e t o d e sig n 2 W o r k a b ility as d iff e r e n c e t o d e s ig n 2 * ) Designs no. 4 no. 2 C o n d itio n maxlmim d r 111Ing Waves 8.8 6 m P e riods 11.75 s 8 m 10 s no. 5 6 .5 6 m 9 .5 s C cm b ln a tio n o f two o p e ra tin g c o n d itio n s le a d s t o th e f o llo w in g : N a tu ra l heave p e rio d Second hump response 19 s 0 .2 20.5 s 0 .4 6 22 s 0 .61 S te e l w e ig h t D iffe r e n c e t o d e s ig n 2 W o r k a b ilit y as d iff e r e n c e t o d e s ig n 2 * ) 14,182 to n 123* 100* 11,518 to n 100* 100* 10,424 to n 9 0 .5 * 97* N o te : ») W o r k a b ility SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 m fig u r e s a re based on a one y e a r N o rthsea s c a tte rd la g ra m . Kenmerk van kampioenen. Perfekte voorberei ding, oog voor details, brede ervaring en bovenal de wil om te winnen. W ijkt zijspanracen op dat punt af van lassen? Als bestuurder w ilt u technisch en economisch winnend over de streep. Als bak kenist zorgt FILARC voor een juiste balans om haarscherp op uw doel af te kunnen gaan. Daarbij ook vertrouwend op de 'back-up' van een ervaren pitch-team en eerste klas materialen. Ontwikkeld uit meer dan een halve eeuw Philips* ervaring. Samenspel tussen mens, machine en materialen. Van laselektroden en lasdraad tot lasapparatuur. Een technisch samengaan dat inspi reert tot grote prestaties. U en FILARC. Als kwali teit de maatstaf en grensverlegging het resultaat moet zijn. FILARC Lastechniek B.V. Neutronweg 11, 3542 AH UTRECHT Postbus 8035, 350 3 RA UTRECHT Telefoon: 0 3 0 -4 6 5911, Telex: 4 7 3 0 2 ’ Tradem ark o f P h ilips E xport B V The N e the rlands realized by ship type flat panel construction of bulkheads, avoiding circular or curved members, reducing the number of main construction elements and continuation of bulkheads from floaters through columns to upper hull. Construction width The total allowable width of the rig can be dictated either by the building dock dimen sions or by the available repair docks. In this way, it is very useful to obtain an insight on the effect of width versus steelweight. The variation of allowable width results in an optimum width of around 7 1.8 m as seen in figure 15. A t this particular width, the design is best balanced with respect to floater, column and deck dimensions w ith in the set of design criteria. Figure 15: Construction width versus steel weight 5. C O N C L U S IO N S - The optimisation program is an effective and very useful tool in the concept design of a semi-submersible vessel. - The results of the optimisation program are sufficiently accurate to enter the next design stages, without the danger of major modifications o f the vessel. - The optimisation program can also be used to study the impact of the design criteria and their effects on the overall dimensions of the rig. - The variation study on design criteria showed clearly the effect of the Total Variable Load in transit and overall width versus total steelweight of the rig. - In the optimisation program motional behaviour is treated as a constraint. When design requirements are varied, it is possible to develop designs with the same motional behaviour. - As the optimisation program is relative ly small, it lends itself easily to modifica tions meeting specific requirements of owners and/or builders, for instance varying the number of columns or desig ning accommodation/construction units. to different designs (steelweight) and con sequently to a difference in workability. Stability In figure 14 the effect of the GM variation at operating draft is shown, w ith a gradient of 2.685 ton/cm. This GM value criterion can also be treated as an owners or builders margin in the design. Based on a 4 m GM, 10 percent equals 0.4 m variation resulting in a steel weight increase of 107.0 ton. General conclusions from this part of the variation study are: - the above parameters have a direct influ ence (linear increase) on the overall size of the design - a 10 percent variation of owners re quirements in: SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 • VDL results in steel weight variation of 113 ton • TVL results in steel weight variation of 200 ton • GM results in steel weight variation of 107 ton. - TVL is the most severe one. Thus, the owner should be very cautious in setting his design requirements, as too high figures on some criteria are easily adding steel weight and consequently increase the size of the design and its investment. 4.3.2. Shipyard requirements Ease o f fabrication This item can easier be regarded as a design philosophy than transferred in round fi gures of constraints. Ease of fabrication is Acknowledgement The authors acknowledge the kind permis sion of the management of Sumitomo Heavy Industries and Marine Structure Consultants to publish results of the de velopment of the semi-submersible drilling vessel, DSS-40. References 1. Semi-submersibles: New orders for semi-submersibles are expected as new designs appear. Noroil May 1980. 2. Approximative formulae for calculating the motions of semi-submersibles, by J. A. van Santen, Ocean Engineering, Vol. 12, 1985. 39 One of the tastiest contracts we’ve won. All m anner o f fruits, vegetables, m eat and fish can now enjoy first class travel around the world and, to ensure a sm ooth passage, Anthony Veder B. V have selected BP to supply all the lubrication for the Prins W illem Van Oranje. T h e D utch shipping industry is justifiably proud o f this new ship and they can rest assured that in 300 ports around the world BP can serve her with the highest quality lubricants and expert technical advice. It’s a partnership we hope will provide food for thought. BP marine international <3 ? BP MAATSCHAPPIJ NEDERLAND BV. POSTBUS 1634. 1000 BP AMSTERDAM TEL: 020-5201331 HEAD OFFICE: TEL: 01-920 6512. TELEX: 888811 40 m.v. ’PRINS WILLEM VAN ORANJE ’ The first o f tw o new 350.000 cbft. reefers, built by Yssel-Vliet Combinatie B.V. at their yard Ysselwerf P R IN S W ILLE M VAN O R A N JE R O TTE R D A M m.v. 'PRINS WILLEM VAN ORANJE’ is the first ship of a new series of tw o identical reefers to be completed for account of Anthony Veder Koelvaart Mij. B.V. at Rot terdam. The principal dimensions of m.v. ’PRINS WILLEM VAN ORANJE’ are: - - Length over all: Length b.p.p.: Breadth: Depth to maindeck: Free deckheight: Max. draught: Deadweight: Gross tonnage: Hold capacity floor area: Fuel oil capacity Waterballast Freshwater Lub. oil Service speed SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 118.38 m. 110.22 m. 18.50 m. 12.57 m. 2.20 m. 8.08 m. 6885 metric tons 5966 (’69 convention) Hold no. I - 2514 m3 Hold no. 2 - 2470 m3 Hold no. 3 - 2464 m3 Holdno.4 - 252I m3 974 m2 IO I4m 2 IO I4m 2 IO I6m 2 Total 4018 m2 1027 880 62 43 18 t. t. t. t. kn. The vessel is of a new generator reefervessel type, specially designed for trans porting fruit and deepfrozen products. After the last reefer-vessel, built by the Yssel-Vliet Combinatie, which was a 3deck vessel with a trunk of 0,6 B on top of it, the market was asking more cargohold volume. In this new design the trunkdeck has been extended over the full breadth, resulting in a cargo section of four holds, each divided in four compartments with tw o open decks and one closed deck. This makes the vessel suitable for carrying eight different cargoes with eight different temperatures. The hull form has been optimally designed to obtain sufficient stability at lowest pro pulsion power. The result will give the 41 Congratulations! Prins Willem van Oranje Construction No 230, built by Ysselwerf, by order of the Anthony Veder Group N.V. Equipped with Mitsubishi diesel engine powered gen sets News at the Europort'87 The Mitsubishi S6R series marine engines Introduction on our stand No E 4 14 • • • • • 6 cilinder in line 820 Hp/1500 r.p.m. Compact and light weight Low price Low fuel consumption MHI SAMOFA DIESEL B \ MITSUBISHI DIESEL ENGINES 42 European sales and service subsidiary ol Mitsubishi Heavy Industries-Engine Division-lapan. P.O.Box 20. 3840 AA Harderwijk, The Netherlands. Phone (0)3410-13041, Telex 47330. Telefax (0)3410-19060 vessel a service speed of 18 knots at bananadraught with 90% M.C.R. Watertight bulkheads divide the vessel in forepeak, deeptank, cargo section, engineroom and aftpeak. The accommoda tion has been placed aft and is suitable for 16 persons. The vessel meets the class rules of Bureau Veritas, Class I 3/3 Et, Refriger ated Carrier Deepsea, Ice Class ID + RMC AUT-MS + MOT. Cargo holds All four cargo holds are equipped with hydraulic operated hatches on each deck. The length of the holds has been chosen in such a way that each hold will have about the same floor area. The holds are specially designed for pallet carrying with a mini mum free height of 2.2 m. and strengthened for 2 t/m 2 deckload and suit able for forklift truck operation. The second tweendeck is a closed deck with special designed aluminium gratings, same as fo r the tanktop floor. The first and third tweendeck are constructed as an open grating deck with hardwood pianking. Walls and ceiling of high quality water resistant multiplex (betonplex) in white colour. Each hold is provided with air con nection and high pressure cleaning connec tion for hot and cold water. The lower part of each cargo compartment has steel pro tection against forklift truck damage and is equipped with fittings for car transport. On 1st tweendeck level at starboard-side, each hold has a hydraulic operated side cargo door with a clear opening of 2.40 X 2.20 m. Each tweendeck hatch is provided with a hydraulic operated banana hatch of 2.40 X 2.40 m. clear opening. On the maindeck 48 TEU can be placed, of which 20 can be o f the refrigerated type. For loading and unloading 4 special cargo cranes have been placed in such a way that each crane can reach tw o holds. Cranes are make Nor-Marine, type MCVC 1610-718, with a capacity of 7 tons from 0 - 7 0 m./min. at an outreach of 18 m. Holds are protected against fire by a C 0 2 installation, which is situated in the fore ship. The installation works fully automatic, con trolled by a micro computer system. To obtain sufficient cooling capacity during cooling down, 3 screw compressor sets have been installed. A fter the cooling down period only 2 compressor sets are needed and the third one acts as acomplete stand-by set. In the lower part of each hold 2 finned aircoolers have been placed, one on portside and one on starboard. Above these aircoolers a number of axial ventilators have been placed with 2-speed electric motors. The finned aircoolers are automa tically defrosted by hot gas. Necessary valves, magnetic solenoids and infra-red ice measurement has been installed. Below the aircooler special leak-trays are con structed with heated scupper pipes to the bilge wells in the double bottom. The refrigerant liquid supply to the aircool ers is controlled by thermostatic expan sion valves, tw o sets for each cooler. For air renewal, each compartment has its own fresh air ventilator. The whole installation is regulated and controlled through the Grenco governing system. This system consists of a central computer system for datalogging, printing and controlling the hold temperatures. The system is built up from one master system with a number of local stations. The master station governs all local stations Refrigeration installation The design of the cargo refrigerating plant has been based on following conditions: Total hold capacity: 9970 m3 Number of holds: 8 Different temperatures: 8 Cooling down time: Bananas from + 30°C to + 12°C in 24 hrs. Deciduous cool transport from + 12°C. to 0°C. in 36 hrs. Deepfreeze cargo from -20°C. to 27°C. in 36 hrs. - A ir circulation: Above 0CC : 90/hr. Deepfreeze: 45/hr. - A ir refreshment: 2.6 times per hour. - A ir circulating system: Ductless. - Temperature accuracy: For cool transport: approx. 0 .1°C. For freeze transport: approx. 0.5°C. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 centrally in such a way that it enables: - to operate all in- and outputs of the local stations; - to scan all alarm reports; - to change set points. The control system controls air delivery temperature, defrosting cycle and capacity control of the compressors. The dataloggings are also handled by the central master system with monitor and tw o printers. The following reports can be printed: - special USDA reports from the hold temperatures; - aircooler and status report; - refrigerating data journal. Furthermore in the central control room has been placed a starter and control switchboard as well as a C 0 2 measuring and registration plant. Engineroom m.v. 'PRINS WILLEM VAN ORANJE’ is propelled by a 4-stroke reversible tu r bocharged main diesel engine of make M.A.N., type 7L52/55B, with a continuous output of 6000 kW at 435 r.p.m. The diesel engine is designed for low fuel consumption and runs on heavy fuel oil of 380 cSt. and the consumption under full load is 179 gr/kWh with a tolerance of 3%. The engine drives through a Tacke reduc tion gearbox, type HSU 900 D, with a reduction ratio of 3.11 : I a 4-blade skewed Lips propeller of 4750 mm. diameter with a propeller speed of I 38 r.p.m. The gearbox is provided with built-in thrustbearing, type Mitchell, and a p.t.o. for a 260 kW shaftgenerator for normal ship’s load only. The main engine is electronically and pneumatically controlled from the bridge and engine-controlroom. Electricity is generated by 3 generatorsets, make M.A.N., type 7L20/27, output 630 kW at 900 r.p.m. Each diesel engine drives a 600 kW Indar generator. The diesel sets are automatically started and equipped with loadsharing. The auxiliaries are suitable to burn the same fuel as the main engine and are con nected to the common uni-fuel system, consisting of pressurised mixing tank and 43 Grenco B.V. ^ ‘ congratulates shipowner Anthony Veder on the MS Prins Willem van Oranje and wishes shipowner and crew a safe voyage. G renco R efrigeration supplied the com plete refrigerating plant for the Prins W illem van Oranje. The vessel has a refrigeration capacity of 2,580 kW and a total hold volum e of 9,922 m3 (364,000 cuft), sub-divided into 8 tem perature zones. Refrigeration Grenco B.V. Docterskam pstraat 2 P.O.Box 205 5201 AE ’s-Hertogenbosch Phone 073 - 29 89 11 Fax 073 - 21 03 40 Telex 50147 The N etherlands 44 electronic viscorator. The fuel is separated by tw o fully automatic Alcap separators, make Alfa-Laval, who also delivered the lub. oil separator for the main engine and auxiliaries. Furthermore are installed: Atlas copco starting air and pilot air compressor, a Haworthy sewage installation, a Pasilac freshwater generator, a R.W.O. bilge wa ter separator and U nitor high pressure cleaning units. The cooling water system is designed for central cooling for main engine, auxiliaries and miscellaneous consumers. The system consists of HT and LT coolers, make Gea, with LT pumps, HT pumps and seawater pumps. The system is designed in such a way that in cold condition one o r tw o pumps can be switched off to save energy. Heating of fuel bunkers and accommoda tion is done by a thermal oil system consis ting of a heavy fuel oil burned boiler, make Saarloos, capacity 700 kW and an exhaust gas boiler. The engineroom lay-out meets the clas sification requirements of the Dutch Ship ping Inspectorate, Class 0 + wait-attendance and Bureau Veritas AUT-MS. For alarm and monitoring a C.S.I. Alphaprom installation has been installed with 220 points, incl. level gauging of all tanks. A central sound-insulated controlroom on the first engineroom tweendeck is equip ped with the main switchboard, central alarm system switchboard and computer installation for the reefer plant and a cen tral control desk. The whole engineroom design and lay-out based on a central operation from the controlroom and suitable for unmanned sailing. A c c o m m o d a tio n The accommodation, divided over 4 decks and wheelhouse, is suitable for 16 persons. The maindeck layer is used for a messroom, an office, galley stores, a laundry and a changeroom. On the second deck the officers’ mess and a number of crew cabins are situated. The third and fourth deck are used for officers’ cabins. All cabins are designed with their own toilet cabin arranged in such a way that optimum living and working space is cre ated. All walls and ceilings are sound-insu lated and conform to latest Solas require ments for safety and fire protection. The accommodation is airconditioned with an A.C. installation, suitable for tropi cal conditions. In the wheelhouse a central controldesk with all navigation and manoeuvring equip ment is situated. Also the radioroom is situated on the bridgedeck and consists of main radio sta tion and satcom. For lifesaving equipment an aluminium free fall boat for 20 persons, make Verhoef, is installed. A hydraulic crane is also installed on the aftship for taking the boat out of the water. This crane is also used for storing and launching one of the tw o liferafts, which are also placed on the aftship. The corrosion protection and paint system of the whole vessel is carried out with coatings of Hempel. The navigation bridge consists of the following equipment: - One 3 cm X-band automatic radar with Arpa, make Kelvin Hughes, type Radtrak. - One 10 cm S-band relative motion radar, make Kelvin Hughes, type Rad trak- 16. - One slave indicator, make Kelvin Hughes, model KH-1600 with 12 inch high Milliana monitor. - One satcom installation, make Elektrisk Bureau, type Satcom-3S, complete with monitor, telephone and teleprinter. - One satellite back-up radiostation, make SP radio, 800 Watt. - One facsimile receiver, make JMC, type FX 200. - One navtex receiver, make Lokator, type 2 NL. - One direction finder, make Ramantem, type 982/RH. - One satnav, make Furuno, type FSN-90 with interface to gyro and log. - One Loran-C receiver, make Furuno, type LC-90. - One Decca navigator, make Navstar, type 601-D. - One lifeboat radio, make Skanti, type TRP-I. - Two EPIRB, make Burn dept. - Two mariphones, make SP Radio, type RT-I44C. - One echosounder, make Furuno, type FE-881 Mhz. - One speedlog, make Ben Marine, type Athene. - One Robertspn autopilot AP-9. - One gyro compass, make Hikushin, type CM2-200, with 3 repeaters. - One Robertson hand-control for fol low-up and non folllow-up rudder control. - One magnetic compass, type MK 2, with sub unit MK-2. The vessel is scheduled for delivery end of October 1987. PRINS WILLEM VAN ORANJE LENG TH OVER A L L 117.60 m MOULDED BREADTH 18.50 m. DEPTH M AINDECK 12.56 m. SUMMERDRAUGHT 8.10 m. 7000 I DEADW EIGHT ON SUMMER FREEBOARD NETT HOLD CAPACITY SERVICE SPEED AT BANANA 3 5 5 0 0 0 e ft DRAUGHT 18 kn. m SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 t yssel-vliet combinatie b,v 45 as a result of long-standing experience FT210E consistent research and development ÜUliÖiJCHl'W "f^fTT""587^89j j_!9J_[596I598!599'T* _°1Iftöïy^TöT'^oej 13 AM STELHAL r 6151588 h - :i — i 583 ral '5 9 4 jjj;i I 15771 L58.?J L - - J L_J _ n i 536 [ 535 _____ I Pu^i ,— I 1 579 I «581 538, .J ! ‘ 537 1___ 56 1 I ! ! 540 ; 532 ] |53o[ 529 ; i/ ' 539 I----- 1I 573 I[562 5 6 3 ' I 566 523 ■ [ 520 i i r>56»i 1 , l l 1 j n 1 1 ‘1613« ;S59! I 563 ! L _ J I J r , I 5 6 5 I —1 ! 1— — 1 ^ Ï5 ‘ ? r “T * n 'M w 569 f u L ------- n 558 1 INGANG ' ' '5681 1 I l T-1 I___ U 1-------1 518 i_L"jIfi’J ' '606j899|6 0 6 i"489 j ^ 0'1 I *!J Li‘i 1 I — > 545' r VI 614 1— v 1 1— ' r j_5TU O O *602i 572' i L” 61 ? - - J S ■n(/>eng 4 30 H “C 597 * n i rM ^ n i n '' 531 r «52 7 ' 1 *1- i 612 COj 547 j ;a e c .515 M J JL _ _J l ] p ------ , 1--------- 1 1---1 513 | '550 >53' ,------ i 514 I ^09 . _ _J 1-------------- 1 ï°.j Li« 5 0 8 1 F 5' i j~ 517 7 516 T 51^ . 1 556 501 ^ 1 l[s i0 ; «»1*6 ._ J 1 1----------- 1 . 1 1 1— I— 1 1 • 1 1 402 1 j650|«5l! t _ j. _ j 1 1 1 1 L .-----—1 1------------ 1 1 11 1 . ««". I r -------- 1 1 1 F « 401 I 1 4 0 0 1L _ _ _ J " ; I -----1 * j ' 396 1 ! 396 [ ■] |A B C 1 1 A B Cl L. _ _ J 855, ------1 rJb E F ] 1 0 E F __i 36e! 1 G H 1 • 1 11 ■ * i■ 1 C H L _ ____ 1 1_______ 1 1_____ J 1 ( 385 I—- r §521653! 387 ! 366 ; r 1 L . ___ 1 1--------1 j ' 1 386 1 1• 1 r 389 1 r " pot’** adm r " 1 •>tx**«iy Ib'i — i jS s fi 'I 849 'I -1i «in 630 ,l J 1 1 Hmj L J 'S p - y ‘ L .’ I J f" ! I 1626627, , g21 OOSTHAL i «> s i £ | .o fV L . 1 . J 1-----------1 4 - r i [825j826J ; ,2 3 ; , a f L _ I— i — I I_______ I L * T _ ^ _ 1 INGANG EUBOPAHAL SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 47 TALKING ABOUT SHIPS - ON - SCALE WE KNOW WHAT WE’RE TALKING ABOUT...... Torpedo workshop for Dutch Navy A QUESTION OF KNOW-HOW Oliemans \|M E A D Ship - model builders Streefkerk - Holland 4, Zwanenvliet 2959 CD Streefkerk - Holland phone: (+31 1848) - 1528 48 SPECIAL PRODUCTS OF THE NETHERLANDS SHIPBUILDING INDUSTRY MERCUUR Built by: Royal Schelde in Vlissingen Built for: T h e Royal N etherlan d s N avy The ’Mercuur’ is a ship especially built for the trail of torpedo’s for the submarines and frigates of the Royal Netherlands Navy. The ship is based in Den Helder. The main characteristics are: Lenth o.a. 64.80 m, Length b.p. 57.60 m, Width 12.00 m, Depth to maindeck 7.00 m, Draught (base line) 4.30 m, Draught SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 (sonardome) 5.45 m, Displacement 1400 tons, Accommodation for 39 persons. The ship’s propulsion installation consists of 2 Brons/MAN diesels type 6L20/27 of 600 kW each driving tw o propellers. The electrical energy is produced by three dieselgeneratorsets of 300 kW each. The ’Mercuur’ is equipped with torpedo launching tubes, a special slipway for pick ing up and transporting torpedo’s. On board are several workshops for dismant ling, cleaning and assembly of the to r pedo’s. A full description of this 'torpedo trials vessel’ has been published in a special issue o f’Ship en W erf’ no. 16 of 7th August 1987. 49 tn 1987 door ons gebouwd onder bouwnr. „416” „YE 172” „PIET HEIN” afm. 40 x 10 m. Voor rederij „Mieras” te Arnemuiden In 1986 gebouwd: Theodora /„W R 238” afm. 36 x 9 m voor de heer L. Kooi te Hyppolytushoef Scheepswerf PETERS Postbus 291 8260 AG Kampen (Holland) Haatland Haven 1 Tel. (05202)-15023 Telex 42323 -15708 50 SPECIAL PRODUCTS OF THE NETHERLANDS SHIPBUILDING INDUSTRY YE 172 ’PIET HEIN’ Built by: Laan en Kooy in Den O e v e r Built for: M ieras en Co. B .V. in A rn em u id en The ’Piet Hein’ is a special type of fishery ship specially built for the catch o r 'harvest' of cockles in shallow water. The hull of the ship, which was built by ’Peters Scheepsbouw’ in Kampen, has a length of 40 meters, the breadth is 10 meters, the draught is only 0.50 meters. The engineroom installation consists of 2 SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 Scania diesel engines type DS-1 I with 2 18 kW each and 6 Valmet dieselengines for generators and pumps. The ship has an extensive fishing and fishprocessing installation. A full descrip tion of the vessel has been published in ’Schip en W e rf no. 18 of 4 September 1987. 51 AEG Technologie voor de offshore industrie: Service inbegrepen AEG is uw betrouwbare partner in offshore technologie. Wij bieden full service. Dat wil zeggen toeleve ring, installatie, komplete begelei ding en onderhoud van elektrische apparatuur op het gebied van • energie-opwekking, • energiedistributie, • aandrijving, • besturing, • communicatie, • dataprocessing, • verlichting, enz. enz. De dokumentatie wordt door ons projektgericht samengesteld, operators en crew doorons getraind. Onze dienstverlening staat dag en nacht voor u klaar (7 x 24 uur). De wereldwijde en jarenlange ervaring van AEG en DEBEG op dit terrein hebben een schat aan know-how opgeleverd. Know-how die borg staat voor de hoogst mogelijke betrouwbaarheid en veiligheid. AEG Nederland N.V. Marine & Offshore Systems DEBEG-Division Wilhelminakade; haven 1241, postbus 5115, 3008 AC Rotterdam Tel. 010-4855644 Telefax 010-4846279 Telex 28822 adrd nl. AEG 52 PRODUKT-INFORMATIE VERZORGD DOOR AEG NEDERLAND N.V. A utom atiseren, regelen, bewaken en beveiligen van generator-aggregaten Hoe een generator-aggregaat aangedreven wordt, door een diesel of op een andere manier, het speelt geen rol. Ook niet in welke opstelling, als noodaggregaat - alleen - gezamenlijk met andere aggregaten of in combinatie met het net. Zelfs waar hij opgesteld staat, in een schip - op het land of in een offshore unit, het maakt niets uit. AEG heeft voor alle denkbare combinaties een perfecte oplossing voor het beveiligen bewaken - regelen of zelfs compleet automati seren van uw stroomverzorging. Moeizaam samenstellen en inbouwen van meerdere losse componenten is nu niet meer nodig. AEG levert een compleet geheel, een unit waar alle functies - bedieningen en alarmen opzitten. Een periferie aansluitplaat met stekeraansluitingen staat borg voor een simpele snelle montage. De opbouw en de verschillende mogelijkheden worden onderstaand nader uit eengezet. Automatische stroomverzorgingssysteem GEAPAS. Een volautomatisch bedrijf met vèrschillende generatoren kan worden gereali seerd met het automatische stroomverzorgings systeem dat door AEG in Hamburg is ontwikkeld. Afhankelijk van het gekozen installatieontwerp kan het systeem opgebouwd worden uit de vol gende componenten: * DSG 822: Dieselgenerator controle- en bewakingsunit * WSG 822: Asgenerator controle- en bewakingsunit * TSG 822: Turbogenerator controle- en bewakingsunit * LSG 821/822: Belastingbewakingsunit. (De generatoren worden belastingsafhankelijk bij- of afgeschakeld.) Bij veranderingen van de belasting kan het sys teem automatisch generatoren bij- of afschake len. Tevens worden zowel generatoren als het net bewaakt tegen storingen en in overeenstem ming daarmee maatregelen getroffen om de stroomvoorziening zeker te stellen. Hoofdfuncties zijn: * start en stop van de aggregaten en hun bewa king. * synchronisatie en bijschakelen van de aggre gaten * belastingverdeling * generatorbewaking De 'hardware' van de WSG 822 en TSG 822 is identiek met die van de DSG 822. De verschillen ziften in het programma en de aanduidingen op het front. De software is telkens aangepast aan de specifieke aggregaat-eigenschappen, met individueel instelbare parameters. Geapas systeem met 2 DSG 822 dieseibewakings- en besturingsunit, 1 WSG 822 asgeneratorbewakings- en besturingsunit en 1 LSG 821 belastingbewakingsunit Nadere informatie: Voor scheeps- en offshore-installaties: (010) 4858644, tst. 13. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 19B7 DSG 822 controle unit: diesel start/stop, generatorbeveiliging, synchronisatie en lastverdeling. 53 ALS HET OM OVERLEVEN GAAT! INFLATABLES Sassenheim ~~Bijweglaan F L 3O A TTelefoon ;! 02522 -15590 c. q. 13954 gaarne ontvang ik dokumentatie over FL OA T-reddingvlotten. naam: straat: .................................... postcode: ......................................... plaats:...................................... 54 PRODUKT-INFORMATIE VERZORGD DOOR FLOAT INFLATABLES BV F L O A T IN F L A T A B L E S BV Sinds de oprichting van FLOAT in 1980 heeft de onderneming zich in hoofdzaak geconcentreerd op de vervaardiging van reddingvlotten t.b.v. de watersport. Thans, in 1987, bestaat de serie uit 3 typen met capaciteiten van 4 t/m 10 personen. Als één der eerste fabrikanten in Europa heeft FLOAT in de door haar geproduceerde viotten de re sultaten verwerkt van de door het Engelse Maritime Institute uitgevoer de proeven m.b.t. de stabiliteit en bruikbaarheid van jacht-reddingvlotten. De typen STRATUS en NIMBUS zijn sinds 1984 standaard voorzien van Boarding-ramp, Electronische Flitser, Conisch Drijfanker, en Grote Stabiliteitszakken. Ook het FLOAT reddingvest (op blaasbaar) heeft een speciale plaats op de Nederlandse markt. Het basis type HF82 werd n.l. onder de type aanduiding ES 82 als standaard vest gekozen voor de Nederlandse Loodsen. Voor de beroepsvaart is FLOAT zich sinds 1984 tevens gaan specialise ren op de fabricage van 'collars' voor de bekende Rigid-lnflatables. Naast de standaard kleinere collars voor HURRICANE en LE COMTE ’rigids’ werden ook de grote en spe SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 ciale collars vervaardigd voor de ’BEATRIX’ van de K.Z.H.M.R.S. en de HALMATICS van het Belgische Reddingswezen. De nieuwe reddingboot van de K.N.Z.H.R.M. met een lengte van 14.65 m zal eveneens met een FLOAT collar worden uitgerust. O U Behalve de genoemde collars ver vaardigt FLOAT eveneens z.g. floa ting bags met liftvermogens van 2.500 tot 15.000 Kg. en kleine fen ders voor de watersport. De FLOAT 505 hulpverleningsboot zal binnenkort worden geïntrodu ceerd. Het spreekt vanzelf dat FLOAT zich ook bezig houdt met het op deskun dige wijze inspecteren van alle mer ken jacht-reddingvlotten en reddingvesten alsmede het onderhoud en reparatie van rubberboten en overle vingspakket Sinds juni 1985 is er onder de naam SERVI-FLOAT tevens een 'steun punt' aan de Noorderhaven 61 in HARLINGEN. 55 OKAY B.V. P.O. Box 27250 1002 AE AMSTERDAM HOLLAND OKAY E N G IN E E R IN G . M A N A G E M E N T & C O N S U L T A N T S R E P R E S E N T A T IV E OF Giesselbach PHONE 31-(0)20-34 76 11 FAX 31-(0)20-37 02 76 TELEX 15224 gibagnl ElectroEngineenng De naam OKAY/CEE slaat voor een team enthousiaste mede werkers, die gezamenlijk voor de innovatie hebben gezorgd. Daarom haalt u voor uw elektro-technische installatie altijd een expert in huis. Meer dan 60 specialisten staan voor u klaar waarbij hard werken ook buiten de kantooruren, be trouwbaarheid en service tot de meest ouderwetse zaken behoren. XHnenu nçuuo Ons bureau moest veelal bewijzen, dat de theoretische know-how in de praktijk moest worden gerealiseerd. Speci fiek toen de activiteiten van het speuren naar olie op het continentale plat en de exploitatie hiervan om meer geavan ceerde technieken vroegen. Hiermee onderstrepen wij dat voor Uw probleem, waarvoor theoretische oplossingen zijn bedacht, onze engineers de praktische toepasbaarheid ef fectueren. LEVERINGSPROGRAMMA: - PLC besturingen, - Statische W-L regelingen, - Complete elektrische installaties voor: kranen, schepen, lieren, transportinstallaties, platforms etc., - Automatisering en beveiligingssystemen voor: kranen, transportinstallaties etc., - SERVICE ALL OVER THE WORLD 56 PRODUKT-INFORMATiE VERZORGD DOOR OKAY B.V. O kay Giesselbach Electro Engineering innovatie in electro engineering De geschiedenis van Giesselbach beslaat een tijdperk van 31 jaar. Door alle ontwikke lingen, welke wij in die drie decennia be leefden, loopt een rode draad: het benutten en het gebruiken van elektrische kracht. Te land en ter zee. Vanuit ons installatiebedrijf groeiden wij rond 1970 automatisch naar ontwerpbureau. De activiteiten van het speuren naar olie en gas op het continenta le plat en de exploitatie van gevonden Noordzee-energie versnelden de groei van deze afdeling. Enkele van de speciale produkten, welke wij in de afgelopen jaren in nauwe samen werking met onze opdrachtgevers, ontwik kelden, zijn thans rijp voor ruimere toepas sing, Deze produkten hebben wij onderge bracht in een standaardprogramma. Hier door zijn wij in staat efficiënt te fabriceren met een constante kwaliteit tegen accepta bele prijzen. Giesselbach levert u niet alleen de oplos sing voor uw elektrotechnisch vraagstuk van vandaag maar ook van morgen. Door de toepassing van nieuwe technieken is er al ervaring voorhanden op het gebied van micro-processing. Geprogrammeerde c.q. gestuurde elektrische installaties werden met volledig aangepaste systemen door ons geplaatst in de recycling- en bio-industrie. Doordat wij doorgaans z.g. maatpak ken moeten leveren is ons werkterrein zeer veelzijdig. De off-shore branche biedt in deze overzichtsbrochure mogelijk de meest spectaculaire beelden, maar ook rekenen wij af met storingen in de meest eenvoudige installaties. Omdat wij geen vast leveringsprogramma hebben, kunnen wij u objectief adviseren welk produkt ons inziens de voorkeur geniet voor installatie. Dit kan van project tot project variëren. G renzeloze service Hoewel het hoofdkantoor van OKAY bv Giesselbach Electro Engineering in Am sterdam is gevestigd, kent het werkterrein geen grens. Juist omdat veel opdrachtge SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 vers uit de scheepvaart en offshore komen, gelden voor het OKAY/G.E.E.-team geen grenzen. 57 the marine flooring specialist Smits Neuchâtel is dè erkende specialist op het gebied van maritieme vloeren. Levert accommodatievloeren, buitendekbedekkingen, ruimvloeren en conserveringen. scheepsaccommodatievloeren DURAC ondervloeren op latexbasis THEINA thermisch isolerende ondervloeren FIPRA brandveilige ondervloeren SOPRA geluidwerende ondervloeren FASPRA EN brandveilige geluidwerende SOLASDEK-R.W. klasse A-60 ondervloeren Tevens Linoleum - PVC. - Rubber en/of Tapijtvloerbedekkingen CERAMIC D.G.H. tegelvloeren op zandcement en latex-cement ondervloeren WESPA kunststofvloeren in natte ruimten HYPOX gietvloeren op epoxybasis SOLVOLAN gietvloeren op polyurethaanbasis scheepsbuitendekken tankconserveringen DURAS HYPOX POLYOEK SOLVOLAN-S PERMANENT RS asfaltcovering covering op epoxybasis covering op polyurethaanbasis covering met rubbergranulaat en kunst stof afwerklaag. BITUFILM AB HULLFAIRING warme bitumen voor ballast en drinkwatertanks koude bitumen voor droge tanks en achter beschieting compound voor roeren, uithouders, beunwanden, enz. scheepsruimvloeren Vertegenwoordigingen SERDAT SERDAC In Nederland vertegenwoordigen wij: DURASTIC LTD, Burdett Road, Londen E14 asfalt met roosterwapening op tanktop koelruimvloeren Wilt u meer weten over het leveringsprogramma? Graag zenden wij u uitvoerige documentatie plus certifi caten, die stuk voor stuk een aanbeveling zijn. Of wilt u meteen een gedegen advies voor een bepaald project? Wij zijn niet verder weg dan uw telefoon. smits neuchatel bv marconibaan 36, postbus 30, 3430 aa nieuwegein 58 telefax 03402-42854 telex 47615 telefoon: 03402 - 3 20 04 PRODUKT-INFORMATIE VERZORGD DOOR SMITS NEUCHÂTEL B.V. scheepsvloeren een vak apart scheepsdekken Scheepsdekken stellen zeer specifieke eisen aan de afwerking, zowel in de ac comm odatie als daarbuiten. Smits Neuchatel heeft hiervoor een breed scala van produkten en diensten. Accommodatievloeren: van latex-cement vloeren tot hoog gekwalificeerde vloerafwerkingen, brand- en geluidwerend, decoratief afgewerkt met p.v.c., li noleum, tapijt, rubber of naadloze kunst stof vloeren, dan wel met keramische of marmer tegels. Speciale afwerkingen worden daarbij niet uit de weg gegaan, zoals blijkt uit de interieurfoto’s van de ferry 'Koningin Beatrix’. Scheepvaartinspectie, en zijn goedge keurd door vooraanstaande classificatiebureau’s. Buitendekken: hiervoor beschikt Smits Neuchatel over kwalitatief hoogwaardige kunststofbedekking op basis van rubber, polyurethaan en epoxy. Zo werd onder andere voor de Koninklij- ke Nederlandse Marine het Hypox Dekbedekkingssysteem ontwikkeld: een se rie van op elkaar afgestemde produkten, waardoor dekken onder alle klimatologi sche omstandigheden een sterke, corrosiebestendige, brandwerende en antislip bescherming krijgen. Alles wat op maritiem gebied gebouwd wordt kan door Smits Neuchatel voor zien worden van dek- en vloerbedekkin gen: booreilanden en andere offshoreconstructies, supply-vessels, sche pen voor de grote vaart, sleepboten, hektrawlers, binnenvaart-, kustvaart- en passagiersschepen, fregatten, onderzee boten. De afwerkingen zijn grotendeels ontwik keld in eigen laboratorium, in nauw overleg met TNO en de Nederlandse Smits Neuchatel heeft een jarenlange ervaring in de nieuwbouw- en renovatiesector, ter land en ter zee. En: Smits Neuchatel is nooit verder weg dan de dichtstbijzijnde telefoon! smits neuchatel bv postbus 30 3430 aa nieuwegein marconibaan 36 - telefax 03402-42854 telefoon 03402 - 3 20 04 - telex 47615 SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987 59 PROBLEEMLOOS LASSEN., Smitweld heeft precies die elektroden en toevoegmaterialen die het meest geschikt zijn voor üw werk. Ga maar na: we maken bij voorbeeld meer dan 80 verschil lende elektroden, poeders en gevulde draden. Allemaal grondig getest en zeer coastant in gedrag. En mocht u toch een keer voor een probleem staan, dan adviseren wij u graag. Want dank zij gedegen research en rijke ervaring blijken we steeds weer in staat een oplos sing te vinden. Smitweld dus. Niet alleen als het gaat om de juiste elektroden, gevulde draden of poeders. Ook op het gebied van apparatuur kunnen wij u uitstekend van dienst zijn. SMITWELD M em ber of the NORWELD G roup S m i r o el d bv, P o s t b u s 2 5 5 , 65iX) A C I N i j m e g e n ! T e l . 0 8 0 - 522911. PRODUKT-INFORMATIE VERZORGD DOOR SMITWELD B.V. SMITWELD 60 ja a r la s e rva rin g De naam SMITWELD klinkt velen die werk zaam zijn in de lasindustrie, vertrouwd in de oren. Dat is niet zo verwonderlijk, want dit Nijmeegse bedrijf is de grootste producent van laselektroden en -poeders in Neder land. En SMITWELD draait al zo'n zes tig jaar mee. In West-Europa bezit het be drijf een sterke positie op het gebied van lastoevoegmaterialen voor speciale toe passingen; denk daarbij aan roest- en hittevast staal, duplex staal en cryogene instal laties. In het begin van de jaren '80 ontwik kelde SMITWELD het EMR-Sahara con cept: lasmateriaal met een bijzondere on gevoeligheid voor vocht. Het leveringsprogramma omvat verder een breed scala aan stroombronnen en randapparatuur voor handlassen, MIG-, TIG-, plasma- en OP-lassen. Een belang rijk aandeel van de bedrijfsactiviteiten speelt zich af rondom de innovatie van Produkten en processen, en het begelei den van afnemers die zich willen richten op mechanisering en automatisering van de produktie, bijvoorbeeld met sensortechniek. De computergestuurde lassimulator die SMITWELD geheel in eigen beheer heeft ontwikkeld, wordt door instituten en bedrijven over de gehele wereld gekocht. SMITWELD levert ook een compleet as sortiment MIG- en TIG-draad, apparatuur voor het positioneren en manipuleren van werkstukken, flexibele systemen voor het afzuigen van lasrook, en allerhande hulp middelen. Een aparte afdeling houdt zich SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 bezig met ontwikkelen van externe cursus sen op lastechnisch gebied, waarbij het accent op de praktische toepassing ligt. Lastoevoegmaterialen en -machines van SMITWELD vinden hun weg naar uiteenlo pende takken van industrie. Een greep uit het afzetgebied: de bouw van chemicaliëntankers, de schuiven van de Oosterscheldedam, dikwandige pijpsystemen van du plex staal, een twintig meter hoge roestvaststaal plastiek, boorplatform in de Noordzee. Het in 1927 opgerichte bedrijf telt nu rond de vierhonderd medewerkers. Twintig pro cent daarvan is werkzaam in de sfeer van research & development. Dat percentage illustreert het grote belang dat SMITWELD hecht aan het vooruitlopen op nieuwe ontwikkelingen in de verbin dingstechniek. Zo wordt de know how, op gebouwd in meer dan een halve eeuw, geconsolideerd en verder versterkt. De recente geschiedenis van het bedrijf kenmerkt zich door modernisering, de ont plooiing van nieuwe activiteiten en een toe nemende oriëntatie op de internationale markt. In 1981 werd een nieuw fabrieks complex geopend dat een van Europa’s modernste laslaboratoria huisvest. Voor grondstoffenanalyse is onder andere een uiterst nauwkeurige emissiespectrometer beschikbaar. In hetzelfde jaar nam de produktie-afdeling een automatische menginstallatie in gebruik voor de aanmaak van de bekleding der laselektroden. De computer- besturing daarvan garandeert een con stante en precieze reproduceerbaarheid. Behalve de fabrieken bevinden zich in Nij megen ook de verkooporganisaties voor binnen- en buitenland: regionale kantoren zijn gevestigd in Amsterdam, Groningen en Barendrecht. In Duitsland en België opere ren zelfstandige verkooporganisaties. Smitweld is onderdeel van de Norweld Groep met vestigingen in Noorwegen, Zweden, Denemarken, Engeland, Duits land en België. Sinds 1983 produceert Smitweld in samen werking met het amerikaanse Alloy Rods gevulde draad voor de europese markt. Nadat in 1983 het EMR-Sahara concept werd geïntroduceerd, kwam Smitweld be gin 1987 op de markt met het revolutionaire Sahara ReadyPack. Dit is een vacuüm ge trokken aluminium pak met EMR-Sahara elektroden. Hierbij behouden de elektro den hun uitstekende EMR-eigenschappen tot op de lasplaats. 61 Steel hatchcovers and Ro-Ro equipment Transport Efficiency, 20 years specialized in actual design and construction of: Hatchcovers for all types of ships of all sizes. Doors, Bow-visors, Ramps etc. for Ferries. Link-Spans etc. Transport Efficiency 20 years of experience * r in design and construction. 62 t €I IB H H ■ mm I Transport Efficiency b.v. R egattaw eg 11 9731 AJ G roningen The Netherlands Tel. 050-413000 Telex 53927 te nl Telefax 050-411592 PRODUKT-INFORMATIE VERZORGD DOOR TRANSPORT EFFICIENCY Transport Efficiency B. V. is van huis uit leverancier van stalen scheepsluiken voor allerlei zeegaande schepen. De stap naar leveranties voor Ro-Ro schepen was jaren geleden een voor de hand liggende zaak. Als gevolg daarvan begon Transport Efficiency met het ontwerp, verkoop en het (laten) bouwen van zgn. Linkspans of wel Ro-Ro bruggen. De meest recente is de Ro-Ro brug voor Ford Engeland te Dagenham die de brug gebruikt voor de aanvoer van in speciale Fligh-Cube Trailers verpakte assemblage onderdelen voor de bekende Ford-modellen. De laatste ontwikkeling bij T.E. is de uitbreiding van de engineeringsafdeling. Deze uitbreiding houdt in, dat er nu mogelijkheden voor T.E. aanwezig zijn om naast de bovengenoemde aktiviteiten ook aan de scheepsbouw in het algemeen complete constructie tekeningen te kunnen leveren op basis van een ontwerp. Tevens wordt gewerkt aan Engineering op het gebied dat buiten de scheepsbouw ligt en de eerste stappen zijn reeds succesvo! gebleken. Ook is de verkoop van de lieren van Ten Hom Machine en Lierenfabriek B.V. bij T.E. ondergebracht sinds de toetreding van Ten Horn tot de Cono Industrie Groep te Groningen, waarvan ook T.E. met een zevental andere bedrijven deel uitmaakt. Bij Transport Efficiency B.V. ziet men de toekomst dan ook met vertrouwen tegemoet. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987 63 LIJST VAN ADVERTEERDERS 56 en 57 AEG Nederland Marine S e rvice 52 en 53 Okay B.V./Giesselbach ................... Oliemans Scheepsmodelbouw................. 48 AGAM Motoren B.V..................................... 4 Peters Scheepsbouw B.V........................... 50 Roestvrij B.V., Handelmij .......................... Rotterdamsch Zandstraal- en 18Schildersbedrijf........................................... 16 BP Marine International ............................ 40 DAF Diesel .................................................. 8 Esab Nederland B.V....................................... Schreuder & Co........................................... 30 Sempress B.V., M achinefabriek............... 26 Smits Neuchatel B.V......................... 58 en 59 Smitweld B.V..................................... 60 en 61 S p e rry ........................................................... 24 38 Filarc Lastechniek B.V................................ Float Inflatables .................. 54 en 55 Geveke Motoren en Grondverzet B.V 2 omslag Gowrings Continental B.V 3 omslag Grenco B.V.................................................. .. 44 Johnson & Co. B.V., A ................... Transport Efficiency B.V................ . 62 en 63 Transportuitgaven B.V. .......................... 36 10 en 11 Lubrafil B.V................................................... 34 Man Rollo B.V.............................................. MHI Samofa Diesel B.V.............................. 46 42 Niestern Sander B.V....................................... Uden Marine & Eng., van ......................... Uittenbogaart, B.V. Technisch Bureau .... Wartsila Diesel ................ Westfalia Separator Nederland B.V.................................. 32 28 3 4 omslag 12 IJsselwerf B.V................................ 64 22 frontpagina
© Copyright 2024 ExpyDoc