PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/26241 Please be advised that this information was generated on 2015-01-24 and may be subject to change. PHYSICS LETTERS B ELSEVIER Physics Letters B 374 (1996) 331-340 Measurement of muon-pair production at 50 GeV < v'J < 86 GeV at LEP L3 Collaboration M. Acciarriab, A. Adamau, O. Adrianiq, M. Aguilar-Benitezaa, S. Ahlenk, B. Alpatai, J. Alcaraz33, G. Alemanniw, J. Allabyr, A. Aloisioad, G. Alversonf, M.G. Alviggiad, G. Ambrosi“1, H. Anderhubay, V.P. Andreevam, T. Angelescum, D. Antreasyan1, A. Arefievac, T. Azemoonc, T. Aziz^, P. Bagnaiaai, L. Baksayas, R.C. Ballc, S. Banerjeej, K. Baniczau, R. Barillère1’, L. Barone^, P. Bartaliniai, A. Baschirottoab, M. Basile1, R. Battiston31, A. Bayw, F. Becattiniq, U. Beckerp, F. Behneray, J. Berdugoaa, P. Berges p, B. Bertuccir, B.L. Betevay, M. Biasini1, A. Bilanday, G.M. Bileiai, J.J. Blaisingr, S.C. Blyth^, G.J. Bobbinkb, R. Bocka, A. Böhma, B. Borgia^, A. Bouchamd, D. Bourilkovay, M. Bourquin1, D. Boutignyd, E. Brambillap, J.G. Branson80, V. Brigljevicay, I.C. Brock«, A. Buijsat, A. Bujak3U, J.D. Burgerp, W.J. Burger', J. Busenitzas, A. Buytenhuijsaf, X.D. Cais, M. Campanelliay, M. Capellp, G. Cara Romeo1, M. Caria31, G. Carlino0, A.M. Cartaceiq, J. Casaus83, G. Castellini“3, R. Castelloab, F. Cavallariai, N. Cavallo30, C. Cecchi1, M. Cerrada33, F. Cesaronix, M. Chamizo33, A. Chanba, Y.H. Changba, U.K. Chaturvedi\ M. Chemarinz, A. Chenba, C. Cheng, G. Cheng, G.M. Chen«, H.F. Chen“, H.S. Chen^, M. Chenp, G. Chiefariad, C.Y. Chiene, M.T. Choiar, L. Cifarelli“ , F. Cindolo1, C. Civininiq, I. Clarep, R. Clarep, H.O. Cohn3*5, G. Coignetd, A.P. Colijnb, N. Colino33, V. Commichau3, S. Costantini3^, F. Cotorobai"1, B. de la Cruzaa, T.S. D aip, R. D ’A le ssa n d r o R. de Asmundisad, H. De Boeckaf, A. Degréd, K. Deitersav, P. Denesak, F. DeNotaristefania/', D. DiBitontoas, M. Diemoz^, D. van Dierendonckb, F. Di Lodovicoay, C. Dionisia£, M. Dittmar3y, A. Dominguez30, A. Doria3d, I. Dorned, M.T. Dova“’4, E. Dragoad, D. Duchesneaud, P. Duinkerb, I. Duranap, S. Dutta-i, S. Easo31, Yu. Efremenkoag, H. El Mamouni2, A. EngleraJ, F.J. Epplingp, F.C. Ernéb, J.P. Ernenweinz, P. Extermann1, M. Fabreav, R. Facciniaf, S. Falciano^, A. Favaraq, J. Fayz, M. Felciniay, T. Fergusonaj, D. Fernandez33, F. Ferroniai, H. Fesefeldt3, E. Fiandrini31, J.H. Field1, F. Filthaut^, P.H. Fisherp, G. Forconi13, L. Fredj\ K. Freudenreichay, Yu. Galaktionovac,p, S.N. Ganguli-*, S.S. Gauf, S. Gentileat, J. Gerald6, N. Gheordanescum, S. Giaguai, S. Goldfarbw, J. Goldsteink, Z.F. Gong“, A. Gougase, G. Grattaah. M.W. Gruenewaldh. V.K. Guotaak. A. Gurtuj, LJ. Gutay3“, K. Hangarter3, 0370-2693/96/$ 12.00 Copyright © 1996 Published by Elsevier Science B.V. All rights reserved PII S 0 3 7 0 - 2 6 9 3 ( 9 6 ) 0 0 2 5 7 - 2 332 L3 Collaboration /Physics Letters B 374 (1996) 33Î -340 B. H artm an n “, A. H a sa n ae, J.T. H e g, T. H ebbekerh, A. H e rv é r, W.C. van H o e k af, H. H o fe ray, H. H oorani', S.R. H o u b\ G. H u s, M.M. Ily a s 5, V. In nocente1, H. J a n s s e n d, B.N. J in g, L.W. Jo n e sc, R de J o n g p, I. Josa-M utuberriaaa, A. K asserw, R.A. K h a n \ Yu. K am yshkovag, R K apinosaw, J.S. K apustinskyy, Y. K aryotakisd, M. K a u r s,s, M .N. K ienzle-Focacci1, D. K im e, J.K. K im ar, S.C. K im ar, Y.G. K im ar, W.W. K in n iso n y, A. K irk b y ah, D. K irk b y ah, J. K irk b y r, W. K ittelaf, A. Klim entov p-ac, A.C. K ö n ig af, A. K ö n g e te r\ I. K orolkoac, V. K outsenkop,ac, A. K oulbardisam, R.W. K raem erai, T. K ram erp, W. Ki'enza, H. K uijten3*, A. K u ninp,ac, P. Ladrón de G uevaraaa, G. L a n d iq, C. L ap o in tp, K. L assila-Periniay, M. L eb eau r, A. L eb ed ev p, P. L e b ru n 7, P. L e c o m te ay, P. L e c o q r, P. Le C oultreay, J.S. L e e ar, K.Y. L e e ar, C. L eg g ettc, J.M. Le G o ff1, R. L e is te aw, M. L en tiq, E. L eonardiai, P. L evtchenkoam, C. L i u, E. L ie b aw, W.T. L in ba, F.L. Linde b-r, B. L indem anna, L. L ista ad, Z.A. L iu g, W. L o h m an n aw, E. L o n g o a£, W. L u ah, Y.S. L u g, K. L übelsm eyer“, C. L u c iaí, D. L u ck ey p, L. L udoviciaí, L. L u m in aria/, W. L u sterm an n av, W.G. M a u, A. M acch io lo q, M. M aityj, G. Majumder-i, L. M a lg e ri“*, A. M alin in ac, C. M a ñ a “3, S. Mangla-i, P. M archesini“y, A. M arin k, J.P. M a rtin z, R M a rz a n o “/;, G.G.G. M assaro b, K. M azum darJ, D. M cN allyr, S. M e le ad, L. M e ro la ad, M. M esch in iq, W.J. M etzgeraf, M. von der M e y a, Y. M i w, A. M ih u lm, A.J.W. van M ilaf, G. M irab ellia/>, J. M n ic h r, M. M ö ller“, B. M onteleoniq, R. M o o re c, S. M o rg an ti^ , R. M o u n tah, S. M ü lle r“, F. Muheim*, E. N agy", S. N a h n p, M. N ap o litan o ad, F. N essi-Tedaldiay, H. N ew m an ah, A. N ip p e “, H. N o w a k aw, G. O rg an tin i^, R. O sto n en v, D. P an d o u las3, S. Paolettiai, P. P ao lu cciad, H.K. P a rk ^ , G. P ascale1^, G. Passalevaq, S. P atricelliad, T. P a u lai, M. P au lu zziai, C. P au s“, F. P a u ssay, D. P e a c h r, Y J. P e i“, S. P en so ttiab, D. Perret-G allixd, S. P e tra k h, A. P evsnere, D. P icco lo ad, M. P ieriq, J.C. Pinto a\ P.A. P iro u é ak, E. P isto lesiq, V. P lyask inac, M. P o h lay, V. P o jid aev ac,q, H. P o ste m a p, N. P ro d u it1, R. R aghavan', G. R ahal-C allotay, P.G. R an co ita“b, M. R attaggiab, G. R a v e n “0, P. R a z isae, K. R e ad ag, M. R ed aelliab, D. R e n ay, M. R escig n o “£, S. Reucroft^, A. R ic k e ra, S. R iem an n aw, B.C. R iem ersau, K. R ile s0, O. R in d 0, S. R o “r, A. R o b o h m ay, J. R o d in p, W F J . R odriguezaa, B.P. R o e c, S. Röhner “, L. R o m ero aa, S. R osier-L eesd, Ph. Rosselet W. van R o ssu m “1, S. R o th “, J.A. R u b io r, H. R ykaczew skiay, J. S alicio1', E. S an ch ezaa, A. S antocchia“1, M.E. S arakinosv, S. Sarkarj , M. S assow sky“, G. Sauvaged, C. S c h ä fe r“, V. Schegelsky“m, S. Schm idt-K aerst“, D. S chm itz“, P. S ch m itz“, M. S chneegansd, B. S choeneichaw, N. S ch o lzay, H. S chopperaz, D J . S ch otanu s“f, R. S chulte“, K. S c h u ltz e “, J. S chw enke3, G. S chw ering“, C. S ciaccaad, D. Sciarrino', J.C. S e n sba, L. S erv o liai, S. Shevchenkoah, N. Shivarovaq, V. S houtkoac, J. S h u k lay, E. S hum ilov“0, T. S ied en b u rg 3, D. S o n “r, A. S opczakaw, V. S oulim ov“d, B. S m ith p, P. Spillantiniq, M. S te u e rp, D.P. S tick land“k, F. S ticozzip, H. S to n e “k, B. S toyanov“q, A. Straessner“, K. S tra u c h 0, K. Sudhakai'j, G. S u ltan o v s, L.Z. S u n “, G.F. S usinn o1, H. S u teray, J.D. S w a in s, X.W. T an g g, L. T auscherf, L. Taylor^, Samuel C.C. T in g p, S.M. T in g p, O. T o k erai, F. T onischaw, M. T onutti“, S.C. Tonw ar■*, J. T ó th n, A. T saregorodtsev“m, C. T u lly ak, H. T uchschereras, K.L. T u n g g, J. U lbrichtay, U. U w e rr, E. V alentea<?, R.T. Van de W a lle af, L3 Collaboration /Physics Letters B 374 (1996) 331-340 333 I. V etlitskyac, G. V ierte!“*, M. Vivargentd, R. V òlkertaw, H. V o g e P , H. V ogtaw, I. V orobievac, A.A. V orobyov3™, An.A. V orobyov301, A. Vorvolakosae, M. W ad h w af, W. W allraff3, J.C. W a n g p, X.L. W a a g u, Y.F. WangP, Z.M. W an g u, A. W eb er3, F. W ittg en stein r, S.X. W u s, S. W ynhoff3, J. X u k, Z.Z. X u u, B.Z. Y an g “, C.G. Yang®, X.Y. Y ao g, J.B. Y e u, S.C. Y eh ba, J.M. You aJ, C. Z accardelli3h, An. Z a lite am, P. Z e m p ay, J.Y. Z e n g g, Y. Z e n g a, Z. Zhang«, Z.P. Z h a n g u, B. Z h o u \ G.J. Zhou®, Y. Z h o u c, G.Y. Zhu s, R.Y. Z h u ah, A. Zichichi iJ-s a I. Physikalisches ¡nsiitut, RWTH, D-52056 Aachen, F R G 1 III Physikalisches Instituí, RWTH, D-52056 Aachen, FRG 1 h National Institute fo r High Energy Physics. NIKHEF, and University o f Amsterdam, N L -I009 DD Amsterdam, The Netherlands c University o f Michigan, Ann Arbor, M l 48109, USA J Uiboratoire d ’Annecy-le-Vieux de Physique des Partkules, LAPP, IN2P3-CNRS, BP I IO, F-7494I Annecy-le-Vieux CEDEX, France c Johns Hopkins University, Baltimore, MD 21218, USA 1 Institute o f Physics, University o f Basel, CH-4056 Basel, Switzerland £ Institute o f High Energy Physics, IHEP, 100039 Beijing, China h Humboldt University, D-10099 Berlin, FRG 1 1 INFN-Sezione di Bologna, 1-40126 Bologna, Italy 1 Tata Institute o f Fundamental Research, Bombay 400 005, India k Boston University; Boston, MA 02215, USA t Northeastern University, Boston, MA 02115, USA m Institute o f Atomic Physics and University o f Bucharest, R-76900 Bucharest, Romania n Central Research Institute fo r Physics o f the Hungarian Academy o f Sciences, H-1525 Budapest 114, Hungary2 0 Harvard University, Cambridge, MA 02139, USA P Massachusetts Institute o f Technology, Cambridge, MA 02139, USA 4 INFN Sezione di Firenze and University o f Florence, 1-50125 Florence, Italy r European Laboratory fo r Particle Physics, CERN, CH-1211 Geneva 23, Switzerland s World Laboratory, FBUA Project, CH-1211 Geneva 23, Switzerland 1 University o f Geneva, CH-1211 Geneva 4, Switzerland u Chinese University o f Science and Technology, USTC, Hefei, Anhui 230 029, China v SE FT, Research Institute fo r High Energy Physics, P.O. Box 9, SF-00014 Helsinki, Finland ■w University o f Lausanne, CH-1015 Lausanne, Switzerland x INFN-Sezione di Lecce and Università Degli Studi di Lecce, 1-73100 Lecce, Italy y Los Alamos National Laboratory, Los Alamos, NM 87544, USA '• Instituí de Physique Nucléaire de Lyon, IN2P3-CNRS, Università Claude Bernard, F-69622 Villeurbanne, France aa Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, E-28040 Madrid, Spain 1 ab INFN-Sezione di Milano, 1-20133 Milan, Italy ac Institute o f Theoretical and Experimental Physics, ITEP, Moscow, Russia ad INFN-Sezione di Napoli and University o f Naples, 1-80125 Naples, Italy ae Department o f Natural Sciences, University o f Cyprus, Nicosia, Cyprus al University o f Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands Oak Ridge National Laboratoty, Oak Ridge, TN 37831, USA ah California Institute o f Technology, Pasadena, CA 91125, USA ai INFN-Sezione di Perugia and Università Degli Studi di Perugia, 1-06100 Perugia, Italy ai Carnegie Mellon University; Pittsburgh, PA 15213, USA ak Princeton University, Princeton, NJ 08544, USA ai INFN-Sezione di Roma and University o f Rome, “La Sapienza ”, 1-00185 Rome, Italy um Nuclear Physics Institute, St. Petersburg, Russia an University and INFN, Salerno, 1-84100 Salerno, Italy a0 University o f California, San Diego, CA 92093, USA ap Dept, de Fisica de Partículas Elementales, Univ. de Santiago, E-15706 Santiago de Compostela, Spain at| Bulgarian Academy o f Sciences, Central Laboratory o f Mechatronics and Instrumentation, BU -1U 3 Sofia, Bulgaria ur Center fo r High Energy Physics, Korea Advanced Inst, o f Sciences and Technology, 305-701 Taejon, South Korea as University o f Alabama, Tuscaloosa, AL 35486, USA * 334 L3 Collaboration / Physics Letters B 374 (1996) 331-340 al Utrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands au Purdue University, West Lafayette, IN 47907, USA av Paul Seltener Institut, PSI, CH-5232 Villigen, Switzerland aw DESY-Instifut fü r Hochenergiephysik, D-15738 Zeuthen, FRG uy Eidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zürich, Switzerland u/ University o f Hamburg, D -22761 Hamburg, FRG ba High Energy Physics Group, Taiwan, ROC Received 16 February 1996 Editor: K. Winter Abstract Using the data recorded with the L3 detector at LEP, we study the process e+ e ~ —► for events with hard initial-state photon radiation. The effective centre-of-mass energies o f the muons range from 50 GeV to 86 GeV. The data sample corresponds to an integrated luminosity o f 103.5 pb “ 1 and yields 293 muon-pair events with a hard photon along the beam direction. The events are used to determine the cross sections and the forward-backward charge asymmetries at centre-of-mass energies below the Z resonance. 1, Introduction At LEP, the cross sections and forward-backward charge asymmetries for the process e+e~ —> /x+/a"“(y) are measured at centre-of-mass energies, \ f s s between 88 GeV and 136 GeV [1,2]. Data from experiments at PEP, PETRA and TRISTAN cover the energy range from 12 GeV to 60 GeV [3]. The energy region between 60 GeV and 88 GeV is not explored by direct measurements, but can be accessed at LEP using events with hard initial-state photon ra diation in which the fermion pair is produced at lower centre-of-mass energies [4]. The following analysis uses 93000 muon-pair events collected with the L3 detector in the years 1991 to 1994. The data correspond to an integrated luminosity of 103,5 pb“ 1. Events with high missing momentum along the beam direction are interpreted as events with hard initial-state photon radiation. They are used to measure cross sections and forward1 Supported by the German Bundesministerium für Bildung, Wis senschaft, Forschung und Technologie. *■Supported by Lhe Hungarian OTKA Fund under contract number TI 4459. * Supported also by the Comisión Interministerial de Ciencia y Technologia. 4 Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. 5 Also supported by Panjab University, Chandigarh-160014, India. backward asymmetries at effective centre-of-mass energies between 50 GeV and 86 GeV. 2. Photon radiation in fermion-pair production Radiative corrections to the fermion-pair production process e+e- —» f f ( y ) at the Z resonance can be separated into electroweak and QED bremsstrahlung contributions. The electroweak corrections are the sum of propagator, vertex and box corrections, including the effect of the energy dependence of the fine struc ture constant a, QED bremsstrahlung corrections are present in the initial state (ISR) and final state (F S R ). At the Z pole, the interference between initial and final-state radiation is small [5] and allows a separate treatment of both corrections. In interactions with initial-state bremsstrahlung, a fraction of the beam energy is taken by the photon and the fermion pair is produced at a lower effective centre-of-mass energy, y/s*. The visible cross section is described by a convolution of the cross section in cluding electroweak corrections, <xew, with a radiator function, G ( z ,i) , l é cr(s) = ƒ 4mj. / s dz G (z ,s ) crew( z s ) ( \ + SrsR) , (1) L3 Collaboration / Physics Letters B 374 (1996) 331-340 where z = sf/ s [ 6 ]. The correction <5,,su is small, e.g. 0.17% for fJL+iJL~ [ 6 ], and accounts for the effect of final-state radiation. Measuring the differential cross section of initial-state radiation thus allows to extract the cross section at lower centre-of-mass energies, dcr dz ( 2) G( z , s ) crewizs) , since Lhe radiator function G( z , s ) is calculable in QED. A first-order calculation [7] fo rG (z , s) gives G( z, x) = a 77* In s m 1 (3) In the analysis presented here the KORALZ Monte Carlo generator [ 8 ] is used to take into account higher-order bremsstrahlung corrections. The gener ator treats the radiation of hard photons in the initial and final state to 0 ( a 2) . The radiation of soft photons is considered in all orders by exponentiation. Photons are emitted predominantly collinear to the direction of the radiating particles. Initial-state pho tons go mainly along the direction of the e+e~ beams, while final-state photons cover the full solid angle. A separation of the different types of radiation is there fore possible. From the energy, Ey, of the initial-state photon one finds for the effective centre-of-mass en ergy squared, s': (4) For three-particle final states the particle momenta follow from the measured directions using energy and momentum conservation. Assuming that the unde tected initial-state photon is radiated in the direction of the beams, its energy is given by the polar angles, 01 , 02 » of the outgoing fermions: sin ( 0 ] + 0 2 ) | Ey — y/s sin 0 i + sin 02 + I sin ( 0 j + 02 ) 335 In this analysis events of the reaction e+e~ —» (y) are used. The process allows a clear separa tion between photons and outgoing leptons and hence gives a good rejection of the final-state bremsstrahlung events. Moreover, the polar angles of the two leptons can be measured with good precision, which is neces sary for the determination of s'. 3. L3 detector The L3 detector is described in detail in Ref. [9]. The components of the detector are the central tracking chamber, the electromagnetic calorimeter composed of bismuth germanium oxide (BGO) crystals with a barrel region (42° < 0 < 138°) and two endcaps (11 ° < 0 < 37° and 143° < 0 < 169°), a layer of scintillation counters used for time measurements, a fine grained hadron calorimeter with uranium ab sorbers and proportional wire chamber readout, and a muon spectrometer consisting of three layers of pre cise drift chambers for the measurement of the trans verse muon momentum. The inner and outer muon chamber layers are surrounded with additional layers of drift chambers allowing the measurement of the muon direction in the rz plane and thus a measure ment of the polar angle, 0. All sub-detectors are lo cated in a 12 m diameter magnet which provides a uniform field of 0.5 T along the beam direction. For muons of 45 GeV the three chamber layers al low a momentum measurement with a resolution of 2.5%. The polar angle measurement has a precision of 4.5 mrad which is dominated by multiple scattering of the muon in the calorimeters. Due to the 0 resolu tion the error on y/s' according to Eqs. (4) and (5) is smaller than 300 MeV for v s' values between 50 GeV and 86 GeV. (5) Eq. (5) cannot be applied to events with more than one hard initial-state photon or in the presence of addi tional final-state photons which are not collinear with the outgoing fermions. The effect of multiple initialstate photons on the measurement of the cross sec tions and asymmetries, as well as the final-state pho ton contamination can be estimated from Monte Carlo simulation. 4. Event selection The selection of muon-pair events requires two identified muons in the detector. At least one muon must have a reconstructed track in the muon cham bers. For the second muon the signature of a minimum ionising particle in the inner detector components [ 1 ] is accepted. One muon is restricted to the angular ac ceptance of the muon chambers | cos 0 J < 0 , 8 , while 336 L3 Collaboration /Physics Letters B 374 (1996) 331-340 0.5 Monte Carlo 0.4 in o •« o Jß 0.3 B T I i > 4 * * ♦ »« * ♦♦ ♦ «» CO A 4 « •» c CD Lif 0 .2 > »■ • »«« •w « * f V1 *♦ i * » *J t *»« ♦ « V« (D 0.1 ♦ » «« I 4 *« f i i • «f «I I » m • ûa I Ü« Si «I ■ «« ■ ■ a■ B B B a» • * o 0 exp Pu / P Fig. J. The measured muon momentum, normalised to the momentum, /?^xp, calculated from the polar angles of the muon pair. Data and signal and background Monte Carlo are shown. All other selection cuts are applied. for the second a polar angle up to | cos#M| < 0.9 is allowed. Background from cosmic rays is removed by asking a hit in the scintillation counters within a ±3 ns time window around the beam crossing. In addition, at least one muon must have a track in the inner tracking chamber with a transverse distance of less than 5 mm to the interaction point. To reject hadronic Z decays the calorimetric cluster multiplicity must be less than 15. For the accepted events we apply Eq. (5) to calcu late the energy, Ey, of the initial-state photon. Events with a reduced centre-of-mass energy of the muon sys tem, y/P < 0.95 y/s t are used for further analysis. The muon momenta can also be calculated from the polar angles of the muons similarly to the photon en ergy. A cut on the ratio of the highest measured muon momentum, and the momentum, /?^xp, expected from the polar angles is used to reduce backgrounds from the process e+e~ —►r +r " and from the twophoton process e+e e+e ¡jL+fjL . The distribution of the ratio, p ^ / p ^ is shown in Fig. 1 for data, signal and background Monte Carlo. The cut of p ^ /p ^ > 0.8 removes most of the background. A Monte Carlo study of the photon reconstruction according to Eq. (5) is shown in Fig. 2. The recon structed photon energy, Ey, is compared with the gen erated photon energy, Eyen. Both energies are nor malised to y/s. Events where a photon is emitted along 0.1 0.2 0.3 0.4 0.5 E®en / Vs Fig, 2. Monte Carlo study of the reconstruction of the photon energy. The reconstructed photon energy, Ey, using Eq. (5 ), is compared with the generated photon energy, E f n. For the events in the diagonal band A, a photon going along the e+ e - beams is present. The events of band B, where no hard photon is generated, are regarded as background. The size of the squares is proportional to the logarithm of the number of events. the beam axis appear in the band A. For these events the photon energy determined from the muon angles reproduces well the generated photon energy, Eyen. For the events of band B a large photon energy is re constructed, although no photon parallel to the beams is present. A large fraction of these events have a hard photon observed in the detector, mainly origi nating from final-state radiation. In addition, there are events where a mis-reconstruction of a muon polarangle leads to a wrong value of Ey, In the following, the events of region B are considered as background to our signal. They are suppressed by the following cuts: - The application of Eq. (5) is only correct for initialstate photons parallel to the beam axis. Final-state photons can only be accepted if they are collinear with the outgoing muons. Both conditions result in a muon pair which is back-to-back in the rcj) plane. The muons are therefore required to have an acoplanarity angle, £ = \4>\ — f a — 180°|, of less than 2 ° . The distribution of the muon acoplanarity is shown in Fig. 3 for data and Monte Carlo simulation of signal and background. - Events with a detected photon are only accepted if the transverse energy component of the photon with respect to the direction of the nearest muon is less than 1.5 GeV. L3 Collaboration / Physics Letters B 374 (1996) 331-340 o 337 Table 2 Expected background from tau-pair production from fourfermion production (r je e ^ ), from muon-pair production without hard photon radiation along the beam direction and from events with final-state photon radiation (7/fsr) as a fraction of the selected events. 10 d y/7 co c 10 (1) > CD 1 0 2 4 6 8 Fig. 3. Acopianarity angle, of the muon pair for data and signal and background Monte Carlo. All other selection cuts are applied. Table I Acceptance, e, for the selection of /¿+ /i~yisn events. The values are determined from the Monte Carlo simulation and include the detector efficiency. e \%\ 50-60 60-70 70-75 75-80 80-83 83-86 25.2 ± 1.4 3 I . 5 ± 1.3 38.8 ± 1.4 38.7 ± 1.1 41.7 ± 0 . 9 41.9 ± 0 . 5 Vcc/ifi [%1 Vrsu [%] 6.8 ± 0.6 50-60 60-70 70-75 75-80 80-83 83-86 2.9 1.5 0.9 0.3 ± 0 .3 ± 0 .3 ± 0 .1 ± 0 .1 0.2 ± 0.1 1.7 ± 0 . 3 5.5 ± 0.5 6.4 ± 0,6 8.6 ± 0 . 5 7.9 ± 0,4 5.9 ± 0 . 2 y/7 Vtt l%] TJ/ifl 1% 1 1.6 ± 0 . 7 0.9 ± 0.2 10 £ [degrees] V 7 [ GeV 1 [GeV] - To ensure the rejection of final-state photons in the acceptance gaps of the electromagnetic calorime ter, events with an energy cluster in the hadron calorimeter of more than 2 GeV and more than 5° away from the nearest muon are rejected. - The measurement of the muon polar angle using the muon chambers and the polar angle determined from the calorimeters must agree within 2 °. The acceptance, e, for events from the process e+e “ is listed in Table 1 for different centre-of-mass energies y/F of the muon system. The quoted values are determined from the Monte Carlo simulation and include the detector efficiency. A large yfs* dependence of the acceptance is observed. For lower y/F values the muons are produced at smaller angles to the beam direction and thus fall outside the detector acceptance. The errors on the acceptance [GeV] 50-86 reflect the limited Monte Carlo event statistics. A d ditional systematic errors from the selection cuts and from uncertainties of the detector efficiency are small compared to the statistical error. The background to the jui+fi~ y lSR signal comes from tau-pair production, e+e _ —> r +r~ , from the process, e+e" —»■ e+e ~ /u +yL6~, from muon pairs without hard photon radiation, and from events with a final-state photon. The corresponding background fractions rjTT, 77e w and respectively are esti mated from the Monte Carlo simulation using the KORALZ and DIAG36 [10] generators. To deter mine the background fraction, ?7rsR, of events where the reconstructed photon is radiated from the final state, the four-vector information of a large KORALZ Monte Carlo event sample is used. Table 2 summarises the four background contribu tions as fractions of the accepted signal events. The backgrounds from two-photon processes and from events with final-state photons show a significant y/F dependence and are given for the different intervals separately. Within the quoted errors the the values of rjTT and are independent of y/F. 5. Cross sections The data sample used for the cross section measure ment was recorded in the years 1991 to 1994 at the three centre-of-mass energies, 89.5 GeV, 91.2 GeV 338 L3 Collaboration / Physics Letters B 374 (1996) 331-340 IT) 10 U CM O o <z> c CD > CD • Data 91-94 □ Monte Carlo <■ Q 10 10 Table 3 Number of selected e + e“ —►¿£+ ju” yLSR events, N ^ y , and the background corrected number, N ^ y { I — r}), The correction 77 is the sum of the backgrounds from tau-pair production, from twophoton processes, from muon pairs without photon radiation and from events with final-state photons. Also given are the expected number of initial-state photon events, . The cross section, <r , is calculated according Equation ( 6 ). The systematic error accounts for the Monte Carlo statistics, the uncertainty on the background subtraction and the uncertainty of the efficiency determination. The energy { y /7 ) is the mean energy of the corresponding energy bin. i - 10 i 1 0.2 0.4 0.8 0.6 a/s’ / 1 Vs Fig. 4. The y / V spectrum of all inuon-pair events for data and Monte Carlo simulation. All selection cuts are applied. The dou ble arrow shows the y /V range used for the cross-section and asymmetry measurements (50 GeV < y /F < 86 GeV). In the region y / s '/ y / s < 0.55 the background contamination from the two-photon process, e+e~ —* e+ e ” /u.+ /A~, becomes large. and 93.0 GeV and corresponds to a total integrated luminosity of 103.5 pb~1. The s' distribution of all selected muon-pair events is shown in Fig. 4 in comparison with the Monte Carlo prediction. Good agreement is observed. Out of this data sample 293 events have a recon structed y/s* value between 50 GeV and 86 GeV and are used to determine the cross section for six en ergy bins. The number of selected e+e~ —> At+ya" 7 iSU events, N ^ y , are given in Table 3 for the different bins of effective centre-of-mass energy, yf sf. The observed events are corrected for the expected total background, V (v = Vtt + Vczjiii + V w + *7fsr)» according to Ta ble 2 , and the corrected number of events are listed in a second column. The number of expected initial-state bremsstrahlung events, A ^c , for the different y fp bins is determined from the Monte Carlo simulation. The luminosity con tribution of the three different LEP centre-of-mass en ergies and the detector efficiency are taken into ac count. The predictions are given in Table 3. The cross section, cr, is determined by comparing the background corrected number of /x+/A~y1SR can didates in the data with the Monte Carlo prediction, /V^{c . The ratio of the two is multiplied by the theo retical cross section, crew, determined from a Standard y /7 IGeVl (V 7 ) [GeV] 50-60 60-70 70-75 75-80 80-83 83-86 55.4 65.8 73.3 77.9 81.7 84.8 mMC ( 1 —77) /vISIi Nppy 10 17 30 37 56 143 8.9 15.3 27.2 32.6 50.6 130.7 < r± (s ta t.)± (s y s t.) [pb] 11.8 24.9 ± 7.9 ± 1.5 19.2 18.9 32.9 47.3 20.3 37.1 30.5 47.8 121.6 87.5 ± 4 .8 ± 6.8 ± 5.0 ± 6.3 ± 7.3 ± 0 .9 ± 1.6 ± 1.0 ± ( .3 ± 1.7 Model calculation [11]: cr((s/s')) = crew({v/i7)) • A/m c (6) ISR The value (Vs7) is the mean y/F value of the data in the corresponding energy bin. The resulting cross sections for the six different energy points are listed in Table 3. The quoted systematic errors account for the Monte Carlo statistics, uncertainties of the back ground subtraction and the error on the acceptance determination. The results are shown in Fig. 5 compared with the Standard Model prediction for crew« We also in clude our results from the cross section measurements around and above the Z-pole energy [ 1]. They are cor rected for the effect of initial-state photon radiation. Our measurement of the cross sections at lower y/s/ values is in good agreement with the theoretical pre diction. For comparison the muon-pair cross sections measured at PEP, PETRA and TRISTAN [3] are also shown. They are corrected to include the effect of the running of the fine structure constant, a. 6. Forward-backward asymmetries In the centre-of-mass system of the muons, the an gular distribution of the muon-pair production can be L3 Collaboration / Physics Letters B 374 (1996) 331-340 Table 4 Number of forward (/Vf) and backward ( N h) produced muon pairs, the fitted forward-back ward asymmetry, AjjJ, and the re sulting background corrected asymmetry value, A^. The quoted systematic error accounts for the uncertainty of the background correction. The energy {Vs*) is the mean energy of the corre sponding energy bin. 1 -Q I +=*• 10 10 10 50 100 150 Vs [GeV] Fig. 5. Measured cross sections of muon-pair production compared with the Standard Model prediction. The theory (solid line) does not include the effect of initial-state photon radiation. The results of this analysis, e+ e “ —►¡jl+ are shown as solid squares. The L3 results from the measurements at energies around and above the Z pole have been corrected for the effect of initial-state photon radiation and are shown as dots. For comparison the measurements at lower energies from PEP, PETRA and TRISTAN are included. parametrised using the forward-backward asymmetry, 4 n>: da - a [ | ( l 4- cos2 0 *) 4* Afb cos 0*] . d cos 0 (7) The angle 0* is the production angle of the in the centre-of-mass system of the muon pair. In the presence of an initial-state photon, the event is boosted along the beam direction and 0 * can be calculated from the muon polar angles, 0 and 0 ^+, measured in the laboratory; cos 0 * = 1 sin *2 ( 0^1 V ) sin ^ ( 0 ^h + 0 ^ - ) ( 8) The forward-backward asymmetry is determined us ing an unbinned maximum-likelihood fit, where the likelihood, L, is defined as the product of the single event probabilities: L— 339 (l -{- cos2 0*) + Afb cos 0*] . (9) The result of the fit is shown in Table 4 for the differ ent y/7* bins. The asymmetry measurement does not require an accurate knowledge of the luminosity deter- Vs* [GeVJ (V 7 ) 50-60 60-70 70-75 75-80 80-83 83-86 55.0 Nr /vh AjjJ ±(stat.) ± ( s ta t.) ± ( s y s t.) [GeV] 66.0 73.3 78.0 81.8 84.8 5 7 6 10 16 51 —0.14 - 0 .2 6 24 - 0 .7 5 29 - 0 .5 2 46 - 0 .5 8 106 -0 .4 1 8 12 ± 0.31 ± 0.21 ± 0 .1 7 ± 0 .1 4 ± 0 .1 0 ± 0.07 —0.16 - 0 .3 0 - 0 .8 4 -0 .6 0 - 0 .6 5 - 0 .4 4 ± 0.36 ± 0.25 ± 0 .1 9 ± 0 .1 7 ± 0 .1 1 ± 0.08 ± 0.01 ± 0.01 ± 0.01 ± 0 .0 1 ± 0 .0 1 ± 0.01 mination or the trigger efficiency. Therefore, the lumi nosity used for the asymmetry measurement is slightly higher and leads to more events (320 events) than for the cross section measurement. The fitted asymme try, AfjJ, has to be corrected for the background con tamination according to Table 2. A correction factor is calculated by assuming a zero asymmetry for the four-fermion production, the Standard Model asym metry prediction for the tau-pair production, and for the background from muon-pair events without hard photon radiation. The influence of the final-state pho ton contamination is computed from a high-statistics Monte Carlo event sample by comparing the asymme try we calculate for the initial-state photon events with the asymmetry value we determine after the full anal ysis. The correction accounts for the angular distribu tion of the FSR background, mainly located in the very forward and backward directions, and for the effect of multiple photons. Applying the correction to the fitted asymmetry values we find the forward-backward asymmetry, Afb, as given in Table 4. The systematic error reflects the uncertainty of the correction factor. The results are shown in Fig. 6 compared with the Standard Model prediction of the electroweak cor rected asymmetry, A ^ \ Also shown are our asymme try measurements around and above the Z-pole energy [ 1]. They are corrected for the effect of initial-state photon radiation. The measurements of the asymme try at lower centre-of-mass energies are in good agree ment with the theoretical prediction. For comparison, the muon-pair asymmetries measured at PEP, PETRA and TRISTAN [3] are also shown. They are corrected L3 Collaboration/Physics Letters B 374 (1996) 331-340 340 References 1 0.5 - dL t 0 H“ o - n <c-0.5 - -1 Vs [GeV] Fig, 6 . Measured forward-backward asymmetries of muon-pair production compared with Standard Model prediction. The theory (solid line) does not include the effect of initial-state photon radiation. The results of this analysis, e+e ” —) P +P yisR, are shown as solid squares. The L3 results from the measurements at energies around and above the Z pole have been corrected for the effect of initial-state photon radiation and are shown as dots. For comparison the measurements at lower energies from PEP, PETRA and TRISTAN are included. to include the effect of the running of the fine structure constant, a. 7. Conclusion The effect of initial-state radiation in the process e+e jul* fji~ (y) is studied using 293 events with a hard initial-state photon and an effective centre-ofmass energy between 50 GeV and 86 GeV. The events are used to measure the cross section and the forwardbackward asymmetry of the muon-pair production at energies between the TRISTAN and the Z-pole en ergy. The measurements show good agreement with the Standard Model prediction. Acknowledgements We wish to express our gratitude to the CERN ac celerator divisions for the excellent performance of the LEP machine. We acknowledge the effort of all en gineers and technicians who have participated in the construction and maintenance of this experiment. [ 1 ] L3 Collab., M. Acciarri et al„ Z. Phys. C 62 1994 551; L3 Collab., M. Acciarri et a l, CERN Preprint CERNPPE/95-191, December 1995. ( 21 ALEPH Collab,, D. Buskulic et al„ Z. Phys. C 62 (1994) 539; OPAL Collab., R. Akers et al., Z. Phys. C 61 (1994) 19; DELPHI Collab., P. Abreu et al., Nucl. Phys. B 418 (1994) 403. 13] HRS Collab., M. Derrick et ai., Phys. Rev. D 31 (1985) 2352; MAC Collab., W.W. Ash et al., Phys. Rev. Lett. 55 ( 1985) 1831; MARK II Collab., M.E. Levi et al., Phys. Rev. Lett. 51 (1983) 1941; CELLO Collab., H.-J. Behrend et al., Phys. Lett. B 191 (1987) 209; JADE Collab., W. Bartel et al., Z. Phys. C 26 (1985) 507; MARK J Collab., B. Adeva et al„ Phys. Rev. D 38 (1988) 2665; PLUTO Collab., Ch. Berger et al., Z. Phys. C 21 (1983) 53; TASSO Collab., W. Braunschweig et al„ Z. Phys. C 40 (1988) 163; AMY Collab., A. Bacala et al„ Phys. Lett. B 331 (1994) 227; TOPAZ Collab., B. Howell et al., Phys. Lett. B 291 (1992) 206; VENUS Colab., K. Abe et al., Z. Phys. C 48 (1990) 13; K. Myabayashi, Recent Electroweak Results from TRISTAN, Talk presented at the XXXth Rencontre de Moriond, Les Arcs (France) 1995. [4] OPAL Collab., P. Acton et al„ Phys. Lett. B 273 (1991) 338; DELPHI Collab., P. Abreu et al., Z. Phys. C 65 (1995) 603. [5} S. Jadach and Z. W$s, Phys. Lett. B 219 (1989) 103. [61 F.A. Berends et al., in: Z Physics at LEP 1, Report CERN 8908 (1989), Eds. G. Altarelli, R. Kleiss and C. Verzegnassi, Vol. 1, p. 89. [7] F.A. Berends and G. Burgers, Nucl. Phys. B 297 (1988) 429. [81 The KORALZ version 4,01 is used: S. Jadach, B.F.L. Ward and Z. W$s, Comp. Phys. Comm. 79 (1994) 503. [9] L3 Collab., B. Adeva et al., Nucl. Instr. Meth. A 289 (1990) 35. [10] F,A. Berends and R. Kleiss, Nucl, Phys, B 253 (1985) 441, [11] For the Standard Model calculation the ZFITTER program with mz = 91.195 GeV, cts ( m |) = 0.123, m K = 180 GeV, a ( m \ ) = 1/128.896 and bih = 300 GeV is used: D. Bardin et al., FORTRAN package ZFITTER 4.9, and Preprint CERN-TH/6443/92; D. Bardin et al„ Z. Phys. C 44 (1989) 493; D. Bardin et al., Nucl. Phys. B 351 (1991) 1; D. Bardin et al„ Phys. Lett. B 255 (1991) 290.
© Copyright 2024 ExpyDoc