SCHIP EN WERF - SWZ Maritime

INFO-SPECIAL VOOR
Schip en W e rf - O fficieel orgaan van
de Nederlandse Vereniging van Technici op
Scheepvaartgebied
De Centrale Bond van Scheepsbouwmees­
ters in Nederland CEBOSINE
Het M aritiem Research Instituut Nederland
MARIN.
MARmEME-EN OffSHORHEGHNIEK
SCHIP EN WERF
Verschijnt vrijdags om de 14 dagen
Redactie
Ir. J. N. Joustra, P. A. Luikenaar,
Dr. ir. K. J. Saurwalt en Ing. C. Dam
Redactie-adres
SHIP PRODUCTION’
Heemraadssingel 193,
3023 CB Rotterdam
telefoon 010-4762333
The Search fo r Specialization in Unique P roduct Manufacturing
Voor advertenties, abonnementen
en losse num m ers
Uitgevers W y t & Zonen b.v.
Pieter de Hoochweg I I I
3024 BG Rotterdam
Postbus 268, 3000 A G Rotterdam
telefoon 010-4762566*
telefax 010-4762315
telex 21403
postgiro 58458
by; Prof. Ir. S. Hengst* *
SYNOPSIS
The shipbuilding industry is usually considered as unique product manufacturing,
characterized by a labour intensive, custom built approach. The production process has,
up till now, been improved by introducing new fabrication technologies, however,
without changing the basic organization o f the process. Cost savings were mostly realized
by optimizing and improving certain stages in the production process such as numerically
controlled processing o f the préfabrication, panel-line assembly, pre-outfitting o f blocks
etc. Based on manhours per compensated gross ton the productivity o f some European
shipyards is comparable to Japanese yards.
A t the same time new shipyards are emerging in the Newly Industrializing Countries,
applying low labour cost in combination with advanced technologies, taking away from
the Japanese yards that part o f the international market, which was lost during the last
decades, by the European yards. In strategical terms: new entrants in the market are not
only a threat but also a fact.
A number o f the factors which are preventing European yards to obtain an acceptable
market position are not related to shipyard organization o r productivity and cannot be
influenced by the European shipbuilders anymore. The actually depressed market, in
combination with the above mentioned increase in shipbuilding capacity, makes it
particularly difficult for the European shipyards to survive without government support.
As a result the shipbuilding capacity in Western Europe has been reduced drastically. The
threat o f this development is the loss o f know-how on the middle-long term, which in
combination with e.g. the loss o f experience in shipmanufacturing and a reduction in
efforts in the field o f Research and Development w ill finally make Western Europe
entirely dependent on the Far-East where it concerns the ship design and building, and
even, on the longer term, ship operation, particularly where it concerns technology.
Which ways and means are available to change the process o f ship production from the
conventional manufacturing methods into 'advanced ship production7 In order to
establish what will be required to change from conventional manufacturing methods to
more sophisticated production techniques some differences in
- unique product manufacturing
Is it still possible to
- series production
- reduce costs
- mass production and
- improve quality
- process industry
- realize shorter deliveries and
will be discussed.
- satisfy the customers ' needs
Abonnementen
Jaarabonnement 1987
ƒ 78,25
buiten Nederland
ƒ124,50
(alle prijzen incl. BTW )
Bij correspondentie inzake abonnementen
s.v.p. het 8-cijferige abonnementsnummer
vermelden. (Zie adreswikkel.)
Vormgeving en druk
Drukkerij W y t & Zonen b.v.
ISSN 0036 - 6099
Ysselwerf B.V.
Scheepswerf en Machinefabriek
Ijsseldijk 97
2901 BR Capelle a/d IJssel, Holland
Postbus 272
2900 AG Capelle a/d IJssel, Holland
Telefoon 010 - 45 95 100
Telex 24660 yw erf
Telefax 010 - 45 85 136
Redactionele bijdragen
Ship production
I
A new approach to semi-submersibles
I3
Optimisation o f semi-submersibles
design w ith constraints on motional
behaviour and fabrication
23
m.v. Prins W illem van Oranje
4I
Lijst van adverteerders
64
by introducing basic changes in the construction and production methods, and organiza­
tion o f shipyards, using the same type o f material and componentsI O r do we have to
develop entirely new products, both from the point o f view o f materials as well as design.
This paper will lim it itself to the construction and production o f ships with the same
materials and components as applied today. First the market position will be discussed,
then factors which influence the design by imposing manufacturing requirements will be
analyzed leading to recommendations to establish the priorities for research and
development.
* Paper presented at the 6th WEMT Symposium 'Advances in Ship Design and Produc­
tion’ Travemünde 2-5 June 1987.
** Delfts University of Technology, department of Maritime Technology.
1
In Japan exists a very close co-operation between shipyard and
shipyard suppliers. Subcontractors are working in a very close
relationship with the shipyard and are assisting the shipyard in
finding new techniques, ways and means to reduce costs (fig. 2).
Japanese shipyards are also working in a captive market, where it
concerns the home market and the barterdeal-market. As a result
nearly all vessels for Japanese owners have been built by Japanese
shipyards. Moreover, these shipowners form a part of the same
industrial conglomerate as the shipbuilders. In this way the threat
of new entrants and the development of substitute products or
services is limited or controlled. Under these conditions competi­
tive forces are not working freely, because non-Japanese firms
have no possibility to compete. On the other hand the rivalry
between the Japanese shipbuilders keeps the prices at competitive
levels.
The situation in Europe (fig. 3) is entirely different: the industrial
competition is spoiled by governmental subsidies which are - in
many forms - supplied to shipowners, shipbuilders or even some­
times to sub-suppliers. The result is an industry where real
industrial competition does not exist anymore and where possible
opportunities to make new entries in the market are kept hidden
or remain unused. Some of these opportunities are:
- the introduction of economy of scale in research and develop­
ment as well as in manufacturing,
- the search for the reduction of joint costs. An example is the
intensifying of e.g. préfabrication or panel-line fabrication,
- improving the relationship between shipowners and shipbuil­
ders in Europe with the aim to jointly develop new products on
the long term.
The threat might be that advanced technologies are transferred
to yards elswhere in the world by the shipowners. This will
require an appropriate answer by a joint operation from both
suppliers and shipbuilders e.g. combined international spare
part services and maintenance,
MARKET A N D INDUSTRIAL C O M P E TITIO N
Among the many factors which are influencing the competition
between companies, Porter ( I) identified the following main
driving industrial forces:
- the rivalry and competition between the companies,
- the potential entrants of new competitors into the market,
- the threat of substitute products or services,
- the bargaining position of the supplying industry.
- the bargaining position of the buyers (i.e. the shipowners).
As mentioned above also a new force entered into the competi­
tion: financial support by governments (fig. I ).
Considering these forces in the industrial competition Porter's
theory confirms, among other things, what everybody in the ship’s
business knows i.e. that the loss of market of the European
shipbuilding industry has been caused by the new entrants Japan
and Korea.
What is the influence of the other forces, and how does the
industry respond?
The supplying industry - to the shipbuilders - followed the
shipowners, first to Japan and now to Korea, however, with the
results that also they, in their own markets, are rapidly confronted
with the threat of new entrants for their products from Japanese
and Korean manufacturing.
Due to the very slow changing of the products (2) the threat of
substitute products o r services is growing gradual ly and slowly. An
example is the development of Ro/Ro’s and containerships. The
selling of ships into the second hand market - ships which are not
disappearing from the transportation market, are adding tonnage
and at the same time creating a substitute service in the trans­
portation sector - leads to new entrants coming into the market,
stimulated by the sellers (shipowners) while they were buying
larger, more economical and advanced ships.
2
Fig. 2. Strengths o f the Far East
STRENGTHS OF THE FAR EAST
•
CREATION OF CAPTIVE MARKETS
home m arke t
-
b a rte r deals
(strong trade organizations are
a p a rt of in d u s tria l conglom erates)
fierce "lo c a l" co m petitio n
m a rk e t forces are w orking
-
in te rn a tio n a l co m p e titio n is
kept out of the game
•
STRONG COOPERATION
BETWEEN
SHIPYARDS AND SUBCONTRACTORS
new technologies
cost savings
•
POWERFULL, LARGE, DIVERSIFIED
HEAVY INDUSTRIES
THE REALLY
• Thick-Pad bearing
technology is the revo­
lu tio n a ry concept for
bearing reliability.
• T w in injection en­
sures the lowest fuel
consum ption and re­
liable combustion on
really heavy fuels.
• S w irlE x tu rb o ­
charging provides for
reliable low-load per­
form ance and low fuel
consumption.
WARTSILA [I
Oy W artsila Ab, Vasa Factory
P.O.Box 244, SF-65101 Vaasa, Finland
Tel. +358-61-242111, Telex 74250 w va sf. Telecopier ->-358-61-111 906
W artsila Diesel B Y , P.O.Box 19066, 3501 DB U trecht, Tel.
(030) 332144, Telex 47577 wartd nl, Telecopier (030) 340870
• Anti-Shake technol­
ogy incorporates rigid
engine structure, full
balancing and an option
fo r resilient m ounting.
A ll m ake fo r onboard
com fort.
Compact in Size...
Great in
Performance,
The demand for compact engines
offering high power ratings and
operating economy requires con­
tinuous development in the field of exhaust turbocharging. Two-stage
supercharging by several controllable turbocharger groups as used on the
Series 1163 engine furnishes ample proof of the high technical standard
achieved by MTU. The Sequential Turbocharging System (STS) enables
charger group ON/OFF control in response to
the power and combustion air requirements,
w ith the resultant benefits of lower thermal
loads, reduced fuel consumption and a broader
operating range.
MTU 20V 1163 TB93 engine develop­
ing 7400 kW (10000 mHP). The 1163
series includes 12,16 and 20-cylinder
models with power ratings from 2200
to 7400 kW (3 000- 10000 mHP).
Major applications are marine pro­
pulsion, rail traction and electricity
generation.
4
MTU Motoren - und Turbinen - Union Friedrichshafen GmbH
Sole representative for the Netherlands:
Goudsesingel 214, 3011 KD Rotterdam-Holland,
Telephone 010-414.9755. Telex 22647, Fax 010-414.0740.
- the development of uniform European standards by shipown­
ers, suppliers and shipyards leading to a reduction in costs of
maintenance for shipowners, training of crews for ’high tech’
installation, etc. The target is to limit the possibilities for the
owners to switch too easily to other products, particularly
when sophisticated equipment, in view of (unavoidable) re­
duced manning, has been installed onboard. The attention
should be focussed on those items of ship's operation which are
cost-sensitive.
The problem for the industry is that product know-how or designs
can hardly be kept proprietary by applying patents or secrecy
agreements. Moreover the importance of the geographical loca­
tion of a shipyard (or even a shiprepair yard) is decreasing.
Shipowners are similarly struggling in an international competitive
industry and are not in a position to create a commercial advantage
from an - apparently attractive - geographical location.
Finally experience. The developments in Korea show that expe­
rience is - on the long term - not resulting in a strategic advantage
for a shipyard, or a significant lead over the competition. An
example:
In 1969 the fastest containerships in the world, the SL-7’s for SeaLand (33 knots 120.000 H.P.) were ordered in European ship­
yards. One of the major reasons was that the European shipbuil­
ding industry with regard to quality and special construction
techniques, ranked among the best in the world. Nowadays no
shipowner would hesitate and entrust the same order to a Korean
shipyard which is only existing since 1980.
The conclusion is that if the European shipbuilding industry will
have to create a chance to remain in the market, government
subsidy will only be a short term solution, unless it will be accepted
as a ’usual’ way to keep an industry alive.
The actual national policies are probably described properly by:
’the doctors are stating that the operation was difficult but
successful, while the patient is slowly dying, unnoticed’. On the
Fig. 3. European scenery
EUROPEAN SCENERY
1.
A "BALL - GAME" OF SUBSIDIES
2. NO FREE "LOCAL" MARKET
3. EUROPEAN MARKET IS
DIVIDED
A. NO COMMON "TRADING POLICY"
5.
POLICIES
DIFFER FROM
coun try to
country
and
s ta te to s ta te
6. THE EUROPEAN
CIRCUMSTANCES
ARE IDEAL FOR FAR EAST
COMPETITION WHO EVEN DO
long and middle long term other ways and means will have to be
found to establish a shipbuilding industry which is competitive in
the international market.
Where the threat of new entrants cannot be avoided and the
international competition is unlikely to be reduced, the search for
revival-possibilities must be intensified. Areas of interest are:
- Improve or change the design of the ships in such a way that the
threat of new products or substitutes becomes difficult to
realize;
- Strengthen the relationship with the shipowners to an extent
that high entry barriers are becoming a ’fact of life’ for the
competition;
- Create a strong relationship between suppliers and subcontrac­
tors on one side and the shipbuilding industry on the other side,
thus providing a strong economical force;
- Change, or at least start working, into a direction, whereby the
structure of the West-European shipbuilding industry will
convert itself (on the long term) into an industry that is able to
provide entry barriers for the competition.
Porter (I) describes some major sources for barriers to entry:
1. Economies of Scale
One aspect can be found in Japan and Korea where large con­
glomerates are providing a diversified production and manufactur­
ing set-up containing many aspects of the Heavy Industry. How­
ever, economies of scale can be found in any functional area or part
of a business. The ultimate goal of economy of scale is to reduce the
unit cost of a product or a part of a product. So is vertical
integration - i.e. successive stages of production o r distribution
are in one hand or combined — able to create entry barriers.
2. Product Differentiation
Product differentiation is described normally as ’brand identifica­
tion’ combined with a certain loyalty of the customer. Investments
to set up a brand name are usually limited to the consumer market
and hardly possible in the market of capital goods.
3. Capital Requirements
An entry barrier to the market can be provided when large capital
requirements are necessary to enter into a market. This can be
related to cost for research and development but also to major
investments for the set-up of a manufacturing or fabrication site.
The major companies in the shipbuilding industry located in the Far
East are corporations having the financial resources to generate
almost any investment. This means that the capital requirements
will hardly provide for a very successful entrance barrier for the
shipbuilding industry in Western Europe.
4. Switching Costs
Switching costs are related to one time costs which face the buyer
if he is changing from one product to another. The relationship
subcontractor-equipment supplier to the shipbuilding industry is
in this case of great importance. Particularly when the shipowners
will start to use advanced equipment in order to operate the vessel
with minimum crew, the quality of the crew and training the crew
to operate the ship will increase the need to supply the shipowner
with identical operating systems making it possible to change
crews without any operational problems. In case West European
shipbuilders will not timely enter this type of market, the cost of
switching may well be an argument against the application or use of
European-built ships.
NOT HAVE TO DIVIDE
IN ORDER TO REIGN
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
5. Access to Distribution Channels
It is clear that a good relationship with the owners is creating an
entry barrier for the competition.
5
6. Cost Advantages Independent of Scale
Some aspects are:
- favourable access to raw materials,
- favourable geographical locations,
- proprietary product technology,
- learning or experience curves.
When analyzing these factors one may conclude that both the
Japanese and Korean Heavy Industries are utilizing the advantages
of some of these aspects with skill e.g. a strategic week - the need
for raw materials - is in combination with:
1. the geographical location of Japan,
2. the potential of new technologies,
transferred into a position, an element of strength and the
possibility to organize large trade set-ups and barter deals in which
products of the Heavy Industry are delivered to the trade part­
ners, in a protected market.
7. Governm ent Policy
The government policy can limit the competition and provide for
entry barriers not only by applying taxes but also by restrictions
applied to pollution standards, product safety, etc.
The shipbuilding industry is operating in an international global
market. However, many conditions which are applicable for global
markets can be found within the Common Market as well:
- The market circumstances in the various countries are different
and the roles played by the governments are different.
- Labour cost can differ very much between countries.
- The influences and possibilities to influence foreign competitors
are sometimes rather limited, because of the local governmen­
tal protection.
Reviewing the above one could say that the Japanese Heavy
Industry, being followed by the new entrant Korea which is
basically applying the same policies as the Japanese Industry,
created in the world market a number of major (re)entry barriers
for the competition, which, in combination with a highly efficient
production system, will be difficult to beat. For the European
shipbuilder some {rather limited) possibilities remain to stay in the
market on the long term. The intensifying competition in the
transportation market makes it also for the European shipbuilders
more and more difficult to compete. One of the stronger items
which remains in the European market is the access to distribution
channels for both shipowners and shipbuilders, which combined
with an European Government policy, might enable this part of the
industry to regain that part of the market which controls one of
the major economical strategic elements of the European com­
munity:
a reliable maritime transportation and distribution s/stem which is
able to operate independently.
T H E O R G A N IZ A T IO N O F A S H IP Y A R D A N D
S H IP Y A R D P R O D U C T IO N
When we are defining how a business w ill remain in competition
the objectives of profitability, the market share, the operating
conditions for the company under the prevailing market circum­
stances etc. shall be adequately defined. This is the reason that
some attention has been paid to the global and European scenery.
Very little has been published about the possibilities for companies
which are operating in the markets of the Heavy Industry to adapt
themselves to a changing environment and the importance of
these companies for an economy. Christensen and Andrews (3)
formulated and investigated the concept of an explicit strategy for
a company. The combination of 'objectives’ and 'means’ is defining
the relationship between the formulation of a strategy and the
operational attitude of the management. The means to realize the
objectives are, according to Christensen and Andrews:
- target-markets for products and product development,
6
- products which the company will have to develop o r actually is
producing,
- research and development which is related to product or
production development,
- marketing which is one of the major preparatory functions for
product development,
- sales,
- manufacturing,
- the availability of labour,
- purchasing,
- finance and control.
The specific articulation of the operational means by the manage­
ment will depend on the nature of the business. Again very little
can be found in the literature about the shipbuilding industry. Not
much is being said either about the differences which occur
between the various types of industries. Generally it is said that
'the organization will depend on the nature of the business’ and
that management may be more o r less specific in defining the key
operating policies and from there-on shape the organization to the
purposes of the company.
A very useful differentiation is made by Drucker (4), who defines:
- unique product manufacturing,
- series production,
- mass production and
- process industry.
Drucker describes very carefully how one can recognize the
differences in production systems and also what the consequences
are for the organization, the quality of the people, the market
approach and last but not least the management of an organization.
As Drucker explains:
’Production is not the application of tools to materials. It is the
application of logic work. The more clearly and rationally the right
logic is applied, the less of a limitation and the more of an
opportunity production becomes.’
Drucker developed principles of production i.e. some basic mo­
dels with rules, requirements and characteristics. He describes for
each system of production which competence, skill and perform­
ance are required.
The systems described by Drucker are:
- unique product production
- rigid mass production
- flexible mass production
- process or ’flow ’ production.
A t the time Drucker gives tw o general rules to improve produc­
tion performance and - even more important - pushing back
certain limitations.
Those rules are:
1. by applying the principles of the system in use, limitations on
production can be pushed back further and faster, the more
consistently and thoroughly those principles are applied.
2. the systems represent different degrees of complexity. Unique
product production is described as the least complex and
process (flow) production the most complex production
system.
By developing - and learning to know - the specific application
possibilities, requirements and limitations of each system one will
be able to organize (parts of) the production efficiently. By
organizing parts of production the principles of each system (and
learning how we can apply and harmonize those systems within a
production process) it should be possible according to Drucker to
advance the whole process.
Recognizing the type o f process is therefore one o f the most
important factors in organizing the production. Organizing the
production means then also organizing marketing, sales, manu­
facturing, purchasing, finance and control etc.
Unique product manufacturing can be recognized by the organiza-
tion of the w ork by homogeneous stages. This means that the
production organization is dependent on:
- the type of product,
- the application of standardized tools,
- the use of standardized materials.
The shipbuilding industry showed this approach in the division of
the work which consisted of:
1. building the hull,
2. installation of equipment,
3. outfitting.
The specific requirements for specialized craftsmanship were
depending on each stage. Even the building of large series of ships in
the U.S. during the second world war was an example of well
organized unique product production.
Examples of unique product production are:
- the building of a ship
- the building of offshore platforms at sea
- the building of a refinery.
The characteristics of mass production are usually related to the
organization of the w ork around line production. However, both
rigid and flexible mass production are based on the application of
standardized parts, next to the application of standardized tools
and materials.
The application o f mass production principles requires a systema­
tic analysis o f the product with the aim to find a common pattern
which has no relation with the available tools (or even materials).
Diversification is the result of intelligent assembly methods rather
than fabrication methods. The possibilities of flexible mass produc­
tion have not been investigated in depth with the help of systema­
tic research in the shipbuilding industry. This is understandable if
one considers the variety of ships, the large number of variables
which can be used for the design of ships for an identical service and
the relatively small number of sea-going vessels. Yet this is not the
main reason which should be found in the 'individual approach’ of
Fig. 4.
-
pEMAND
C A P IT A L
-P R O C E S
jK N O W - HO W
-C O M P L E X IT Y
OF
PRO CES
- T IM E
OF
I
P R E P A R A T IO N
IN C R E A S IN G ---------------► N U M B E R OF PRODUCTS
Î
DEGREE
PR O C ES
OF
IM P R O V IS A T IO N
MASS
C R A F T S M A N S H IP
S E R IE
F L E X IB IL IT Y
COST
PER UNIT
UNIQ UE
____
DECREASING
— ► NUMBER
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
OF M A N H O U R S
both shipbuilders and shipowners.
An interesting investigation is the research programme carried
out by Goldan (5). The results of his study are very promising with
regard to the manhour savings which can be realized through a
modular arrangement of the steel structure. Examples of mass
production are:
- the building of automobiles
- the manufacturing of electronical equipment
- the manufacturing of furniture.
The third system to be considered is process production, which
probably can be described the best by 'producing in an integrated
system, starting with one basic material, in one single process,
different end products'. Examples are petrochemical plants and
milk-factories. However airline companies, shipping companies, as
a matter of fact any transportation or distribution system, are
based on the same principles of production and should be consi­
dered as process industries. In shipbuilding the processes of pré­
fabrication, material handling and distribution are typical examples
of process production.
For each manufacturing system the organizational, capital, labour
and other requirements as described above by Christensen and
Andrews (3) will be different. This indicates that if ship design and
production has to be reorganized the changes in production
systems will have to be carefully analyzed and taken into considera­
tion.
Whenever a rigid process was converted to flexible mass produc­
tion, major cost reductions have been realized sometimes
reaching 50% - 60%. (4). The speed of production could increase
drastically and again as a result the cost per unit was reduced
drastically.
Unique product production has a relatively low capital investment
compared to the cost of labour. This is even the case when the
process becomes highly mechanized. On the other hand the
flexibility in the organization is high or has the potential to be high.
A unique product is costly and the flexibility of an organization
should be great in order to make it competitive.
Mass production is still labour intensive but demanding more
capital investments. In unique product production the skill of
people is related to the manufacturing operations. In mass produc­
tion as well as process production the skill is in the design and
maintenance of the process.
Looking into the various types of production one must conclude
that different principles of production demand different types of
organizations and cost structures, have different limitations and, in
general, will demand different qualities from the management.
The complexity of the changes is great, and demands to be
scrutinized in each area (fig. 4, 5).
The question is if we can satisfy the customers' needs in the future
by changing from unique product production towards mass pro­
duction or even process industry. Is it possible to reduce cost,
improve quality and realize shorter deliveries by introducing
changes in the production process and the total organization of a
shipyard?
The introduction of computer applications creates an opportunity
to drastically change the production. Specifically where it con­
cerns the change from mechanization to automation and even
further into robotization, the computer will have a great impact.
A difficult, certainly time-consuming and probably a very expen­
sive analysis of the product and the process will be necessary for a
type of research and development which is practically unknown in
our industry, although very much is done in the airplane industry,
the automobile industry and the process industry, both in the field
of industrial engineering and R&D. It requires a great deal of
creativity. Up till now the creativity of people in the shipbuilding
industry has been geared towards the design of ships, resulting in a
huge number of various types of vessels for many different
7
ƒ
Dieselmotoren produceren
is één ding maar motoren ma­
ken die onder alle omstandig­
heden optimaal presteren, is
een heel ander verhaal. DAF
Diesel is leverancier van derge­
lijke motoren.
Iedere motor, die bij ons de
fabriek verlaat, voldoet aan de
hoogste kwaliteitscriteria. Min­
stens zo belangrijk is, dat DAF
Diesel pasklare oplossingen
biedt voor zijn cliënten. Maat­
werk dus.
Iedere klant krijgt van ons ’t
volle pond. Aandacht, adviezen
en meedenken.
Dit alles staat garant voor
een juiste motorkeuze en -spe­
cificaties, ongeacht of de motor
gebruikt wordt voor voortstu­
wing of voor hulpaandrijving.
Zo bouwen we een goede ver­
standhouding op.
Deze wetenschap, onze
service plus de keuze uit een
motorenrange van 45 tot 250
kW continuvermogen lijkt ons
voldoende om een stevige rela­
tie met DAF Diesel aan te
gaan.
DAF Diesel
EEN LANGDURIGE VRIENDSCHAP
EUROPORT 87 STAND 330
St. Antonius-Houben B.V., Havenstraat 6, Maasbracht, Tel. 04746-3131
Vink Diesel B.V., Rivierdijk 78, Sliedrecht, Tel. 01840-15455.
Machinefabriek & Technische Handel H. Zwart B.V., Middenhavenstraat 76, IJmuiden, Tel. 02550-30304.
8
M A S S -PRODUCTION
COMPLEX
t
TYPE OF PRODUCT
4
SIMPLE
PROJECT
PRODUCTION
ORGANIZATION
CELLS
+
1
1
1
UNMANNED
1
CRAFTSMANSHIP
PROCESS .
PRODUCTION
♦
1
SMALL- -NUMBER-► GREAT
*
UNIQUE
PRODUCT
DEGREE OF
IMPROVISATION
DECREASING
—►
TECHNICAL KNOW-HOW OF
WORKERS
Fig 5.
services. It must also be said that the total number of ships in the
world, may-be 70.000 in total, is not a great incentive towards the
application of mass production or process industry principles.
However, mass production became possible because of stan­
dardization in the product and mass production is characterized by
being an assembly industry and mostly an assembly industry of
standard products (6, 7).
Most probably, the greatest chances lie in those areas which are
conflicting at first sight. The time of preparation for mass produc­
tion or process industry is very long, very complex and the
decision making takes often a long time. A t the same time the
numbers in the product shall be high in order to make the
production process cost effective. The skill in mass production and
process industry is in the design of the production process and the
production process sets a number of criteria for the design of the
product.
By applying series o r mass production principles and designing the
right process the quality of the product can be improved, because
of the limited influence of the production process during the
production.
The most effective way of reducing the cost of a product lies in the
design and engineering (8). Some guidance for designers and
engineers should be developed:
- The largest number of items with the lowest complexity in a
ship (or similar construction) is at the component level of the
product or parts thereof. When redesigning we shall therefore
consider the possibilities which are offered at the lowest level
(components and equipment) in the first place.
- Looking into the possibilities of applying similar principles on a
smaller number of items - with a higher complexity - is only
possible if the principle of standardizing is rigidly continued
throughout the design process. An example: the design of a
deckhouse should be possible by using standardized compo­
nents only, both for steel construction and interiors.
- The combination of standard sub-parts o r units should be such
that mechanization and automation in the assembly process
becomes possible.
Those tw o steps have to be considered first before even robotization becomes feasible.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
For the last step we have probably to go back to 19 12 to F. W,
Taylor and his Scientific Management. Any step to improve
production facilities or systems will demand an analysis of methods
and systems as applied today, into the smallest detail. The research
to be done in this field is gigantic, because at practically each
shipyard methods and ways of working are - although superficially
identical - basically different, most of the time.
Going back to time and motion studies is probably one of the ways
to obtain insight in how shipyard production can be organized
faster and better. These studies should not be academic but
carried out ’on the spot and on the site’.
Taking into consideration that the industrial production processes
are developing from unique product manufacturing into mass
production and further to process industry, we can develop some
specific requirements for shipyards how it will be possible - on the
long term - to realize a similar development. It means a step by
step analysis of the production process:
from marketing and sales, design and engineering, through
purchasing, material handling and -distribution, prefab, plate and
profile assembly, panel-line production, etc., up to the final assem­
bly of the ship. Even testing, trials, delivery and after service shall
then be considered as a part of a production process.
In analyzing the different parts of the process, we find that based on
criteria mentioned earlier, the parts of the production process
have different characteristics and can be considered as unique
production or process industry. Attention must be given to the
level of complexity of the ship as a total unit going down to the
individual components or part of components.
Considering these factors some questions should be posed, e.g.:
- 'What are the main functions of a shipyard?’ (Marketing, Design,
Engineering, Assembly?)
- ’What are the functions necessary to keep the main functions
going?’
(Transport and Distribution of Material, Purchasing, etc.)
- 'What are the supporting functions, which could be done
elsewhere?'
(Prefab, panel-line assembly, block assembly)
- 'Does the management and type of control of some parts of the
process need to remain in one location or should the different
parts which require different type of management be sepa­
rated?’
By posing us questions like these we must realize that we start
restructuring an industry, and that was not the purpose of this
paper.
References
1. Porter, Michael E.: Competitive Strategy. The free Press,
1980.
2. Hengst, Prof. ir. S.: Scheepsbouw Nu en Straks. Tweede
Tideman Herdenking 1982. (Shipbuilding Now and In The
Future).
3. Christensen, C. R., Andrews, K. R. and Bower, J. L.: Business
Policy: Text and Cases, 1973.
4. Drucker, P: Management: Tasks, Responsibilities, Practices,
1977.
5. Goldan, M: The Application O f Modular Elements In The
Design and Construction O f Semi-submersible Platforms.
Doctor Thesis, Delft 1985.
6. Weiers, Bruce J: The Productivity Problem In U.S. Shipbuilding,
journal of Ship Production, January 1985.
7. Frankel, Ernst G.: Impact of Technological Change On Shipbuil­
ding Productivity. Journal of Ship Production, August 1985.
8. Cauther, Tomming L.: Improving Shipyard Productivity
Through The Combined Use O f Process Engineering and
Industrial Engineering Methods Analyses Techniques. Journal
of Ship Production, February 1980.
9
EEN VOORAANSTAAND PRODUCENT EN EXPORTEUR VAN ROESTVASTSTAAL
Avesta is een Zweeds speciaalstaal concern dat zich gespecialiseerd heeft in de produktie en dis­
tributie van roestvaststaal. De produktie is geheel geïntegreerd, van grondstoffen tot eindprodukt.
De staalproduktiebedrijven (Avesta Staal) met hun eigen metallurgie en walserijen vormen de ba­
sis voor Avesta's activiteiten. Zij leveren het basis materiaal - warm- of koudgewalste platen of
bandstaal - aan de dochterondernemingen AST (75% Avesta) - de grootste producent ter wereld
van gelaste roestvaststalen buizen - en de fitting producenten Calamo, Nords en ABE.
Continu-gletmachlne
Een rijdende vlamsnljmachlne volgt de gletlng
en snijdt deze In de verlangde lengten.
UNIEKE KENNIS VAN CORROSIE SAMENGEBRACHT ONDER ÉÉN PARAPLU
Corrosie
Avesta's bestaansrecht is gebaseerd op corrosie.
Men is zeer concurrerend op de markt dank zij de kennis van corrosie en het vermogen om Pro­
dukten en speciaalstaal soorten te ontwikkelen en te produceren die bestand zijn tegen corrosie.
Onder één paraplu bracht Avesta 17 produktie bedrijven in 9 verschillende plaatsen samen. Elk
met zijn eigen karakteristieke eigenschappen en specialiteiten. Samen vormen zij een waardevolle
partner voor iedere fabrikant en gebruiker van apparatuur die onderhevig is aan corrosie.
DE PRODUKTEN
Roestvaststalen:
* warmgewalste platen
* koudgewalste platen en bandstaal
* gelaste en naadloze buizen
* fittingen en flenzen
Roestvast bandstaal voormaterlaal voor gelaste
buizen.
10
* stafstaal
* lasmateriaal
* smeedstukken
Uniek In de wereld, KBR 2000
koudgewalste platen.
-
2 meter brede
ONDERZOEK EN ONTWIKKELING
De naam Avesta za! staan voor onovertroffen kennis van metallurgie en technologie op het
gebied van roestvaststaal. Alles wordt in het werk gesteld om deze kennis te behouden en uit te
breiden en beschikbaar te stellen aan degenen die met ons samenwerken en onze produkten
kopen.
Het centrale onderzoek- en ontwikkelingslaboratorium is in Avesta gevestigd. Velen beschouwen
het als één van de belangrijkste in de wereld op het gebied van roestvaststaal.
Een groot aantal ingenieurs en wetenschappers werken hier, zij breiden de kennis van materialen
en proces-technologieën uit, ontwikkelen nieuwe produkten en kwaliteiten en geven service aan
onze klanten.
Centraal onderzoek- en ontwlkkellngslaboratorlum In Avesta.
AVESTA IN NEDERLAND
Svenska Staal BV, Amsterdam en A. Johnson & Co. BV, Zwijndrecht, beide dochterondernemin­
gen van Avesta AB, Zweden, zullen met ingang van 1 januari 1988 worden samengevoegd.
Samen zullen zij vanuit Amsterdam gaan opereren onder de naam AVESTA BV.
Deze fusie betekent voor de verbruikers van roestvaststaal, dat zij kunnen beschikken over het
meest uitgebreide assortiment van speciaalstaal produkten in Nederland, alsmede een nog betere
service ten aanzien van voorraden, distributie en technische kennis.
Helneken Brouwerij In Zoeterwoude.
MODERN STAALMANSCHAP
Onze belangrijkste sterkte ligt in het woord partnership. Dit betekent dat wij niet alleen een leve­
rancier zijn van roestvaststaal, maar vooral een belangrijke partner voor samenwerking, tot wie
men zich kan wenden met vragen op het gebied van corrosie en materiaalkeuze. Wij hebben
lange ervaring en unieke kennis die wij graag willen delen met onze afnemers. Wij beschikken
over moderne research laboratoria en in hoge mate geautomatiseerde en goed uitgeruste produktiebedrijven. Wij hebben een sterke ambitie om onze beloften ten aanzien van kwaliteit, service en
betrouwbaarheid na te komen.
Verdere informatie over Avesta kunt u verkrijgen bij:
A. Johnson & Co. B.V.
Postbus 51, 3330 AB Zwijndrecht
Kantoor: H. A. Lorentzstraat 10
Telefoon 078-127200
Telex 29095 ajcon nl
Telefax 078-120945
EN WERF INFO-SPECIAL. NOVEMBER 1987
11
Niestern Sander bv
SCHEEPSREPARATfE- EN NIEUWBOUWWERF
Scheepsnleuwbouw
Alle soorten zee- en binnenschepen, sleepbo­
ten, suppliers, speciaalschepen etc.
Scheepsreparatie
Onderhoud en reparatie van zee- en binnen­
vaartuigen, motoren reparaties etc.
24 uur service
Nieuwbouw Know-how, reparatie-aanpak en toepassing van meer dan 100 jaar ervaring garandeert
de realisatie van de meest ingewikkelde verbouwingen, verlengingen, grote reparaties enz. binnen de kortst
mogelijke tijd en tot volle tevredenheid van de opdrachtgever.
Timmerwerk
alle reparaties,
in- en verbouw,
complete betimmeringen.
Niestern
Sander bv
Ook voor industrie- en
particuliere opdrachten.
DELFZIJL
Eemskanaal NZ8
P.O. Box 108
9930 AC-Delfzijl
Tel. 05960-17979*
Telex 53932 Nisan nl.*
Telefax 05960-14917
*(Atl divisions)
A
NEW APPROACH TO
SEMI-SUBMERSIBLES'
by: Dr. Ir. M G oldan**
I. IN T R O D U C T IO N
This paper presents a new approach for
designers and builders of semi-submersible
platforms with the intention to extend and
improve the possibilities of performing
their tasks in a more efficient way and at
reduced costs. These tasks are included in a
design process and a building process. The
design process is concerned with the con­
version of the client’s objectives into a
design solution which complies with all
applicable rules, regulations and other
possible constraints. The building process
is concerned with the conversion of a de­
sign solution into the ’reality’, to the
satisfaction of client and authorities.
To obtain cost-efficient combinations of
design solutions and building processes,
alternatives have to be evaluated {fig. I).
Complex structures such as semi-sub­
mersible platforms make the process of
evaluation laborious, time-consuming and
expensive. To overcome this it is necessary
that:
1. generation and evaluation of informa­
tion and alternatives, performing of
calculations, etc. should be done effi­
ciently in terms of time and costs;
2. the conditions of building locations
form a part of the search for the optimal
solution to client's objectives;
3. the relation between design solution
and costprice must be sensitive to varia­
tions in design- and building para­
meters.
These are the objectives of the new
approach. The scope of this paper will be
limited to the structure of semi-submersi­
ble platforms.
2. a low level concerning the methods and
models necessary in the design process
as well as the incorporation of the re­
sults of I. in this process.
In general, design solutions are concerned
with the location and function of all compo­
nents within the platforms; the identity and
specification of these components is given
by:
a. the externa! geometry, here defined as
the geometrical design solution; this is
related to platform’s dimensions,
shapes, etc.;
b. an internal geometry, here defined as
the structural design solution; this con­
cerns the arrangement of steel struc­
tures and their patterns throughout the
platform;
c. an arrangement of machinery, equip­
ment, outfit, etc.
The identity and specification of compo­
nents within (c) above are mainly deter­
mined by client’s objectives and to a limited
extent by the geometrical and structural
design solutions. On the other hand there
is a great deal of dependence and inter­
action between the geometrical and the
structural design solutions (Oo and Miller,
1981; Masaru Mokumaka et al, 1985; Haslum and Fylling, 1985). These solutions are
generated by means of combinations of
STRUCTURAL
LEVEL
PRIMARY
floater structure
column structure
deck structure
SECONDARY
external (shell) panel
• horizontal:
deck,
bottom
• vertical: side shell
internal panel
• horizontal decks
• vertical bulkheads
TERTIARY
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
web-frames
stiffeners
brackets
crossties
Table I
Structural levels in semi-submersible plat­
forms
components from an assortment which is
usually divided over three levels o f com­
plexity (table I):
• the primary level which consists of
volume components related to the ex­
ternal geometry of platform; these
components are the floaters, the col­
umns and the deck structure;
• the secondary level which consists of
Fig. I: Alternative combinations design/building solutions.
2. PROBLEM A N A L Y S IS
The objectives involve tw o different levels
of application:
I. a high level concerning the interaction
between design and building so that
design objectives and capacities at a
building location can be better
matched;
* Paper read at the W EM T Conference ’A d v­
ances in O ffshore Technology’, RAI A m ste r­
dam, 25-27 nov. 1986.
** Maritim e and Industrial Technology (H o l­
land) B.V.
COMPONENTS
y /
ETC.
product
y
1__________ ETC.
13
two-dimensional components related
to the structural composition and pat­
terns of primary components; in gene­
ral, the secondary level consists of an
assortment of flat panels;
• the tertiary level which consists of
elementary components related to the
structural composition of secondary
components; the tertiary level consists
of an assortment of plates, stiffeners,
webframes, brackets, etc.
The characteristics of all components are
determined by geometrical and structural
variables such as length, width, shapes,
spacings, thickness, sectional areas, etc. A
vast assortment of components implicates
a large number and variety of variables.
Since the computational effort concerning
a design process depends on the number
and variety of variables, a primary objective
at the low level of application will be to
simplify and order the assortment of com­
ponents on the basis of a limited number of
variables.
effort, the latter being usually given in
manhours;
• the possibility to establish the costprice
of one manhour.
Investigations on the matter of w ork con­
tent have indicated a number of para­
meters such as the weight of weld metal
deposited, the number of parts and the
length of joints or line connections be­
tween structural components (Hewitt,
1976). Further investigations have indi­
cated that a accurate definition of work
content in relation with the structural solu­
tion is obtained by considering in addition
to line connections also the so-called point
connections (Goldan, 1985); these involve
tw o or more structural components and a
relatively short joint length (bracket/
crossties connections, etc.).
The link between work content and labour
effort is given by production performance
data; production performance can be de­
fined as a measure of merit for the
accomplishment of a production facility,
given by the ratio:
T p = T |/U p, where:
Tp: production performance, per unit of
production
T|: input of labour effort
Up: units of production.
Labour effort input is usually given in manhours. Production output can be defined by
various parameters such as weight of steel,
panel area, the number of connections, etc.
The choice of a particular parameter is
judicious; however, the linking role of pro­
duction performance requires that the
corresponding parameters are compatible
with parameters defining w ork content.
Methods for calculating manhour costs or
Fig. 3: Integrated process design/building
building
The general practice at the high level of
application is shown in fig. 2. Design and
building are kept separated; material and
labour costs are accepted as a consequence
of the design solution. The conditions at
the building location which should be in­
volved in the design process are produc­
tion- means, methods and performances; if
these and all handlings and processes in­
volved in the building of the platform are
known, the sequence of activities which
form the building procedure for each de­
sign solution can be established.
The possibility to quantify the amount of
labour effort and cost will depend on the
following conditions (fig. 3):
• the possibility to determine the w ork
content of the structure in relation with
the structural design solution;
• the possibility to establish a relation
between w ork content and labour
14
tariffs were investigated by the Nether­
lands Shipbuilding Industry Foundation
( 1970), H ew itt ( 1976) and others. In prin­
ciple, the methods base the calculation of
tariffs on contributions from wages, vari­
able and fixed overheads. A t known hourly
tariffs, the total labour costs can be calcu­
lated.
Furthermore, if the amount of steel mate­
rials can be determined in relation with any
structural design solution, material costs
and the costprice of the steel structure can
be calculated. A primary objective at the
high level of application will be to deter­
mine, in relation with the structural solu­
tion, the w ork content, the required
labour effort at a particular building loca­
tion and the labour and material costs.
3. T H E N E W A P P R O A C H
3.1 General
A possible way to simplify the design pro­
cess is to standardize the assortment of
components used in the generation of de­
sign solutions; this can be achieved if the
number of variables which determine the
characteristics of components at all levels
of complexity within the assortment is
reduced; the possibility to reduce the num­
ber of variables concerns:
• at the third level; the shapes, main di­
mensions (length, width, height) and
characteristic dimensions (thickness,
sectional area, etc.) of plates, stiffeners,
webs, etc.;
• at the secondary level; the dimensions
and structural patterns of panels;
• at the primary level; the shape and di­
mensions of volume elements.
module, standard structural pattern
By limiting the number of variables a new
and more limited assortment of standard
components is obtained. The scope of this
paper is limited to standardization of com­
ponents at the secondary and primary
structural levels.
b.
the conditions at the building location;
this concerns the capacities of produc­
tion facilities.
3.3. Standardization at the prim ary
levei
In general, floaters and columns consist of
circular or rectangular cylinders of similar
3.2. Standardization at the secon­
dary level
The structural pattern concerns the con­
figuration of panel stiffening elements de­
termined by the ratio S/s, respectively the
spacing between transverse and longitudi­
nal stiffening elements. Standardization of
patterns implies the adopting of a constant
ratio S/s for all panels throughout the en­
tire platform (fig. 4). The value of the ratio
S/s, in combination with s (or S) will affect
the structural design solution but also the
work content and material costs.
Fig. 6: Modular semi-submersible structure
Ü
Panel dimensions concern length and
width; standardization of these dimensions
throughout the entire structure implicates
the breakdown of first-level components
in a manner which yields the minimum
possible variation in panel dimensions. The
outcome of this breakdown will depend on
factors related to:
a. the design solution; this concerns the
dimension of primary components and
the internal arrangement of horizontal
and vertical bulkheads;
F irst-level mo d u l e
width
FLOATERS
COLUMNS
X
X
DECK
STRUCTURE
X
f
c
L, - X ♦ b
B, - Y + h
0
H
c
D IM E N S IO N S
R E C T A N G U L A R AREA (m 2)
X
X
75 - 100
25 - ! 00
L E N G T H (m )
8 0 - II0
2 5 - 35
LENGTH 60 - 90 m.
W IDTH 50 - 80 m.
HEIGHT 4 - 8 m.
Table 2. Characteristic geometries o f first-level components in semi-submersible drill­
ing platforms
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 19B7
b: B_, L
h e i g h t h ; Hf , Bc> Hd
FORM O F C R O SS-SEC TIO N
C IR C U LA R
in deck structure
dimensions and sectional areas (table 2 for
drilling platforms). For boxtype decks it is
possible to break down the structure into
an assortment o f cylindrical elements of
rectangular cross-sections and lengths cor­
responding with those of floaters and col­
umns providing that due consideration is
given to the arrangement of longitudinal
and transverse bulkheads within the deck
structure (fig. 5). If all cylinders throughout
the platform can be brought to a standard
with respect to shape and sectional dimen­
sions, a common strucural system can be
- 2h,
1
developed for floaters, columns and decks
in terms of a unique cylindrical component.
Furthermore, by choosing a suitable
length, standardization of first-level com­
ponents can be obtained for the entire
structure.
The required dimensions of floater, col­
umn and deck structures as well as those of
the entire platform are obtained by com­
bining a number of these components (fig.
6). An important aspect here is the transi­
tion and alignment of structural elements
in connections because of the distribution
of loads throughout the structure. Effec-
15
O
HANDELMIJ
l v ROESTVRIJ B.V.
UIT VOORRAAD HELMOND LEVERBAAR
rvs gelaste en naadloze buizen
rvs naadloze precisie buizen,
instrumentatie en hydrauliek buizen
rvs hittebestendige buizen
rvs machinepijp
rvs vierkante en rechthoekige buizen
rvs lasfittingen en beugels
rvs BSP draadfittingen 150 Ibs
rvs NPT en SW fittingen 3000 Ibs
rvs snifringkoppelingen
-
rvs twin ferrule fittingen
rvs snelkoppelingen
rvs flenzen DIN en ANSI
aluminium flenzen en rvs boordringen
rvs kogelafsluiters
rvs schuifafsluiters
rvs klepafsluiters
rvs terugslagkleppen
rvs hoge druk kogel- en naaldafsluiters
rvs vlinderkleppen
ROESTVRIJSTALEN HOGEDRUK
KOGELAFSLUITERS PN 400
Maximale druk 400 BAR
kwaliteit huis en kogel 316Ti
afdichting PTFE
Verbindingen: -NPT/BSP binnen-/buitendraad
- snijring volgens DIN 2353
- twinferrule
- laseinden
afmetingen: 1/8" t/m 1"
ROESTVRIJSTALEN
SNIJRINGFITTINGEN
werkdruk tot 630 BAR.
uitvoering volgens DIN 2353
BSP draad
kwaliteit 316Ti
van 6 mm t/m 38 mm
ROESTVRIJSTALEN
TWIN FERRULE FITTINGEN
werkdruk tot 700 BAR
kwaliteit 316
metrische en inch-afmetingen
afmetingen: 6 mm t/m 25"
1/4" t/m 1"
Handelmij ROESTVRIJ B.V.
Vossenbeemd 109
5705 CL Helmond
16
Postus 1111
5700 BC Helmond
Telefoon 04920-46555
Telex
59208 rvry
Telefax 04920-33922
tive use of the structural pattern of panels is
achieved by assuming a basic rule which
brings the stiffening elements in-line, inde­
pendent of panel spacial orientation.
This can be obtained if the ratio S/s
observes the following rule throughout
the entire platform:
S/s=k (k = 1,2,3 )
3,4 The interaction between design
and building
The conditions necessary to link design and
building were discussed in par. 2. In the first
place it is required to determine work
content in relation with a structural design
solution; the latter depends on the internal
arrangement of bulkheads and the structu­
ral patterns. Once the internal arrange­
ment has been established, the structural
design solution is mainly determined by the
structural pattern of all panels; any varia­
tion in the structural pattern will:
a. alter the characteristic dimensions of
third-level components (plate thick­
ness, sectional area's, etc.); this results in
a change of the type of connections or
weid-type (l-weld to V or X-weld, in­
crease of throat thickness for filletwelds, etc.);
b. alter the number of third-level compo­
nents (sections, webframes, brackets,
etc.); this results in a change of the
amount of line and point connections.
If information concerning (a) and (b) is
available, an accurate definition of w ork
content in relation with the structural pat­
tern can be established; a necessary condi­
tion is that structural patterns throughout
the platform are known. The use of stan­
dard components and structural patterns
enable to define accurately all connections
throughout the structure; any change in
structural patterns and dimensions of com­
ponents will directly affect the type and
amount of connections. Hereby, a relation
between the structural design solution and
the w ork content can be established.
The distinction between line and point
connections enables to identify and associ­
ate technology and w ork methods to a
particular type of connection (Goldan,
1985). If the labour effort necessary to
effectuate one unit of connection is estab­
lished by estimates, time measurement,
etc. at a particular building location, a rela­
tion between the design solution and the
required labour effort at that particular
building location can be established.
Furthermore, if the labour effort is neces­
sary to produce one unit of connection Tps
of type i is known, the total labour effort T ,
is found from:
T| = i(Tp| x NJ, where:
N, = number of connections of type i
If the unit price of one manhour (tariff) R at
a particular building location is known, the
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
labour costs C, at that location are:
C,=T,XR
The amount of steel materials is pro­
portional with the characteristic dimen­
sions and numbers of third-level compo­
nents; these are determined by the
structural pattern. By using standard pat­
terns, the amount of steel materials can be
determined in relation with any structural
design solution.
The cost of steel materials can then be
determined as follows:
Cm = j (W| X Pmj), where:
Cm = total material costs
W| and Pnv are respectively the weight and
price of j-type steel materials.
Finally, the costprice of the platform Ct in
relation with any structural design solution
can be determined:
ct = c, + cm
Several possible applications of the new
approach are demonstrated below.
4. A P P L IC A T IO N S
4.1 Generation of geometrical solu­
tions
Some important characteristics derived
from the geometrical design solution are
the behaviour in waves and the stability.
Since these characteristics impose con­
tradictory requirements to the underwa­
ter geometry of the platform (Oo and
Miller) it is important to establish the
boundaries of feasible geometrical solu­
tions at an early design stage. By using firstlevel standard components, the number of
geometrical design variables is reduced;
this symplifies the geometrical design pro­
cess and enables to establish boundaries of
feasible solutions in a more efficient way.
4.2 The choice of a structural pat­
tern for panels
Lateral pressure is a dominating factor in
determining the scantling of most primary
components such as floaters, columns and
deck (Bainbridge, 1984). These compo­
nents consist mainly of second-level struc­
tures, i.e. panels. Panel design is, thus, a
major activity within the structural design
and includes the determination of char­
acteristics such as structural patterns and
the scantling of plating, stiffeners and webs.
The use of standard structural patterns
reduces the number of variables and simpli­
fies panel design process; hereby, refer­
ence data for a large range of lateral load­
ings and stiffener spacing, s, can be pre­
pared.
4.3 W eight- versus cost-efficiency
An important aspect governing the design
process is that of weight- versus costefficiency of the steel structure. Designers
and builders may adopt different views on
this matter; a light construction may be
advantageous in terms of payload capacity
but may have a negative influence on the
costprice (Moe and Lund, 1963; Caldwell
and Hewitt, 1975; Kuo et al, 1983; and
others).
The governing problems related to this
aspect are:
• accurate estimate of steelweight,
• establishing of the amount of labour
required to build the structure which is
sensitive to variations of design vari­
ables and the performances at a particu­
lar building location (see also par. 2.).
The possibilities to overcome these prob­
lems by using standard components were
discussed in par. 3.4. In principle, this aspect
concerns the matching of conditions at
building locations with design objectives so
that a range of alternatives can be provided
for clients, designers and builders, which
represents the existing market conditions
in terms of material prices and cost of
labour.
4.4 The industrialization of the
building process
The building process of marine structures
is labour-intensive and consists mainly of
assembly processes at various levels of
structural complexity; the introduction of
some mechanized and automatic facilities
in the past years has not resulted in a basic
change of this building process. A real
breakthrough towards industrialization in
marine constructions requires a different
approach to both design and building; in
this respect, much can be learned from
other enterprises with regard to:
1. design simplification by using pre-determined standard components and
structural patterns;
2. advanced mechanization and automa­
tion in manufacturing of components
and assembly of the final product;
3. increased efficiency in the entire build­
ing process due to 'learning effects’
associated with standardization of com­
ponents and patterns.
Some aspects related to aspect I. above
have been studied in connection with the
design process. Regarding the building
process, the new approach results in a
structure consisting of a limited number of
component series, at various levels of com­
plexity. The hereby created possibilities
for advanced mechanization and automa­
tion are not dealt with in this paper.
The matter of 'learning effects’ in ship­
building has been studied by Couch ( 1963),
Krietemeyer (1967), McNeal (1969),
Svendrup ( 1982) and others. These studies
were however directed towards the com­
plete structure. The approach presented
here creates conditions for introducing
'learning effects’ in building phases prior to
the final assembly of the structure. This is of
particular importance for the semi-sub-
17
Goede uitvindingen komen nooitte vroeg, ESAB
bewijst dat al vele jaren. ESAB-ontwikkelingen
zijn daarmee normstellend geworden voor de
^
M
laswereld.
Wie niet wachten wil op
gemeengoed, maar wil
profiteren van voor­
sprong in technische in­
novatie, kiest ESAB.
Zeker als dat voordeliger uitpakt. Of 't nu gaat
om automatisering, apparatuur of lasmaterialen: ESAB blijft als wereldconcern toonaange­
vend in technische vooruitgang.
Wie de ontwikkelingen volgt, weet waarom.
m sa m w
15! H
M
S
T
m
S
ESAB Nederland B.V.
Neutronweg 11, 3542 AH Utrecht
Postbus 8183, 3503 RD Utrecht
Telefoon: 030-4659 22, Telex: 40139
ESAB
De voorsprong groeit!
mersibles' market which is governed by
'one-offs' and/or small series’ building.
5. N U M E R IC A L EXAM PLES
Several numerical examples regarding the
possibilities for application of the new
approach in the design and building of semisubmersible platforms are given below. In
general, the examples concern a semi-sub­
mersible drilling platform of which the
main parameters are given in table 3.
Table 3. Design parameters fo r semi-sub­
mersible platform
displacement
variable deckload
natural period heave Th
22000 m3
3000 T
22 sec
m b/h
b
(m)
Lr
(m)
X
(m)
Y
(m)
4 1.75
2.00
2.25
6 1.75
2.00
2.25
8 1.75
2.00
2.25
13.8
15.2
16.5
11.3
12.4
13.5
9.8
10.7
11.7
73.0
67.5
63.0
I09.3
10 1.3
94.5
146.0
I 35.0
126.0
54.6
52.6
60.9
65.7
63.3
6 1.3
71.2
68.6
66.5
54.6
52.6
60.9
53.6
51.7
50.0
53.0
51.1
49.5
5.2 The choice of a structural pat­
tern for panels
A study to obtain reference data for design
and building of second-level standard com­
ponents subjected to uniform lateral loadTable 4. Design variables fo r modular
semi-submersible platform
Table 6
Design variables for panels
stiffener spacing
ratio S/s
lateral pressure
hourly tariff
basic steel prices
! h| = 14.0 m for all solutions
Table 5. Geometrical solutions for modu­
lar semi-subm. platforms
Fig.
5.1 Generation of geom etrical solu­
tions
Geometrical solutions were generated for
the platform data shown in table 3.
The de-tuning method was used to control
the heave motion. Design parameters
were the underwatervolume V and the
natural heave period Th. The independent
and dependent design variables are given in
table 4. A closed directing model was used
(Deetman, 1984) which enabled to in­
corporate motion and stability constraints
in the design process; a simplified flowchart
is shown in fig. 7; the results are presented
in table 5.
ing was performed. Structural design
criteria were taken in accordance with the
Rules for the Classification of Mobile
Offshore Units (Det norske Veritas.
1983). Design parameters were panel di­
mensions. criteria for structural strength
and basic steel prices. The independent
variables are given in table 6.
7: Flowchart geometrical design
D E S I G N
MODEL
DESIGN MODEL WITH
P,nb
process
I N P U T
DIRECTING
s
k
P
R
D A T A
PHASE
MOTION
7
1
CONSTRAINTS
- 3 FREE VARIABLES
- 2 DEPENDENT VARIABLES
- 2 SATISFYING CONDITIONS
INPUT DATA STABILITY DESIGN MODEL
independent variables
DIRECTING
number of columns
m
column height
H
.3 t ^0
column height
submerged colu m n height
rat-
first-level m o d u l e w idth
first-level m o d u l e height
moment
heeling arm
MODEL
PHASE
c
K c /Ah j
b/h
DESIGN MODEL WITH STABILITY CONSTRAINTS
ah
m e t acentric height
CM
centre of gravity
KG
- 1 FREE VARIABLE
- 6 DEPENDENT VARIABLES
dependent variables
- 5 SATISFYING CONDITIONS
first-level m o dule w idth
b
first-level m o d u l e height
h
m e tacentric height
BM
long.distance c o rner columns
X
transv.distance c o rner columns
Y
submerged v o lume floaters
submerged v o lume columns
length of floaters
submerged c o l u m n height
- I INEQUALITY CONSTRAINT
V2
T1
C O M P L E T E
G E O M E T R Y
w
h
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
19
R = 75 fl./hr
TOT. COSTS
PANEL
Cl
25
PRESSURE
N/nnrT
20
360
k»3
15
^
27 q
\
180
10
5
SPA C IN G
0.4
0.6
0.8
1.0
B(m)
SPACING s(m)
Fig. 8: Total panel costs at different k-values, lateral pressure, spacing s and hourly tariff R
The cost calculation results are given by
means of the cost index Cl defined as (fig.
8 ):
5.3 Weight-versus cost-efficiency
A study on the weight versus cost-efficien­
cy was performed for a complete platform.
For a given geometry, material prices and
manhour tariffs, the total building costs
were calculated at various values of the
stiffener spacing, s. The results are shown in
fig. 9.
The calculations were repeated for differ­
ent values of manhour wages; at each level
of wages, the lowest total cost and the
corresponding structural solution given by
the spacing s were established. The rela­
tion wages-structural solution at minimum
total costs is shown in fig. 10. Manhour
tariffs were calculated according to the
NSIF (1970). Hereby, the possibilities to
match economical conditions with design
variables in the course of the design pro­
cess are demonstrated.
5.4 Industrialization of the building
process
The effect of learning effects associated
with the new approach in the building of
semi-submersible platforms is demon­
strated in fig. II. The platform was broken
down in series of second and first-level
modules. Learning figures were assumed
following general principles in industrial
Fig. 9: a) Material, labour and total costs
b) Distribution o f labour costs over types o f connections
20
processes (joustra, 1982; i n ’t Veld).
The results from fig. 11 concern:
1. case I , where the effects o f learning
were not included
2. case 2, where the effects of learning
were included.
The calculations were performed for dif­
ferent values of the stiffener spacing s.
6. Conclusions
A new concept in design and building of
semi-submersible platforms was pre­
sented. Following this concept, the plat­
form consists of a limited assortment of
standard components. Standardization is
obtained through uniformity of dimensions
and shapes at tw o levels of structural comFig. 10: Relation wages-spacing s at
minimum total costs
Fig. 11: Effect o f learning on costs
plexity. A standard structural pattern is
adopted by assuming a constant ratio be­
tween transverse webspacing S and stiffener spacing s for the entire platform.
Hereby, the number of geometrical and
structural variables is reduced and the in­
formation regarding the steel structure
with respect to weight and w ork content
can be determined accurately.
W ith respect to possible applications of
this concept it should be mentioned that
realization of objectives in design and buil­
ding of semi-submersible platforms re­
quires input from both disciplines. In the
first place the concept presented in this
paper can be used as a tool of design for:
• generation of geometrical design solu­
tions; this enables to evaluate the effect
of geometrical design variables and to
establish boundaries for feasible
geometrical solutions;
• generation of structural design solu­
tions; this enables to evaluate the effect
of structural design variables on the
design.
The concept is even more a useful tool in
matching design solutions with the capabil­
ities of builders; hereby, a range of alterna­
tives is provided which can be used by the
client in the search for an optimum tech­
nical/economical solution to his objectives.
The concept can also be used as a tool of
management by builders enabling to evalu­
ate their position with respect to altering
market conditions in terms of material
prices and cost of labour.
Finally, the concept enables the industrial
approach to the building process of unique
products which yields a reduction of labour
effort and cost due to learning effects
associated w ith series fabrication of com­
ponents.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
References
• Bainbridge C. A. (1984); Structural
Certification of Floating Production
Systems; Design and Operational
Aspects of Floating Production Sys­
tems, London Press Centre.
• Caldwell J. B„ H ew itt A. D. (1975);
Toward Cost-effective Design of Shipstructures, International Conference
on Structural Design and Fabrication in
Shipbuilding, London.
• Couch J. C. (1963); The Cost Saving of
Multiple Ship Production; International
Shipbuilding Progress.
• Deetman E. (1984); The Computer in
the Design Process; Paper presented at
the postgraduate course The compu­
ter in the service of the Naval Archi­
tect', Sevilla.
• Goldan M. (1985); The Application of
Modular Elements in the Design and
Construction of Semi-Submersible
Platforms, Ph. D.-thesis, Delft Universi­
ty of Technology, Department of
Marine Technology.
• Haslum K., Fylling I. (1985); Design of
Semi-Submersible Units, Main Para­
meter Selection; Second International
Marine Systems Design Conference,
Lyngby.
• H ewitt A. D. (1976); Production
Oriented Design of Ship Structures; Ph.
D.-thesis, University of Newcastle
upon Tyne.
• Krietemeyer J. H. (1976); Standardiza­
tion and Series-Production in the Ship­
building Industry, Europort Am­
sterdam,
• Kuo C. et al (1983); An Effective
Approach to Structural Design for Pro­
duction, The Naval Architect.
• Masaru Mokumaka et al (1985); O pti­
mum Design of Semi-Submersible D rill­
ing Rigs, Second International Marine
Systems Design Conference, Lyngby.
• McNeal J. K. (1965); A Method for
Comparing Costs of Ships Due to
Alternative Delivery Intervals and Mul­
tiple Quantities, Transactions SNAME.
• Moe J., Lund S. ( 1968); Cost and Weight
Optimisation of Structures with Special
Emphasis on Longitudinal Strength of
Tankers, Transactions RINA.
• NSIF (1970); Uniform Administration
for the Shipbuilding Industry (in Dutch),
Netherlands
Shipbuilding
Industry
Foundation.
• Det norske Veritas (1983); Rules for
the Classification of Mobile Offshore
Units.
• Oo K. M„ Miller N. S. (1981); SemiSubmersible Design; The Effect of
Differing Geometries on Heaving Re­
sponse and Stability, The Naval
Architect.
• Sverdrup C. F. (1982); Considerations
Regarding
Improved
Productivity
Based upon Experience of Series Pro­
duction of Merchant Ships, Proceedings
IREAPS Technical Symposium, San
Diego California.
• I n ’t Veld J. G.; Production Organiza­
tions (in Dutch), Lecture Notes bb4,
Delft University of Technology.
21
Bescherming van heel
Uw hebben en houden
of het nu gaat om schepen, bruggen, raffinaderijen,
opslagtanks, sluizen, boorinstallaties etc.
Ons straatponton ,, Cornelis T" langszij de
,,Maassluis" in aanbouw bij Van der Giessen­
de Noord te Krimpen.
RZB: grote capaciteit in alles en een
grote nauwkeurigheid voor ieder
detail.
RZB
stralend de beste
22
B.V. ROTTERDAMSCH ZANDSTRAALEN SCHILDERSBEDRIJF.
Hoofdkantoor: Eemhavenweg 26, 3089 KG Rotterdam.
Telefoon: (010) 429.12.88 (6 lijnen) Telex: 28271.
Vestigingen te Dintelmond en Vlissingen.
OPTIMISA TION OF SEMISUBMERSIBLE DESIGN WITH
CONSTRAINTS O N MOTIONAL
BEHAVIOUR AN D FABRICATION
By: Ir. G. J. Schepman and Ir. J. L. A. M van der Hoorn**
H. Isshiki and T. N a k a jim a * * *
This lay-out has also been the basis for the
design of the fourth generation drilling
semi-submersible DSS-40.
In the development of the semi-submersi­
ble DSS-40, Sumitomo Heavy Industries
(SHI) and Marine Structure Consultants
(MSC) opted for optimisation of the rigs’
overall performance considering impor­
tant factors as:
- motions
- capacity (Variable Drilling Load/Total
Variable Load)
- construction (system and costs)
- stability.
The design requirements of a semi-sub­
mersible can be split up into owner’s and
shipyard requirements. O wner’s require­
ments are mostly related to operational
aspects, such as:
- environmental conditions (wind, wave
and current) for operations and survival
- Variable Drilling Load
- Total Variable Load in transit
- motional behaviour limitations e.g.
heave and seastate for operating condi­
tions
- stability
- equipment sepcification.
I. IN T R O D U C T IO N
Although semi-submersibles have been in
existence for over tw o decades as versatile
mobile offshore units, it is still considered
worthwhile to discuss their motional be­
haviour. Especially in todays technology,
motional behaviour is better understood
and optimisation has resulted in all kinds of
hull forms, e.g. introduction of sponsoons
and bulges to improve on heave motions in
head waves. Penalties on other aspects as
* Paper presented at the W E M T C o nfer­
ence 'Advances in Offshore Technology’, RAI
Amsterdam 25-27 Novem ber 1986.
** Marine Structure Consultants (MSC)
* * * Sumitomo Heavy Industries
SCHIP EN WEHF INFO-SPECIAL. NOVEMBER 1987
construction, stability and inspection and
maintenance are often not considered and
could easily lead to ’unbalanced’ designs.
In the early 80’s, MSC developed the four
column design with special emphasis on
simple construction and ease of inspection
and maintenance. An example was the
’Stena Conqueror’ (type DSS-24, see ref.
I)The four column semi-submersible design
is composed of a limited number of con­
struction elements, (see figure I .):
- tw o floaters
- four columns
- one buoyant, self-supporting upper hull
structure
- tw o or four horizontal braces.
Shipyard requirements are mainly related
to the construction:
- optimum use of shipyard fabrication sys­
tem from panel dimensions up to
assembly
- maximum construction width due to
building dock facilities o r waterway re­
strictions.
To establish the particular set of main di­
mensions fulfilling the design criteria in a
well-balanced manner, MSC applies an
optimisation program, developed in house,
as an important tool in the concept stage.
The advantages of this procedure are:
- parametric studies can be carried out
quickly to determine the influence of
design requirements changes
- such a degree of accuracy is obtained
23
Se
wi
Total c
W
SPERRY’S
SCAN RADAR
routine returns to the main program which
displays the optimum solution.
2.2. Free variables
The present optimisation program is based
on four column semi-submersible designs
assuming a square upper hull and square
columns. In addition the height of the upper
hull is selected by the designer based on the
equipment to be installed. So the following
six free variables will define the unit's main
dimensions (see figure 4):
- upper deck: width
- columns: width, height
- floaters: width, height, length.
Figure I: Fabrication scheme
that no major modifications are envis­
aged in the next design states.
In the optimisation program, as many para­
meters as needed are included to obtain a
well balanced design. The program does
not calculate only geometry stability and
weights, but will also define a unit with a
predicted and pre-engineered mocional
behaviour at minimum steel weight.
2. O P T IM IS A T IO N PROGRAM
2.1. General description
The use of optimisation techniques re­
quires a clear distinguishment of the vari­
ables involved, being:
- free variables
- parameters
- constraints
- objective function.
Free variables can be changed by the pro­
gram during its search for an optimum
solution, while parameters are fixed values
defined in a separate input file remaining
constant during the optimisation process.
Constraints are the requirements to be
fulfilled, while the objective function will
be optimised.
As the objective function can be very com­
plicated the optimisation technique must
be a powerful algorithm to find the opti­
mum value. A t MSC, the general reduced
gradient method is selected and incorpo­
rated in the optimisation routine GRG.
The program structure is shown in figure 2
and described as afotlows:
The main program (MAIN) reads the para­
meter values from file and then starts the
optimisation routine (GRG). This routine
varies a set of free variables (X-vector),
until it has found the optimum set. This
search is done by chosing an arbitrary Xvector, and then caculating in the sub­
routine (GCOMP) the values of the con­
straints and the objective function (G-vector).
Checking of constraints could lead to chan­
ging the X-vector in the GRG routine and
again calculating the corresponding G-vector. This process is repeated until all con­
straints are satisfied, and the objective
function is optimised (see figure 3).
When the optimum is found, the GRG
2.3. Param eters
The parameters can be split into tw o
groups, being parameters related to the
construction system and parameters de­
fined by the owner. The construction para­
meters are height of the deck box and
number and diameter of bracings. O wner’s
requirements are concentrated on Vari­
able Drilling Load, Total Variable Load in
transit and environmental conditions. This
latter one refers to the required air gap in
maximum operating conditions. Approxi­
mate formulae are used to establish the
required air gap , based on extensive modeltest results of similar designs.
2.4. Constraints
The constraints refer to owners require­
ments and some construction aspects. The
owner’s requirements are:
- stability
- environmental conditions: maximum
operating conditions
Figure 3: Example o f optimisation technique
Figure 2: Program structure
p a ram e te rs
)---------- -
output
MAIN
p a ram e te r
values
;a
v-—
*
optimum
X - v ec to r
X
GRG
GCOMP
G
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
25
SEMPRESS
ZET HEEL WAT
IN BEWEGING
ie de kwaliteit van afstands­
bedieningen zelf in de hand wil
hebben, komt tijdens Europort ’87
naar stand E 302.
U maakt daar kennis met
betrouwbare produkten van degelijke kwaliteit.
Met een lange levensduur.
Wat daarmee in beweging wordt
gezet, weet bij wijze van spreken van geen
ophouden....
W
ig .D Q D
ZET HEEL WAT IN BEWEGING
M ach in e fa b rie k Sem press B.V. P ostbus 60 3340 AB H .l.A m bach t
Tel. 01858-10444 Telex 29316 Telefax 01858-19812
26
meters defining the heave motions of a
semi-submersible (see reference 2). The
main conclusions are that heave motions
are dependent on (see figure 5):
1. Natural heave period Th and
2. Submergence of the floaters zfl,
according to the following formulae:
I. Th = 2jt V ~ ;> ~ M
Pg
Figure 4: Free variables
- Total Variable Load in transit: required
freeboard.
2.4.1. Stability
Based on the classification societies’ rules
and regulations, required stability for in­
tact and damaged conditions should be
regarded. Due to the buoyant upper hull
structure, intact stability will be no prob­
lem, but the 15 degree heel ing angle limit in
damaged condition allows only a limited
inflow of water. Based on MSC’s experi­
ence in four column designs, this damaged
condition can best be met by applying a
double hull in the column. Thus the vessel’s
restoring moment has to counteract the
inflow of water. The linear approximation
(Restoring moment = Displacement times
GM-value times angle) is sufficiently accu­
rate up to the angle of upper hull submer­
gence, which will be around 15 degrees. In
this way the GM-value is selected as a
valuable measure for definition of the
stability in the operating condition.
2.4.2. Heave motions
O wner’s requirements will certainly con­
tain indications on workability or motional
behaviour of the rig, by specifying max­
imum drilling conditions and maximum
operating condition. By defining the allow­
able drill string compensator limit respec­
tively the telescopic joint limit, the allow­
able heave response of the rig can be deter­
mined.
A t MSC, research studies have been car­
ried out to obtain an insight in the para­
Where:
A = operating displacement of the
vessel
M = added mass, determined as a func­
tion of floater- and column dimen­
sions
p = specific mass 1025 kg/m3
g = gravitational constant 9.8 m/s2
A = waterplane area
z/s- = heave response in regular waves
toe = 2 ji/T h = natural heavy frequency
k = co2/g = wave number
to = wave frequency
zfl = submergence of floaters.
The effects of selecting a natural heave
period and/or a floater submergence are
illustrated in figure 6. By specifying the
natural heave period, Th, and the second
hump response value, zIt,, as constraints,
the optimisation program will determine
the shape of the unit fulfilling owner’s
motional behaviour requirements.
Figure 5: Heave motions defined by Th and submergence
2 '3
wave frequency (radians I sec)
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
27
------------------
Blohm • Voss A.G.
Simpiex-Compact-atdichtingen. Simplex-Com pact-stabilisatievinnen, Sim plex-Com pact-stuurm achines, Simplex-roerkoningafdichtingen. Simplex-draag- en iooptagers, Simplax-stuwdruklagers, Simplex-schotdoorvoeringen. Simplex-achterstevens
en balansroeren. Sim plex-roerdraaglagers. Carboplan-glijringaidichtingen, Centrax-radiaalafdichtingen, Reserveonderdelen
voor systeem Huhn, SchroelaskokerToopbussen, Asletdingen
en Schroefaskokers. Turbulo-olieafscheiders met en zonder
filter, Turbulo-Kondensaat olieafscheiders, Oliegehaitemeters,
Schroefaskokerboringsm achines, Hulp- en uitlaatgassenketels,
M1000 Accommodatie9ysteem, Ankers, alle typen. Offshore
Constructies en Tankbouw, Scoopkoelers
Neuenfelder Maschinenfabrik GmbH
Scheepskranen en Davits. Offshore kranen. Stuurm achines en
Lieren
Apparatebau Salzkotten GmbH
Sewage Treatment installaties
J. D. Thiele GmbH & Co. KG
Anker- Hijs- en Transportkettingen
Wlnel B V.
Ont- en Beluchters. Ventilatiekappen, W aterdichte deuren.
Hydr. W aterdichte Schuifdeuren. Luiken. Spuipotten. Vlamdovers en Dekdoppen
Intertechnique
Pneumatische Tankpeilsystemen
Megator Pumps & Compressors Ltd.
Pompen, Hydrophoorinstallaties, Olieskimmers
CMI (Cockerill Mechanical Industries)
Tandwielkasten, Vertandingen en Smeedstukken
Lef Bishop Ltd.
Kombuisinrichtingen en Cateringsinstallaties, Zoek- en Suezlichten. Mobiele verlichtingen
Wardol Chem ie Belgium PVBA
Ontvetters. Koudreinigers. Detergenten
Frank Ayles & Associates Ltd.
Dispersant sproei-instaltaties. Olie-opveegsystemen, Brandblusinstallaties
B.V Technisch Bureau
Crawford Precision Casting Ltd.
Gietstukken volgens de verloren wasmethode
UITTEM B O G A A R T
Hinrich Mohr
Blokken, Haken en Schakels. Panamakluizen en Verhaalrollen,
Mangatdeksels en ringen
Tanksystem A.S.
Systematic-tankwasapparatuur, Hermetic Ullage. Temperatuur
en Interface detectors, Hermetic dekafsluiters en ladingbemonsterings apparatuur
J, H. Witzet B.V.
Vlinderkieppen en Schuifafsluiters. Terugslagkleppen
Dodwell & Co. Ltd.
Brandstofblenders, Viscositeitsm eters, Brandstof Homogenizer
28
■
Bierstraat 15b, 3011 XA Rotterdam.
Telefoon 0 1 0 -4 1 1 4614.
Telex 25120 tbu nl.
Telefax 010 - 414 10 04.
i
(average zero-up crossing period)
wave frequency ( radians I sec )
Figure 6: Influence o f draft and natural period on heave motions
wave frequency ( radians / sec )
The advantage of including the motional
behaviour as constraints is that design con­
cepts can be compared while motions are
always similar. In the past designs have been
compared without regard to the similarity
of motions.
2.4.3. Freeboard at transit draft
Besides defining the Total Variable Load in
transit condition, the floater size depends
on the freeboard in transit condition.
Freeboard can be treated as a requirement
for a positive freeboard or as a margin for
weight increase during construction.
As freeboard depends on the owner’s
views, freeboard is considered as a con­
straint. One should realize that both
selected freeboard and Total Variable
Load determine the size of the floaters and
consequently w ill have an important im­
pact on the overall displacement of the
vessel.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
(average zero-up crossing period)
2.4.4. Construction aspects
The adopted design philosophy is to use flat
panel shipyard practice construction sys­
tems. Some physical constraints in semisubmersible design are:
- floater length should be equal or larger
than the upper hull length, to avoid
connection problems of floater to
column
- floater width should be equal to column
width, to create a better continuation of
the structural integrity and to reduce
the number of longitudinal bulkheads in
floaters
- upper limits on the total width of the
vessel due to the availability of existing
building docks and/or repair docks.
2.5. Objective function
The overall performance of the semi-submersible should be optimised. It will usually
seconds
be expressed in terms of investment costs.
A typical cost breakdown of a semi-sub­
mersible (see figure 7) illustrates that the
majority of costs is related to the drilling
package and the machinery part. These
items will be either owner furnished equip­
ment or owner specified equipment, so
these costs can not be influenced by the
shipyard.
An other important cost item is the steel
construction of the vessel, which can be
fully controlled by the shipyard by an opti­
mum use of their fabrication system (manhours/ton) and by a minimum steel weight
of the unit. Therefore, it has been con­
cluded that the ultimate and most practical
variable to assess the costs is the vessel's
steel weight, and consequently the objec­
tive function is to minimise on steel weight.
29
S C H R E D D E R ét C D
Gildenweg 12 - Industrieterrein ’De G eer’ - Zwijndrecht
Telefoon 078-100111 - Telex 29339
Postadres: Postbus 326 - 3330 AH ZW IJNDRECHT
AFDELING: TECHNISCHE RUBBERARTIKELEN
Continental
Chemicaliën- en
oplosmiddelenbestendige slang
Olie- en benzinebestendige
slangen, zoals tankwagenslang
en haspelslang.
Bunkerslang uit voorraad leverbaar
tot 0 200 mm
Avery-Hardoll
Dry-Break koppelingen
R efuelling Nozzles
V loeistofm eters
UGCtt
S langkoppelingen en verloopstukken
ook in R.V.S.
Rubber compensatoren
Vulpistolen ZV en ZVA
Snelkoppelingen - type TW, ook in
R.V.S.
Pero/o
Laadarmen voor vloeistoffen
Toebehoren voor tankauto’s en
tankstations
AFDELING: INTERN TRANSPORT
V o rkhe ftru cks
R eachtrucks
Z ijladers
E xplosiebeveiligde he ftru cks
Voorts:
Metaalbewerkingsmachines
Gereedschappen voor metaalbewerkingsmachines
30
Owner’s requirements are:
- Variable Drilling Load in operational,
survival and transit condition: at least
4,500 ton
- Total Variable Load in transit including
mooring spread: at least 8,300 ton
- workability in operational condition:
• drilling operation: up to 8 m signifi­
cant waves
• riser disconnection: one year North
Sea storm
- workability in survival condition: 100
year condition, maximum waves 34 m
- classification societies: DnV or LR or
ABS
- national authorities: NPD o r DEn.
TYPICAL COST ANALYSIS OF
SEMI-SUBMERSIBLE
Drilling
I
S tructure
I
!
i
Machinery
Hull o u tfit
I !
Electrical
I
i
Painting
Others
General charge
I
I Material
LT“ ] Labour
------------1
------------------- !
F - - J ^ |js c
!
Figure 7: Cost analysis
3. C A L C U L A T IO N PROCEDURE
In the optimisation process the design
calculations are carried out in subroutine
GCOMP (X,G) which is entered with a
specified set of free variables (X-vector),
and which calculates the values of con­
straints and objective function (G-vector).
This calculation is shown in figure 8 and is
regarded to be self-explanatory.
In the GRG subroutine first of all the con­
straints are checked. When the constraints
are not fulfilled, the GRG method will
change the X-vector(s) in an intelligent
way and the GCOMP procedure will be
repeated. Finally, the objective function is
optimised in the GRG subroutine.
Figure 8: Calculation procedure
O
'J'
o
00
o
rsi
o
%
Shipyard requirements:
- optimise on construction with respect
to:
• fabrication system {shipyard prac­
tice, flat panel)
• reduction of main connection
numbers
- maximum construction width due to
building dock: 74,0 m
- minimum steel weight.
X-VE C TO R
4. EXAM PLE O F O P T IM IS A T IO N
PROGRAM
4.1. Introduction
In 1984 SHI and MSC decided to develop a
fourth generation drilling semi-submersible vessel, called the DSS-40. The project
team aimed for a development of a bal­
anced unit with respect to operational as
well as construction aspects.
For a better insight in the effects of design
variables the optimisation program was
developed and extensively used in the con­
cept design stage. Also main design criteria
have been varied to study their effect on
overall size and shape of the unit. In this
section the design process of the DSS-40
and results of the variation study will be
discussed.
4.2. Concept design of the DSS-40
Based on a market review, the extensive
discussions within the project team have
led to select the main design criteria for the
design, divided in owners and shipyard rer
quirements.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
31
Our congratulations to Anthony Veder
and the crew from
’The Prince Willem van Oranje’
«Plug In unit-ready for use».
The HYDRALIFT MCV-type deck crane is a «ready to install», «plug-ln» unit,
self-powered by a built in electro-hydraulic power pack ready for connection to
the ships main power supply. The cranes are delivered with wire and
hook, shotblasted and coated with zinc epoxy, tested and adjusted
Control features
All motions are continuous. The controls may be operated at the same time
(D o u b le
HOLES *
ro p e )
EQ U ALLY S fH C E D
EE D E h
We wish you a good sailing!
UMEC
VAN UOEN MARINE & ENGINEERING CONSULTANTS
Tlx 22024, tel. 010-436 33 00, Veerhaven 14, Rotterdam
32
H E A V E RE S P O N S E
2 (J3 ( m/ ml
A * m a x im u m d r illin g c o n d itio n
B » m a x im u m o p e r a tin g c o n d itio n
H E A V E R ESPO N SE
2
in /.StnlmJnO
067
0.45
L)B » 0.306
wave frequency (radians I sec)
T (average zero-up crossing period) s«conds
Figure 9: Heave response limits
From this set of design criteria workability
in operation and survival conditions need
to be translated to the motional behaviour
input data (natural heave period and
second hump heave response). The 8 m
significant waves and the one year N orth
Sea Storm (i.e. 11 m significant waves)
criteria in operating conditions are com­
bined with allowable strokes of the drill
string compensator and the telescopic
joint respectively. Presently available
equipment has effective strokes of:
- 20 ft for the drill string compensator
- 45 ft for the telescopic joint.
The combination of these values will indi­
cate tw o points in the heave motion curves
in irregular seas as illustrated in figure 9.
Based on initial studies, the combination of
a 20.5 seconds natural heave period and a
response value of 0.46 at the second hump
will fulfill the motion requirements.
I. Free variables
60 m < deck width < 74 m (due to
available building dock width)
0 m < column height
0 m < floater lenght
0 m < floater/column width
0 m < floater height.
As explained in section 2.3., the airgap in
operating condition is based on approxi­
mate formulae, and set to be 12 m.
2. Parameters
VDL
TVL
Airgap
Height of deck box
Bracings: number
diameter
The full set of input data for the concept
design of the DSS-40 was:
4,500
8,300
12
8
4
2.5
ton
ton
m
m
m
Figure 10: Physical size o f DSS-40
3. Constraints
GM operating
= 4.00 m
GM transient
= 0.30 m
Natural heave period
= 20.5 s
Second hump response
= 0.46 m/m
Transit freeboard
= 0.50 m
The results of the final design, based on the
optimisation program results, are shown in
figure 10 and table I. Main characteristics of
the design are its steel weight ( 11,500 ton),
its operating displacement (39,200 ton)
and its overall width (71.25 m).
4.3. Variation study of main input
data versus steelweight
4.3.1 Owners requirements (VDL, TVL,
workability and stability) Variable Drilling
Load
In figure 11 the effect of VDL on steel­
weight is dearly shown: the larger the
VDL, the larger the steelweight. Interest­
ing parameter is the gradient of the curve
defined by the increase of steelweight per
ton increase of VDL, being 0.253 (ton/ton).
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
33
Korte levertijd
is belangrijk
(vooral in scheepvaart
en industrie)
Daarom hebben wij ruim 25 vooraanstaande merken filters
en filterelementen op voorraad.
Voor een optimale service, leveren wij tevens filters
volgens elk model in elk gewenst materiaal.
7 dagen per week, 24 uur per dag
IS A
C A T E R P IL L A R
nacoR
>4RLON
Cuno
VOKES
LUBERF1NER
flu id te c h
BOSCH
ucc
FAIREY
A RLO N
M n rl
DlillWII)
I HUBS
HENGST
Filtertechnik
BOLL & KIRCH REPARATIE SERVICE
KANTOOR: Van der Takstraat 72, 3071 LM ROTTERDAM - (010) 412 54 39-412 54 51
Telex 22 099 Lufil nl - Postbus 174 - 3200 AD SPIJKENISSE
BIG
34
Total variable load in transit
In figure 12. this effect is shown, while the
gradient is 0.191 (ton/ton).
required motional behaviour level on
steelweight, the impact of the owner’s
requirements will be discussed.
Workability
In order to get an insight in the influence of
In the design process of the DSS-40 tw o
operating conditions are specified, i.e.
Rules and Regulations
Det norske Veritas
American Bureau of Shipping
Norwegian Maritime Directorate
U.K. Department of Energy
United States Coast Guard
Principal Dimensions:
Length of Main Deck
Breadth to Main Deck
Depth to Main Deck
Depth to Flush Bottom Deck
Length of Lower Hull
Breadth of Lower Hull
Depth of Lower Hull
Length of Column
Breadth of Column
Column Space (Longi)
Column Space (Trans.)
Draft (Operating)
Draft (Survival)
Draft (Transit)
Capacities:
Bulk Mud & Cement
Liquid Mud
Drill W ater
Fuel Oil
Potable W ater
Brine
Sack Storage
Drill Pipe Storage
Casing Pipe Storage
Riser Storage
maximum drilling condition (8 m significant
waves) and maximum operation (I I m
significant waves). The selection of these
tw o conditions combined resulted in de­
sign 2. (Th = 20.5 s and z/Ç = 0.46) (see
figure 13).
Table I: Technical specifications o f DSS-40
71.25
71.25
43.00
35.00
119.00
13.75
9.00
13.75
13.75
57.50
57.50
23.00
19.00
8.50
800
700
2,440
2,900
420
420
190
390
320
600
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
m
m
m
m
m
m
m
m
m
m
m
m
m
m
233.8
233.8
141.1
1 14.8
390.4
45.1
29.5
45.1
45.1
188.6
188.6
75.5
62.3
27.9
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
ft)
m3 (28,250 f t 3)
m 3 ( 4,400 bbl)
m* (15,350 bbl)
m3 (18,240 bbl)
m3 ( 2,640 bbl)
m3 ( 2,640 bbl)
m2 ( 2,040 ft2)
m2 ( 4,200 f t 2)
m2 ( 3,440 ft2)
m2 ( 6,460 ft2)
Variable Load (metric tons)
Operating
Deck + Column
4,500
Lower Hull
5,500
Mooring
Survival
4,500
5,500
T ransit
4,500
1,800
2,000
Design Criteria
Operating
Water Depth
914 m (3,000 ft)
Wind (I min.)
70 knots
Wind (I hr.)
60 knots
Sig. Wave Height/Period 8 m (26 ft ) / 10 sec.
Max. Wave Height
15 m (49 ft)
Surface Current
2.5 knots
Temperature
— 20° C
Survival
914 m (3,000 ft)
94 knots
80 knots
18 m (59 ft)/16 sec.
34 m ( I I I ft)
2.5 knots
- 20° C
Machinery/Equipment/Fittings
Anchors
8 - 15 T
Mooring Lines
8 - 7 6 mm dia chain x 1,000 m plus
97 mm dia wire x 2,000 m
Cranes
2 - 60 T
Heli-deck
For chinook
Accommodation
For 100 persons in 2-persons cabins
Ballast Pump Room Four (4)
Main Generators
6 - 2.500 kW
Azimuth Thrusters
4 - 2,200 kW
35
HOEVER DENKT U TE KUNNEN KOMEN
ZONDER VERKEERSBORDEN?
Om uw produkten efficiënt te kunnen laten expedië­
ren moet u op een breed terrein over goede informatie
beschikken. Wat voor soort transport moet u kiezen?
Passen vertrek- en aankomsttijden in uw produktieschema? Waar zijn er havencongesties te verwachten?
En wat voor politieke ontwikkelingen kunnen uw imof export beïnvloeden?
Vragen waarop het Nieuwsblad Transport u in ex­
tenso en op zeer actuele wijze antwoord geeft: maar
liefst driemaal per week.
Nieuwsblad Transport geeft u de goede richting aan.
Geïnteresseerd in deze nieuwe krant voor verlader
en vervoerder?
Bel 010-4053130 voor een vrijblijvende kennis­
making met dit nieuwsblad. O f schrijf naar:
Transportuitgaven B.V.
Beurs-World Trade Center
Postbus 30180
3001 DD Rotterdam
Transport
Nieuwsblad
36
The operating conditions are varied as
follows:
- keep one condition constant, i.e. maxi­
mum drilling
- vary the other one, i.e. maximum
operating.
The influence of varying the maximum
operating condition is shown in figure 13
by selecting the following conditions:
- maximum drilling condition constant
(8 m waves at 10 s period)
- maximum operating condition
• 11.7 m waves at I 3.5 s period
• 11 m waves at 13 s period
• 10.8 m waves at 12.5 s period.
The major impact is shown in the steelweight of the unit (105% to 97%). The
reduction of maximum operating condi­
tions allows for a lower second hump and
heave period, which accounts for the steelweight reduction. However, the disadvan­
tage of reducing the maximum operating
condition is that the probability of having
to disconnect the riser will be some what
higher. In this way the owner is able to
quantify the pro (lower investment) and
the con (lower workability in higher
waves).
The other variation is by:
- maximum condition constant ( I I
waves at I 3 s period)
- maximum drilling condition:
• 8.86 m waves at 11.75 s period
• 8.0 m waves at 10 s period
• 6.56 m waves at 9.5 s period.
The increase of the maximum drilling con­
dition has a significant impact on steelweight, while the advantage of workability
is very minor. Thus, this is not the right
direction.The decrease of the drilling con­
dition has a significant advantage on steelweight combined with a modest decrease
of workability.
As a conclusion on the variation of owners
operational requirements, one can see that
the identification of tw o operational con­
ditions will determine the required w ork­
ability. Variation of either condition leads
Figure 13: W orkability limits versus steel weight
T a r f a tlo n In maximum d r i l l i n g c o n d it io n
V a r ia tio n 1n maxlmur o p e ra tin g c o n d itio n
Maximum o p e ra tin g c o n d itio n c o n s ta n t
Maximum d r i l l i n g c o n d it io n c o n s ta n t
11 m waves a t 13 s p e rio d
8 m waves a t 10 s p e rio d
Desi gns
no. 1
C o n d itio n
Waves
P e riods
maximum o p e ra tin g
11 .7 m
11 m
13.5 s
13 s
no. 2
no.3
10.8 m
12.5 m
C o m bination o f tw o c o n d itio n s le a d s t o th e f o llo w in g :
N a tu ra l heave p e rio d
Second hump response
22 s
0 .4 9
2 0.5 s
0 .46
19 s
0 .41
S te e l we1 g h t
12,075 to n
11,518 to n
11,148 to n
j 105*
100*
97*
100*
100*
9 9 .8 *
D iffe r e n c e t o d e sig n 2
W o r k a b ility as
d iff e r e n c e t o d e s ig n 2 * )
Designs
no. 4
no. 2
C o n d itio n
maxlmim d r 111Ing
Waves
8.8 6 m
P e riods
11.75 s
8 m
10 s
no. 5
6 .5 6 m
9 .5 s
C cm b ln a tio n o f two o p e ra tin g c o n d itio n s le a d s t o th e f o llo w in g :
N a tu ra l heave p e rio d
Second hump response
19 s
0 .2
20.5 s
0 .4 6
22 s
0 .61
S te e l w e ig h t
D iffe r e n c e t o d e s ig n 2
W o r k a b ilit y as
d iff e r e n c e t o d e s ig n 2 * )
14,182 to n
123*
100*
11,518 to n
100*
100*
10,424 to n
9 0 .5 *
97*
N o te : ») W o r k a b ility
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
m
fig u r e s a re based on a one y e a r N o rthsea s c a tte rd la g ra m .
Kenmerk van kampioenen. Perfekte voorberei­
ding, oog voor details, brede ervaring en bovenal
de wil om te winnen. W ijkt zijspanracen op dat
punt af van lassen? Als bestuurder w ilt u technisch
en economisch winnend over de streep. Als bak­
kenist zorgt FILARC voor een juiste balans om
haarscherp op uw doel af te kunnen gaan. Daarbij
ook vertrouwend op
de 'back-up' van een
ervaren pitch-team en eerste klas materialen.
Ontwikkeld uit meer dan een halve eeuw Philips*
ervaring. Samenspel tussen mens, machine en
materialen. Van laselektroden en lasdraad tot lasapparatuur. Een technisch samengaan dat inspi­
reert tot grote prestaties. U en FILARC. Als kwali­
teit de maatstaf en grensverlegging het resultaat
moet zijn.
FILARC Lastechniek B.V.
Neutronweg 11, 3542 AH UTRECHT
Postbus 8035, 350 3 RA UTRECHT
Telefoon: 0 3 0 -4 6 5911, Telex: 4 7 3 0 2
’ Tradem ark o f P h ilips E xport B V The N e the rlands
realized by ship type flat panel construction
of bulkheads, avoiding circular or curved
members, reducing the number of main
construction elements and continuation of
bulkheads from floaters through columns
to upper hull.
Construction width
The total allowable width of the rig can be
dictated either by the building dock dimen­
sions or by the available repair docks. In this
way, it is very useful to obtain an insight on
the effect of width versus steelweight. The
variation of allowable width results in an
optimum width of around 7 1.8 m as seen in
figure 15. A t this particular width, the
design is best balanced with respect to
floater, column and deck dimensions w ith­
in the set of design criteria.
Figure 15: Construction width versus steel weight
5. C O N C L U S IO N S
- The optimisation program is an effective
and very useful tool in the concept design
of a semi-submersible vessel.
- The results of the optimisation program
are sufficiently accurate to enter the next
design stages, without the danger of major
modifications o f the vessel.
- The optimisation program can also be
used to study the impact of the design
criteria and their effects on the overall
dimensions of the rig.
- The variation study on design criteria
showed clearly the effect of the Total
Variable Load in transit and overall
width versus total steelweight of the rig.
- In the optimisation program motional
behaviour is treated as a constraint.
When design requirements are varied, it
is possible to develop designs with the
same motional behaviour.
- As the optimisation program is relative­
ly small, it lends itself easily to modifica­
tions meeting specific requirements of
owners and/or builders, for instance
varying the number of columns or desig­
ning
accommodation/construction
units.
to different designs (steelweight) and con­
sequently to a difference in workability.
Stability
In figure 14 the effect of the GM variation at
operating draft is shown, w ith a gradient of
2.685 ton/cm. This GM value criterion can
also be treated as an owners or builders
margin in the design. Based on a 4 m GM, 10
percent equals 0.4 m variation resulting in a
steel weight increase of 107.0 ton.
General conclusions from this part of the
variation study are:
- the above parameters have a direct influ­
ence (linear increase) on the overall size of
the design
- a 10 percent variation of owners re­
quirements in:
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
• VDL results in steel weight variation
of 113 ton
• TVL results in steel weight variation
of 200 ton
• GM results in steel weight variation
of 107 ton.
- TVL is the most severe one.
Thus, the owner should be very cautious in
setting his design requirements, as too high
figures on some criteria are easily adding
steel weight and consequently increase the
size of the design and its investment.
4.3.2. Shipyard requirements
Ease o f fabrication
This item can easier be regarded as a design
philosophy than transferred in round fi­
gures of constraints. Ease of fabrication is
Acknowledgement
The authors acknowledge the kind permis­
sion of the management of Sumitomo
Heavy Industries and Marine Structure
Consultants to publish results of the de­
velopment of the semi-submersible drilling
vessel, DSS-40.
References
1. Semi-submersibles: New orders for
semi-submersibles are expected as new
designs appear. Noroil May 1980.
2. Approximative formulae for calculating
the motions of semi-submersibles, by
J. A. van Santen, Ocean Engineering,
Vol. 12, 1985.
39
One of the tastiest
contracts we’ve won.
All m anner o f fruits, vegetables, m eat and
fish can now enjoy first class travel around the
world and, to ensure a sm ooth passage, Anthony
Veder B. V have selected BP to supply all the
lubrication for the Prins W illem Van Oranje.
T h e D utch shipping industry is justifiably
proud o f this new ship and they can rest assured
that in 300 ports around the world BP can serve
her with the highest quality lubricants and
expert technical advice.
It’s a partnership we hope will provide food
for thought.
BP marine international
<3
?
BP MAATSCHAPPIJ NEDERLAND BV. POSTBUS 1634. 1000 BP AMSTERDAM TEL: 020-5201331 HEAD OFFICE: TEL: 01-920 6512. TELEX: 888811
40
m.v. ’PRINS WILLEM VAN ORANJE
’
The first o f tw o new 350.000 cbft. reefers, built by Yssel-Vliet Combinatie B.V. at their
yard Ysselwerf
P R IN S
W ILLE M VAN O R A N JE
R O TTE R D A M
m.v. 'PRINS WILLEM VAN ORANJE’ is
the first ship of a new series of tw o identical
reefers to be completed for account of
Anthony Veder Koelvaart Mij. B.V. at Rot­
terdam.
The principal dimensions of m.v. ’PRINS WILLEM VAN ORANJE’ are:
-
-
Length over all:
Length b.p.p.:
Breadth:
Depth to maindeck:
Free deckheight:
Max. draught:
Deadweight:
Gross tonnage:
Hold capacity floor area:
Fuel oil capacity
Waterballast
Freshwater
Lub. oil
Service speed
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
118.38 m.
110.22 m.
18.50 m.
12.57 m.
2.20 m.
8.08 m.
6885 metric tons
5966 (’69 convention)
Hold no. I - 2514 m3
Hold no. 2 - 2470 m3
Hold no. 3 - 2464 m3
Holdno.4 - 252I m3
974 m2
IO I4m 2
IO I4m 2
IO I6m 2
Total
4018 m2
1027
880
62
43
18
t.
t.
t.
t.
kn.
The vessel is of a new generator reefervessel type, specially designed for trans­
porting fruit and deepfrozen products.
After the last reefer-vessel, built by the
Yssel-Vliet Combinatie, which was a 3deck vessel with a trunk of 0,6 B on top of it,
the market was asking more cargohold
volume.
In this new design the trunkdeck has been
extended over the full breadth, resulting in
a cargo section of four holds, each divided
in four compartments with tw o open
decks and one closed deck. This makes the
vessel suitable for carrying eight different
cargoes with eight different temperatures.
The hull form has been optimally designed
to obtain sufficient stability at lowest pro­
pulsion power. The result will give the
41
Congratulations!
Prins Willem van Oranje
Construction No 230, built by
Ysselwerf, by order of the
Anthony Veder Group N.V.
Equipped with Mitsubishi diesel engine
powered gen sets
News at the Europort'87
The Mitsubishi S6R series marine engines
Introduction on our stand No E 4 14
•
•
•
•
•
6 cilinder in line
820 Hp/1500 r.p.m.
Compact and light weight
Low price
Low fuel consumption
MHI SAMOFA DIESEL B \
MITSUBISHI
DIESEL ENGINES
42
European sales and service subsidiary ol
Mitsubishi Heavy Industries-Engine
Division-lapan.
P.O.Box 20. 3840 AA Harderwijk,
The Netherlands. Phone (0)3410-13041,
Telex 47330. Telefax (0)3410-19060
vessel a service speed of 18 knots at
bananadraught with 90% M.C.R.
Watertight bulkheads divide the vessel in
forepeak, deeptank, cargo section, engineroom and aftpeak. The accommoda­
tion has been placed aft and is suitable for
16 persons. The vessel meets the class rules
of Bureau Veritas, Class I 3/3 Et, Refriger­
ated Carrier Deepsea, Ice Class ID + RMC
AUT-MS + MOT.
Cargo holds
All four cargo holds are equipped with
hydraulic operated hatches on each deck.
The length of the holds has been chosen in
such a way that each hold will have about
the same floor area. The holds are specially
designed for pallet carrying with a mini­
mum free height of 2.2 m. and
strengthened for 2 t/m 2 deckload and suit­
able for forklift truck operation.
The second tweendeck is a closed deck
with special designed aluminium gratings,
same as fo r the tanktop floor. The first and
third tweendeck are constructed as an
open grating deck with hardwood
pianking.
Walls and ceiling of high quality water
resistant multiplex (betonplex) in white
colour. Each hold is provided with air con­
nection and high pressure cleaning connec­
tion for hot and cold water. The lower part
of each cargo compartment has steel pro­
tection against forklift truck damage and is
equipped with fittings for car transport.
On 1st tweendeck level at starboard-side,
each hold has a hydraulic operated side
cargo door with a clear opening of 2.40 X
2.20 m. Each tweendeck hatch is provided
with a hydraulic operated banana hatch of
2.40 X 2.40 m. clear opening.
On the maindeck 48 TEU can be placed, of
which 20 can be o f the refrigerated type.
For loading and unloading 4 special cargo
cranes have been placed in such a way that
each crane can reach tw o holds. Cranes are
make Nor-Marine, type MCVC 1610-718, with a capacity of 7 tons from 0 - 7 0
m./min. at an outreach of 18 m.
Holds are protected against fire by a C 0 2
installation, which is situated in the fore­
ship.
The installation works fully automatic, con­
trolled by a micro computer system. To
obtain sufficient cooling capacity during
cooling down, 3 screw compressor sets
have been installed. A fter the cooling
down period only 2 compressor sets are
needed and the third one acts as acomplete
stand-by set.
In the lower part of each hold 2 finned
aircoolers have been placed, one on portside and one on starboard. Above these
aircoolers a number of axial ventilators
have been placed with 2-speed electric
motors. The finned aircoolers are automa­
tically defrosted by hot gas. Necessary
valves, magnetic solenoids and infra-red ice
measurement has been installed. Below
the aircooler special leak-trays are con­
structed with heated scupper pipes to the
bilge wells in the double bottom.
The refrigerant liquid supply to the aircool­
ers is controlled by thermostatic expan­
sion valves, tw o sets for each cooler. For air
renewal, each compartment has its own
fresh air ventilator.
The whole installation is regulated and
controlled through the Grenco governing
system. This system consists of a central
computer system for datalogging, printing
and controlling the hold temperatures.
The system is built up from one master
system with a number of local stations. The
master station governs all local stations
Refrigeration installation
The design of the cargo refrigerating plant has been based on following conditions:
Total hold capacity:
9970 m3
Number of holds:
8
Different temperatures:
8
Cooling down time:
Bananas from + 30°C to + 12°C in 24 hrs.
Deciduous cool transport from + 12°C. to
0°C. in 36 hrs.
Deepfreeze cargo from -20°C. to 27°C. in 36 hrs.
- A ir circulation:
Above 0CC : 90/hr.
Deepfreeze: 45/hr.
- A ir refreshment:
2.6 times per hour.
- A ir circulating system:
Ductless.
- Temperature accuracy:
For cool transport: approx. 0 .1°C.
For freeze transport: approx. 0.5°C.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
centrally in such a way that it enables:
- to operate all in- and outputs of the local
stations;
- to scan all alarm reports;
- to change set points.
The control system controls air delivery
temperature, defrosting cycle and capacity
control of the compressors.
The dataloggings are also handled by the
central master system with monitor and
tw o printers.
The following reports can be printed:
- special USDA reports from the hold
temperatures;
- aircooler and status report;
- refrigerating data journal.
Furthermore in the central control room
has been placed a starter and control
switchboard as well as a C 0 2 measuring
and registration plant.
Engineroom
m.v. 'PRINS WILLEM VAN ORANJE’ is
propelled by a 4-stroke reversible tu r­
bocharged main diesel engine of make
M.A.N., type 7L52/55B, with a continuous
output of 6000 kW at 435 r.p.m.
The diesel engine is designed for low fuel
consumption and runs on heavy fuel oil of
380 cSt. and the consumption under full
load is 179 gr/kWh with a tolerance of 3%.
The engine drives through a Tacke reduc­
tion gearbox, type HSU 900 D, with a
reduction ratio of 3.11 : I a 4-blade skewed
Lips propeller of 4750 mm. diameter with a
propeller speed of I 38 r.p.m. The gearbox
is provided with built-in thrustbearing,
type Mitchell, and a p.t.o. for a 260 kW
shaftgenerator for normal ship’s load only.
The main engine is electronically and
pneumatically controlled from the bridge
and engine-controlroom.
Electricity is generated by 3 generatorsets,
make M.A.N., type 7L20/27, output 630
kW at 900 r.p.m. Each diesel engine drives a
600 kW Indar generator. The diesel sets
are automatically started and equipped
with loadsharing.
The auxiliaries are suitable to burn the
same fuel as the main engine and are con­
nected to the common uni-fuel system,
consisting of pressurised mixing tank and
43
Grenco B.V.
^ ‘
congratulates shipowner Anthony Veder on the
MS Prins Willem van Oranje
and wishes
shipowner
and crew a
safe voyage.
G renco R efrigeration supplied the com plete
refrigerating plant for the Prins W illem
van Oranje.
The vessel has a refrigeration capacity of
2,580 kW and a total hold volum e of 9,922 m3
(364,000 cuft), sub-divided into
8 tem perature zones.
Refrigeration
Grenco B.V.
Docterskam pstraat 2 P.O.Box 205 5201 AE ’s-Hertogenbosch
Phone 073 - 29 89 11 Fax 073 - 21 03 40 Telex 50147 The N etherlands
44
electronic viscorator.
The fuel is separated by tw o fully automatic
Alcap separators, make Alfa-Laval, who
also delivered the lub. oil separator for the
main engine and auxiliaries.
Furthermore are installed: Atlas copco
starting air and pilot air compressor, a
Haworthy sewage installation, a Pasilac
freshwater generator, a R.W.O. bilge wa­
ter separator and U nitor high pressure
cleaning units.
The cooling water system is designed for
central cooling for main engine, auxiliaries
and miscellaneous consumers. The system
consists of HT and LT coolers, make Gea,
with LT pumps, HT pumps and seawater
pumps. The system is designed in such a
way that in cold condition one o r tw o
pumps can be switched off to save energy.
Heating of fuel bunkers and accommoda­
tion is done by a thermal oil system consis­
ting of a heavy fuel oil burned boiler, make
Saarloos, capacity 700 kW and an exhaust
gas boiler.
The engineroom lay-out meets the clas­
sification requirements of the Dutch Ship­
ping Inspectorate, Class 0 + wait-attendance
and Bureau Veritas AUT-MS.
For alarm and monitoring a C.S.I. Alphaprom installation has been installed with
220 points, incl. level gauging of all tanks.
A central sound-insulated controlroom on
the first engineroom tweendeck is equip­
ped with the main switchboard, central
alarm system switchboard and computer
installation for the reefer plant and a cen­
tral control desk.
The whole engineroom design and lay-out
based on a central operation from the
controlroom and suitable for unmanned
sailing.
A c c o m m o d a tio n
The accommodation, divided over 4 decks
and wheelhouse, is suitable for 16 persons.
The maindeck layer is used for a messroom,
an office, galley stores, a laundry and a
changeroom. On the second deck the
officers’ mess and a number of crew cabins
are situated. The third and fourth deck are
used for officers’ cabins.
All cabins are designed with their own
toilet cabin arranged in such a way that
optimum living and working space is cre­
ated. All walls and ceilings are sound-insu­
lated and conform to latest Solas require­
ments for safety and fire protection.
The accommodation is airconditioned
with an A.C. installation, suitable for tropi­
cal conditions.
In the wheelhouse a central controldesk
with all navigation and manoeuvring equip­
ment is situated.
Also the radioroom is situated on the
bridgedeck and consists of main radio sta­
tion and satcom.
For lifesaving equipment an aluminium free
fall boat for 20 persons, make Verhoef, is
installed. A hydraulic crane is also installed
on the aftship for taking the boat out of the
water. This crane is also used for storing
and launching one of the tw o liferafts,
which are also placed on the aftship.
The corrosion protection and paint system
of the whole vessel is carried out with
coatings of Hempel.
The navigation bridge consists of the
following equipment:
- One 3 cm X-band automatic radar with
Arpa, make Kelvin Hughes, type
Radtrak.
- One 10 cm S-band relative motion
radar, make Kelvin Hughes, type Rad­
trak- 16.
- One slave indicator, make Kelvin
Hughes, model KH-1600 with 12 inch
high Milliana monitor.
- One satcom installation, make Elektrisk
Bureau, type Satcom-3S, complete with
monitor, telephone and teleprinter.
- One satellite back-up radiostation,
make SP radio, 800 Watt.
- One facsimile receiver, make JMC, type
FX 200.
- One navtex receiver, make Lokator,
type 2 NL.
- One direction finder, make Ramantem,
type 982/RH.
- One satnav, make Furuno, type FSN-90
with interface to gyro and log.
- One Loran-C receiver, make Furuno,
type LC-90.
- One Decca navigator, make Navstar,
type 601-D.
- One lifeboat radio, make Skanti, type
TRP-I.
- Two EPIRB, make Burn dept.
- Two mariphones, make SP Radio, type
RT-I44C.
- One echosounder, make Furuno, type
FE-881 Mhz.
- One speedlog, make Ben Marine, type
Athene.
- One Robertspn autopilot AP-9.
- One gyro compass, make Hikushin, type
CM2-200, with 3 repeaters.
- One Robertson hand-control for fol­
low-up and non folllow-up rudder
control.
- One magnetic compass, type MK 2, with
sub unit MK-2.
The vessel is scheduled for delivery end of
October 1987.
PRINS WILLEM VAN ORANJE
LENG TH OVER A L L
117.60
m
MOULDED BREADTH
18.50
m.
DEPTH M AINDECK
12.56
m.
SUMMERDRAUGHT
8.10
m.
7000
I
DEADW EIGHT ON SUMMER FREEBOARD
NETT HOLD CAPACITY
SERVICE SPEED AT BANANA
3 5 5 0 0 0 e ft
DRAUGHT
18 kn.
m
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
t yssel-vliet combinatie b,v
45
as a result of long-standing experience
FT210E
consistent research and development
ÜUliÖiJCHl'W
"f^fTT""587^89j j_!9J_[596I598!599'T* _°1Iftöïy^TöT'^oej
13
AM STELHAL
r
6151588
h - :i — i
583
ral
'5 9 4 jjj;i
I
15771
L58.?J L - - J L_J
_ n
i
536
[
535
_____
I
Pu^i
,—
I
1 579
I «581
538,
.J
! ‘
537
1___
56 1 I
! ! 540
;
532
]
|53o[ 529 ;
i/
'
539
I-----
1I
573
I[562 5 6 3
'
I
566
523
■
[
520
i i r>56»i 1
, l
l
1
j
n
1
1 ‘1613« ;S59!
I 563 !
L _ J
I J
r
, I 5 6 5 I —1
! 1— — 1 ^
Ï5 ‘ ?
r “T * n
'M w
569
f
u
L
------- n
558
1
INGANG
' ' '5681 1
I l T-1 I___
U
1-------1 518
i_L"jIfi’J
'
'606j899|6 0 6 i"489 j ^ 0'1
I *!J Li‘i 1
I
—
>
545'
r
VI
614
1— v 1 1— ' r
j_5TU O O *602i
572'
i
L” 61 ? - - J
S
■n(/>eng 4 30
H “C
597
* n
i
rM ^ n i n
''
531 r «52 7 ' 1
*1-
i
612
COj
547 j
;a e c
.515
M J JL _ _J
l
] p
------ ,
1--------- 1 1---1 513 | '550
>53'
,------
i 514
I ^09
. _ _J
1-------------- 1
ï°.j Li«
5 0 8 1 F 5' i
j~ 517 7 516 T 51^ .
1 556
501
^ 1 l[s i0 ;
«»1*6
._ J
1 1----------- 1
. 1
1
1— I— 1
1
• 1 1 402 1
j650|«5l!
t _ j. _ j
1
1 1
1
L .-----—1 1------------ 1
1
11
1 . ««". I
r -------- 1
1
1 F
« 401
I 1 4 0 0 1L _ _ _ J
" ;
I
-----1
*
j ' 396 1 ! 396 [
■]
|A B C 1 1 A B Cl
L. _ _ J
855,
------1
rJb E F ] 1 0 E F
__i
36e! 1 G H 1
• 1 11 ■
* i■ 1 C H
L _ ____ 1
1_______ 1 1_____ J
1
( 385
I—- r §521653!
387
! 366 ;
r
1
L . ___ 1
1--------1
j
'
1 386 1
1•
1
r 389 1 r "
pot’** adm
r
" 1
•>tx**«iy Ib'i
— i jS s fi
'I 849 'I -1i «in
630 ,l J
1
1
Hmj
L
J 'S
p - y ‘
L .’
I J
f" !
I
1626627, , g21
OOSTHAL
i «>
s i
£
| .o
fV
L . 1 . J 1-----------1
4 - r i
[825j826J ; ,2 3 ; , a f L _
I—
i
— I
I_______ I
L
* T
_ ^ _
1
INGANG
EUBOPAHAL
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
47
TALKING
ABOUT SHIPS - ON - SCALE
WE KNOW WHAT WE’RE TALKING ABOUT......
Torpedo workshop for Dutch Navy
A QUESTION OF KNOW-HOW
Oliemans
\|M E A D
Ship - model builders
Streefkerk - Holland
4, Zwanenvliet 2959 CD Streefkerk - Holland phone: (+31 1848) - 1528
48
SPECIAL PRODUCTS OF THE NETHERLANDS SHIPBUILDING INDUSTRY
MERCUUR
Built by: Royal Schelde in Vlissingen
Built for: T h e Royal N etherlan d s N avy
The ’Mercuur’ is a ship especially built for
the trail of torpedo’s for the submarines
and frigates of the Royal Netherlands
Navy. The ship is based in Den Helder.
The main characteristics are:
Lenth o.a. 64.80 m, Length b.p. 57.60 m,
Width 12.00 m, Depth to maindeck 7.00 m,
Draught (base line) 4.30 m, Draught
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
(sonardome) 5.45 m, Displacement 1400
tons, Accommodation for 39 persons.
The ship’s propulsion installation consists
of 2 Brons/MAN diesels type 6L20/27 of
600 kW each driving tw o propellers.
The electrical energy is produced by three
dieselgeneratorsets of 300 kW each.
The ’Mercuur’ is equipped with torpedo
launching tubes, a special slipway for pick­
ing up and transporting torpedo’s. On
board are several workshops for dismant­
ling, cleaning and assembly of the to r­
pedo’s.
A full description of this 'torpedo trials
vessel’ has been published in a special issue
o f’Ship en W erf’ no. 16 of 7th August 1987.
49
tn 1987 door ons gebouwd onder bouwnr. „416”
„YE 172”
„PIET HEIN”
afm. 40 x 10 m.
Voor rederij „Mieras”
te Arnemuiden
In 1986 gebouwd:
Theodora /„W R 238”
afm. 36 x 9 m
voor de heer L. Kooi
te Hyppolytushoef
Scheepswerf
PETERS
Postbus 291
8260 AG Kampen (Holland)
Haatland Haven 1
Tel. (05202)-15023 Telex 42323
-15708
50
SPECIAL PRODUCTS OF THE NETHERLANDS SHIPBUILDING INDUSTRY
YE 172 ’PIET HEIN’
Built by: Laan en Kooy in Den O e v e r
Built for: M ieras en Co. B .V. in A rn em u id en
The ’Piet Hein’ is a special type of fishery
ship specially built for the catch o r 'harvest'
of cockles in shallow water.
The hull of the ship, which was built by
’Peters Scheepsbouw’ in Kampen, has a
length of 40 meters, the breadth is 10
meters, the draught is only 0.50 meters.
The engineroom installation consists of 2
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
Scania diesel engines type DS-1 I with 2 18
kW each and 6 Valmet dieselengines for
generators and pumps.
The ship has an extensive fishing and
fishprocessing installation. A full descrip­
tion of the vessel has been published in
’Schip en W e rf no. 18 of 4 September
1987.
51
AEG Technologie voor de offshore industrie:
Service inbegrepen
AEG is uw betrouwbare partner in
offshore technologie. Wij bieden
full service. Dat wil zeggen toeleve­
ring, installatie, komplete begelei­
ding en onderhoud van elektrische
apparatuur op het gebied van
• energie-opwekking,
• energiedistributie,
• aandrijving,
• besturing,
• communicatie,
• dataprocessing,
• verlichting, enz. enz.
De dokumentatie wordt door ons
projektgericht samengesteld,
operators en crew doorons getraind.
Onze dienstverlening staat dag
en nacht voor u klaar (7 x 24 uur).
De wereldwijde en jarenlange
ervaring van AEG en DEBEG op dit
terrein hebben een schat aan
know-how opgeleverd. Know-how
die borg staat voor de hoogst
mogelijke betrouwbaarheid en
veiligheid.
AEG Nederland N.V.
Marine & Offshore Systems
DEBEG-Division
Wilhelminakade; haven 1241,
postbus 5115,
3008 AC Rotterdam
Tel. 010-4855644
Telefax 010-4846279
Telex 28822 adrd nl.
AEG
52
PRODUKT-INFORMATIE VERZORGD DOOR AEG NEDERLAND N.V.
A utom atiseren, regelen,
bewaken en beveiligen van
generator-aggregaten
Hoe een generator-aggregaat aangedreven
wordt, door een diesel of op een andere manier,
het speelt geen rol. Ook niet in welke opstelling, als noodaggregaat - alleen - gezamenlijk met
andere aggregaten of in combinatie met het net.
Zelfs waar hij opgesteld staat, in een schip - op
het land of in een offshore unit, het maakt niets
uit. AEG heeft voor alle denkbare combinaties
een perfecte oplossing voor het beveiligen bewaken - regelen of zelfs compleet automati­
seren van uw stroomverzorging.
Moeizaam samenstellen en inbouwen van
meerdere losse componenten is nu niet meer
nodig. AEG levert een compleet geheel, een unit
waar alle functies - bedieningen en alarmen
opzitten. Een periferie aansluitplaat met stekeraansluitingen staat borg voor een simpele snelle montage. De opbouw en de verschillende
mogelijkheden worden onderstaand nader uit­
eengezet.
Automatische stroomverzorgingssysteem
GEAPAS. Een volautomatisch bedrijf met vèrschillende generatoren kan worden gereali­
seerd met het automatische stroomverzorgings­
systeem dat door AEG in Hamburg is ontwikkeld.
Afhankelijk van het gekozen installatieontwerp
kan het systeem opgebouwd worden uit de vol­
gende componenten:
* DSG 822: Dieselgenerator controle- en bewakingsunit
* WSG 822: Asgenerator controle- en bewakingsunit
* TSG 822: Turbogenerator controle- en bewakingsunit
* LSG 821/822: Belastingbewakingsunit. (De
generatoren worden belastingsafhankelijk
bij- of afgeschakeld.)
Bij veranderingen van de belasting kan het sys­
teem automatisch generatoren bij- of afschake­
len. Tevens worden zowel generatoren als het
net bewaakt tegen storingen en in overeenstem­
ming daarmee maatregelen getroffen om de
stroomvoorziening zeker te stellen.
Hoofdfuncties zijn:
* start en stop van de aggregaten en hun bewa­
king.
* synchronisatie en bijschakelen van de aggre­
gaten
* belastingverdeling
* generatorbewaking
De 'hardware' van de WSG 822 en TSG 822 is
identiek met die van de DSG 822. De verschillen
ziften in het programma en de aanduidingen op
het front. De software is telkens aangepast aan
de specifieke aggregaat-eigenschappen, met
individueel instelbare parameters.
Geapas systeem met 2 DSG 822 dieseibewakings- en besturingsunit, 1 WSG 822 asgeneratorbewakings- en besturingsunit en 1 LSG 821 belastingbewakingsunit
Nadere informatie:
Voor scheeps- en offshore-installaties:
(010) 4858644, tst. 13.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 19B7
DSG 822 controle unit: diesel start/stop, generatorbeveiliging, synchronisatie en lastverdeling.
53
ALS HET OM
OVERLEVEN GAAT!
INFLATABLES
Sassenheim
~~Bijweglaan
F L 3O A TTelefoon
;! 02522 -15590 c. q. 13954
gaarne ontvang ik dokumentatie over FL OA T-reddingvlotten.
naam:
straat: ....................................
postcode: ......................................... plaats:......................................
54
PRODUKT-INFORMATIE VERZORGD DOOR FLOAT INFLATABLES BV
F L O A T IN F L A T A B L E S BV
Sinds de oprichting van FLOAT in
1980 heeft de onderneming zich in
hoofdzaak geconcentreerd op de
vervaardiging van reddingvlotten
t.b.v. de watersport.
Thans, in 1987, bestaat de serie uit
3 typen met capaciteiten van 4 t/m
10 personen.
Als één der eerste fabrikanten in
Europa heeft FLOAT in de door
haar geproduceerde viotten de re­
sultaten verwerkt van de door het
Engelse Maritime Institute uitgevoer­
de proeven m.b.t. de stabiliteit en
bruikbaarheid van jacht-reddingvlotten.
De typen STRATUS en NIMBUS
zijn sinds 1984 standaard voorzien
van Boarding-ramp, Electronische
Flitser, Conisch Drijfanker, en Grote
Stabiliteitszakken.
Ook het FLOAT reddingvest (op­
blaasbaar) heeft een speciale plaats
op de Nederlandse markt. Het basis
type HF82 werd n.l. onder de type
aanduiding ES 82 als standaard
vest gekozen voor de Nederlandse
Loodsen.
Voor de beroepsvaart is FLOAT zich
sinds 1984 tevens gaan specialise­
ren op de fabricage van 'collars'
voor de bekende Rigid-lnflatables.
Naast de standaard kleinere collars
voor HURRICANE en LE COMTE
’rigids’ werden ook de grote en spe­
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
ciale collars vervaardigd voor de
’BEATRIX’ van de K.Z.H.M.R.S. en
de HALMATICS van het Belgische
Reddingswezen.
De nieuwe reddingboot van de
K.N.Z.H.R.M. met een lengte van
14.65 m zal eveneens met een
FLOAT collar worden uitgerust.
O U
Behalve de genoemde collars ver­
vaardigt FLOAT eveneens z.g. floa­
ting bags met liftvermogens van
2.500 tot 15.000 Kg. en kleine fen­
ders voor de watersport.
De FLOAT 505 hulpverleningsboot
zal binnenkort worden geïntrodu­
ceerd.
Het spreekt vanzelf dat FLOAT zich
ook bezig houdt met het op deskun­
dige wijze inspecteren van alle mer­
ken jacht-reddingvlotten en reddingvesten alsmede het onderhoud en
reparatie van rubberboten en overle­
vingspakket
Sinds juni 1985 is er onder de naam
SERVI-FLOAT tevens een 'steun­
punt' aan de Noorderhaven 61 in
HARLINGEN.
55
OKAY B.V.
P.O. Box 27250
1002 AE AMSTERDAM
HOLLAND
OKAY
E N G IN E E R IN G . M A N A G E M E N T & C O N S U L T A N T S
R E P R E S E N T A T IV E OF
Giesselbach
PHONE 31-(0)20-34 76 11
FAX
31-(0)20-37 02 76
TELEX 15224 gibagnl
ElectroEngineenng
De naam OKAY/CEE slaat voor een team enthousiaste mede­
werkers, die gezamenlijk voor de innovatie hebben
gezorgd.
Daarom haalt u voor uw elektro-technische installatie altijd
een expert in huis. Meer dan 60 specialisten staan voor u
klaar waarbij hard werken ook buiten de kantooruren, be­
trouwbaarheid en service tot de meest ouderwetse zaken
behoren.
XHnenu
nçuuo
Ons bureau moest veelal bewijzen, dat de theoretische
know-how in de praktijk moest worden gerealiseerd. Speci­
fiek toen de activiteiten van het speuren naar olie op het
continentale plat en de exploitatie hiervan om meer geavan­
ceerde technieken vroegen. Hiermee onderstrepen wij dat
voor Uw probleem, waarvoor theoretische oplossingen zijn
bedacht, onze engineers de praktische toepasbaarheid ef­
fectueren.
LEVERINGSPROGRAMMA:
- PLC besturingen,
- Statische W-L regelingen,
- Complete elektrische installaties voor:
kranen, schepen, lieren, transportinstallaties, platforms
etc.,
- Automatisering en beveiligingssystemen voor:
kranen, transportinstallaties etc.,
- SERVICE ALL OVER THE WORLD
56
PRODUKT-INFORMATiE VERZORGD DOOR OKAY B.V.
O kay Giesselbach Electro Engineering
innovatie in electro engineering
De geschiedenis van Giesselbach beslaat
een tijdperk van 31 jaar. Door alle ontwikke­
lingen, welke wij in die drie decennia be­
leefden, loopt een rode draad: het benutten
en het gebruiken van elektrische kracht. Te
land en ter zee. Vanuit ons installatiebedrijf
groeiden wij rond 1970 automatisch naar
ontwerpbureau. De activiteiten van het
speuren naar olie en gas op het continenta­
le plat en de exploitatie van gevonden
Noordzee-energie versnelden de groei van
deze afdeling.
Enkele van de speciale produkten, welke
wij in de afgelopen jaren in nauwe samen­
werking met onze opdrachtgevers, ontwik­
kelden, zijn thans rijp voor ruimere toepas­
sing, Deze produkten hebben wij onderge­
bracht in een standaardprogramma. Hier­
door zijn wij in staat efficiënt te fabriceren
met een constante kwaliteit tegen accepta­
bele prijzen.
Giesselbach levert u niet alleen de oplos­
sing voor uw elektrotechnisch vraagstuk
van vandaag maar ook van morgen. Door
de toepassing van nieuwe technieken is er
al ervaring voorhanden op het gebied van
micro-processing. Geprogrammeerde c.q.
gestuurde elektrische installaties werden
met volledig aangepaste systemen door
ons geplaatst in de recycling- en bio-industrie. Doordat wij doorgaans z.g. maatpak­
ken moeten leveren is ons werkterrein zeer
veelzijdig. De off-shore branche biedt in
deze overzichtsbrochure mogelijk de
meest spectaculaire beelden, maar ook
rekenen wij af met storingen in de meest
eenvoudige installaties. Omdat wij geen
vast leveringsprogramma hebben, kunnen
wij u objectief adviseren welk produkt ons
inziens de voorkeur geniet voor installatie.
Dit kan van project tot project variëren.
G renzeloze service
Hoewel het hoofdkantoor van OKAY bv
Giesselbach Electro Engineering in Am­
sterdam is gevestigd, kent het werkterrein
geen grens. Juist omdat veel opdrachtge­
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
vers uit de scheepvaart en offshore komen,
gelden voor het OKAY/G.E.E.-team geen
grenzen.
57
the marine flooring specialist
Smits Neuchâtel is dè erkende specialist op het gebied
van maritieme vloeren. Levert accommodatievloeren,
buitendekbedekkingen, ruimvloeren en conserveringen.
scheepsaccommodatievloeren
DURAC
ondervloeren op latexbasis
THEINA
thermisch isolerende ondervloeren
FIPRA
brandveilige ondervloeren
SOPRA
geluidwerende ondervloeren
FASPRA EN
brandveilige geluidwerende
SOLASDEK-R.W.
klasse A-60 ondervloeren
Tevens Linoleum - PVC. - Rubber en/of Tapijtvloerbedekkingen
CERAMIC
D.G.H. tegelvloeren op zandcement en
latex-cement ondervloeren
WESPA
kunststofvloeren in natte ruimten
HYPOX
gietvloeren op epoxybasis
SOLVOLAN
gietvloeren op polyurethaanbasis
scheepsbuitendekken
tankconserveringen
DURAS
HYPOX
POLYOEK
SOLVOLAN-S
PERMANENT RS
asfaltcovering
covering op epoxybasis
covering op polyurethaanbasis
covering met rubbergranulaat en kunst­
stof afwerklaag.
BITUFILM AB
HULLFAIRING
warme bitumen voor ballast en drinkwatertanks
koude bitumen voor droge tanks en
achter beschieting
compound voor roeren, uithouders,
beunwanden, enz.
scheepsruimvloeren
Vertegenwoordigingen
SERDAT
SERDAC
In Nederland vertegenwoordigen wij:
DURASTIC LTD,
Burdett Road, Londen E14
asfalt met roosterwapening op tanktop
koelruimvloeren
Wilt u meer weten over het leveringsprogramma?
Graag zenden wij u uitvoerige documentatie plus certifi­
caten, die stuk voor stuk een aanbeveling zijn.
Of wilt u meteen een gedegen advies voor een bepaald
project? Wij zijn niet verder weg dan uw telefoon.
smits neuchatel bv
marconibaan 36, postbus 30, 3430 aa nieuwegein
58
telefax 03402-42854
telex 47615
telefoon: 03402 - 3 20 04
PRODUKT-INFORMATIE VERZORGD DOOR SMITS NEUCHÂTEL B.V.
scheepsvloeren
een vak apart
scheepsdekken
Scheepsdekken stellen zeer specifieke
eisen aan de afwerking, zowel in de ac­
comm odatie als daarbuiten.
Smits Neuchatel heeft hiervoor een
breed scala van produkten en diensten.
Accommodatievloeren: van latex-cement vloeren tot hoog gekwalificeerde
vloerafwerkingen, brand- en geluidwerend, decoratief afgewerkt met p.v.c., li­
noleum, tapijt, rubber of naadloze kunst­
stof vloeren, dan wel met keramische of
marmer tegels.
Speciale afwerkingen worden daarbij
niet uit de weg gegaan, zoals blijkt uit
de interieurfoto’s van de ferry 'Koningin
Beatrix’.
Scheepvaartinspectie, en zijn goedge­
keurd door vooraanstaande classificatiebureau’s.
Buitendekken: hiervoor beschikt Smits
Neuchatel over kwalitatief hoogwaardige
kunststofbedekking op basis van rubber,
polyurethaan en epoxy.
Zo werd onder andere voor de Koninklij-
ke Nederlandse Marine het Hypox Dekbedekkingssysteem ontwikkeld: een se­
rie van op elkaar afgestemde produkten,
waardoor dekken onder alle klimatologi­
sche omstandigheden een sterke, corrosiebestendige, brandwerende en antislip
bescherming krijgen.
Alles wat op maritiem gebied gebouwd
wordt kan door Smits Neuchatel voor­
zien worden van dek- en vloerbedekkin­
gen: booreilanden en andere offshoreconstructies, supply-vessels, sche­
pen voor de grote vaart, sleepboten,
hektrawlers, binnenvaart-, kustvaart- en
passagiersschepen, fregatten, onderzee­
boten.
De afwerkingen zijn grotendeels ontwik­
keld in eigen laboratorium, in nauw
overleg met TNO en de Nederlandse
Smits Neuchatel heeft een jarenlange
ervaring in de nieuwbouw- en renovatiesector, ter land en ter zee.
En: Smits Neuchatel is nooit verder weg
dan de dichtstbijzijnde telefoon!
smits neuchatel bv
postbus 30 3430 aa nieuwegein
marconibaan 36 - telefax 03402-42854
telefoon 03402 - 3 20 04 - telex 47615
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1987
59
PROBLEEMLOOS
LASSEN.,
Smitweld heeft precies die
elektroden en toevoegmaterialen
die het meest geschikt zijn voor üw
werk. Ga maar na: we maken bij­
voorbeeld meer dan 80 verschil­
lende elektroden, poeders en
gevulde draden. Allemaal grondig
getest en zeer coastant in gedrag.
En mocht u toch een keer voor
een probleem staan, dan adviseren
wij u graag. Want dank zij gedegen
research en rijke ervaring blijken
we steeds weer in staat een oplos­
sing te vinden.
Smitweld dus. Niet alleen als
het gaat om de juiste elektroden,
gevulde draden of poeders. Ook op
het gebied van apparatuur kunnen
wij u uitstekend van dienst zijn.
SMITWELD
M em ber of the NORWELD G roup
S m i r o el d bv, P o s t b u s 2 5 5 , 65iX) A C I N i j m e g e n ! T e l . 0 8 0 - 522911.
PRODUKT-INFORMATIE VERZORGD DOOR SMITWELD B.V.
SMITWELD
60 ja a r la s e rva rin g
De naam SMITWELD klinkt velen die werk­
zaam zijn in de lasindustrie, vertrouwd in de
oren. Dat is niet zo verwonderlijk, want dit
Nijmeegse bedrijf is de grootste producent
van laselektroden en -poeders in Neder­
land. En SMITWELD draait al zo'n zes­
tig jaar mee. In West-Europa bezit het be­
drijf een sterke positie op het gebied van
lastoevoegmaterialen voor speciale toe­
passingen; denk daarbij aan roest- en hittevast staal, duplex staal en cryogene instal­
laties. In het begin van de jaren '80 ontwik­
kelde SMITWELD het EMR-Sahara con­
cept: lasmateriaal met een bijzondere on­
gevoeligheid voor vocht.
Het leveringsprogramma omvat verder
een breed scala aan stroombronnen en
randapparatuur voor handlassen, MIG-,
TIG-, plasma- en OP-lassen. Een belang­
rijk aandeel van de bedrijfsactiviteiten
speelt zich af rondom de innovatie van
Produkten en processen, en het begelei­
den van afnemers die zich willen richten op
mechanisering en automatisering van de
produktie, bijvoorbeeld met sensortechniek. De computergestuurde lassimulator
die SMITWELD geheel in eigen beheer
heeft ontwikkeld, wordt door instituten en
bedrijven over de gehele wereld gekocht.
SMITWELD levert ook een compleet as­
sortiment MIG- en TIG-draad, apparatuur
voor het positioneren en manipuleren van
werkstukken, flexibele systemen voor het
afzuigen van lasrook, en allerhande hulp­
middelen. Een aparte afdeling houdt zich
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
bezig met ontwikkelen van externe cursus­
sen op lastechnisch gebied, waarbij het
accent op de praktische toepassing ligt.
Lastoevoegmaterialen en -machines van
SMITWELD vinden hun weg naar uiteenlo­
pende takken van industrie. Een greep uit
het afzetgebied: de bouw van chemicaliëntankers, de schuiven van de Oosterscheldedam, dikwandige pijpsystemen van du­
plex staal, een twintig meter hoge roestvaststaal plastiek, boorplatform in de
Noordzee.
Het in 1927 opgerichte bedrijf telt nu rond
de vierhonderd medewerkers. Twintig pro­
cent daarvan is werkzaam in de sfeer van
research & development.
Dat percentage illustreert het grote belang
dat SMITWELD hecht aan het vooruitlopen
op nieuwe ontwikkelingen in de verbin­
dingstechniek. Zo wordt de know how, op­
gebouwd in meer dan een halve eeuw,
geconsolideerd en verder versterkt.
De recente geschiedenis van het bedrijf
kenmerkt zich door modernisering, de ont­
plooiing van nieuwe activiteiten en een toe­
nemende oriëntatie op de internationale
markt. In 1981 werd een nieuw fabrieks­
complex geopend dat een van Europa’s
modernste laslaboratoria huisvest. Voor
grondstoffenanalyse is onder andere een
uiterst nauwkeurige emissiespectrometer
beschikbaar. In hetzelfde jaar nam de produktie-afdeling een automatische menginstallatie in gebruik voor de aanmaak van de
bekleding der laselektroden. De computer-
besturing daarvan garandeert een con­
stante en precieze reproduceerbaarheid.
Behalve de fabrieken bevinden zich in Nij­
megen ook de verkooporganisaties voor
binnen- en buitenland: regionale kantoren
zijn gevestigd in Amsterdam, Groningen en
Barendrecht. In Duitsland en België opere­
ren zelfstandige verkooporganisaties.
Smitweld is onderdeel van de Norweld
Groep met vestigingen in Noorwegen,
Zweden, Denemarken, Engeland, Duits­
land en België.
Sinds 1983 produceert Smitweld in samen­
werking met het amerikaanse Alloy Rods
gevulde draad voor de europese markt.
Nadat in 1983 het EMR-Sahara concept
werd geïntroduceerd, kwam Smitweld be­
gin 1987 op de markt met het revolutionaire
Sahara ReadyPack. Dit is een vacuüm ge­
trokken aluminium pak met EMR-Sahara
elektroden. Hierbij behouden de elektro­
den hun uitstekende EMR-eigenschappen
tot op de lasplaats.
61
Steel hatchcovers and Ro-Ro equipment
Transport Efficiency, 20 years
specialized in actual design and
construction of:
Hatchcovers for all types of ships
of all sizes.
Doors, Bow-visors, Ramps etc.
for Ferries.
Link-Spans etc.
Transport Efficiency
20 years of experience
*
r
in design
and construction.
62
t €I
IB
H
H
■
mm I
Transport Efficiency b.v.
R egattaw eg 11
9731 AJ G roningen The Netherlands
Tel. 050-413000
Telex 53927 te nl
Telefax 050-411592
PRODUKT-INFORMATIE VERZORGD DOOR TRANSPORT EFFICIENCY
Transport Efficiency B. V. is van huis uit leverancier van stalen scheepsluiken voor allerlei zeegaande schepen.
De stap naar leveranties voor Ro-Ro schepen was jaren geleden een voor de hand liggende zaak. Als gevolg
daarvan begon Transport Efficiency met het ontwerp, verkoop en het (laten) bouwen van zgn. Linkspans of wel
Ro-Ro bruggen.
De meest recente is de Ro-Ro brug voor Ford Engeland te Dagenham die de brug gebruikt voor de aanvoer van
in speciale Fligh-Cube Trailers verpakte assemblage onderdelen voor de bekende Ford-modellen.
De laatste ontwikkeling bij T.E. is de uitbreiding van de engineeringsafdeling. Deze uitbreiding houdt in, dat er nu
mogelijkheden voor T.E. aanwezig zijn om naast de bovengenoemde aktiviteiten ook aan de scheepsbouw in
het algemeen complete constructie tekeningen te kunnen leveren op basis van een ontwerp. Tevens wordt
gewerkt aan Engineering op het gebied dat buiten de scheepsbouw ligt en de eerste stappen zijn reeds
succesvo! gebleken.
Ook is de verkoop van de lieren van Ten Hom Machine en Lierenfabriek B.V. bij T.E. ondergebracht sinds de
toetreding van Ten Horn tot de Cono Industrie Groep te Groningen, waarvan ook T.E. met een zevental andere
bedrijven deel uitmaakt.
Bij Transport Efficiency B.V. ziet men de toekomst dan ook met vertrouwen tegemoet.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1987
63
LIJST VAN ADVERTEERDERS
56 en 57
AEG Nederland Marine S e rvice
52 en 53 Okay B.V./Giesselbach ...................
Oliemans
Scheepsmodelbouw.................
48
AGAM Motoren B.V.....................................
4
Peters Scheepsbouw B.V...........................
50
Roestvrij B.V., Handelmij ..........................
Rotterdamsch Zandstraal- en
18Schildersbedrijf...........................................
16
BP Marine International ............................
40
DAF Diesel ..................................................
8
Esab Nederland B.V.......................................
Schreuder & Co...........................................
30
Sempress B.V., M achinefabriek...............
26
Smits Neuchatel B.V.........................
58 en 59
Smitweld B.V.....................................
60 en 61
S p e rry ...........................................................
24
38
Filarc Lastechniek B.V................................
Float Inflatables ..................
54 en 55
Geveke Motoren en
Grondverzet B.V
2 omslag
Gowrings Continental B.V
3 omslag
Grenco B.V.................................................. ..
44
Johnson & Co. B.V.,
A ...................
Transport Efficiency B.V................ .
62 en 63
Transportuitgaven B.V.
..........................
36
10 en 11
Lubrafil B.V...................................................
34
Man Rollo B.V..............................................
MHI Samofa Diesel B.V..............................
46
42
Niestern Sander B.V.......................................
Uden Marine & Eng., van .........................
Uittenbogaart, B.V. Technisch Bureau ....
Wartsila Diesel ................
Westfalia Separator
Nederland B.V..................................
32
28
3
4 omslag
12
IJsselwerf B.V................................
64
22
frontpagina