Ghent University Faculty of Economics and Business Administration Academic Year 2013-2014 Consumer Acceptance of Identification Technology Master thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Business Economics Hylke Huys Supervisor Prof. Dr. Patrick Van Kenhove Ghent University Faculty of Economics and Business Administration Academic Year 2013-2014 Consumer Acceptance of Identification Technology Master thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Business Economics Hylke Huys Supervisor Prof. Dr. Patrick Van Kenhove Permission I declare that the contents of this master's thesis may be consulted and/or reproduced if cited. Dutch Summary Het onderwerp van deze paper (Acceptatie van identificatie technologie door consumenten) wint elk jaar meer en meer aan populariteit. Ondanks het feit dat mensen deze technologieën lijken te aanvaarden in een verplichtte omgeving (casino’s, grenscontroles, toegang tot bepaalde sites) hebben toch weinig onderzoeken de acceptatie van consumenten in een vrijwillige of in hun dagelijkse omgeving onderzocht. Deze studie onderzoekt de acceptatie van biometrics voor consumenten in een Retail kader, waarbij drie typen identificatie technologieën worden benadrukt: fingerprint recognition, iris scanning en facial recognition. Fingerprint recognition identificeert mensen door de afdrukken of patronen, gevonden op hun vingertoppen, te gebruiken. (Human Recognition Systems, 2014). Iris camera’s herkennen een persoon zijn identiteit via een mathematische analyse van de willekeurige patronen. Deze patronen zijn zichtbaar in de iris van een oog en vanop een zekere afstand (findBIOMETRICS, 2014). Het opgestelde theoretische kader van dit onderwerp (zie p.19) levert niet enkel een academisch model ten voordele van theoretisch onderzoek, maar levert ook een praktisch inzicht over hoe retailers fingerprint recognition (als betaalmiddel) en iris scanning en facial recognition scanners (als marketing tool) kunnen implementeren in hun winkels, terwijl ze de invloedrijke variabelen op consumenten hun acceptatie in gedachten houden. Verschillende hypothesen zijn getest over een steekproef van 187 fingerprint en 151 iris scanning en facial recognition respondenten en hieruit zijn ook significante resultaten gekomen. De behavioral intention om deze identificatie technologieën te accepteren hangt significant af van de volgende factoren: perceived usefulness van de technologie (β: 0.67 voor IS&FR, 0.70 voor FP), de perceived ease of use (β: 0.24 voor IS&FR, 0.48 voor FP), de relative advantages van de technologie, vergeleken met andere betaalmethodes of marketing tools (β: 0.63 voor IS&FR, 0.77 voor FP), de privacy concerns van consumenten ten opzichte van de technologieën (β: -0.45 voor IS&FR, 0.54 voor FP), de anxiety van consumenten ten opzichte van deze technologieën (β: -0.55 voor IS&FR, - 0.76 voor FP), de innovativeness van consumenten in het algemeen (β: 0.34 voor IS&Fr, 0.16 voor FP), de omliggende facilitating conditions (β: 0.49 voor IS&FR en voor FP) en de experience dat consumenten hebben met deze technologie (β: 0.27 voor IS&FR, 0.19 voor FP). Retailers zouden dus daarom zeker de privacy concerns van consumenten moeten proberen te reduceren. Retailers moeten genoeg informatie leveren over wat er gebeurt met de data, die ontstaat door het pay by toch mechanisme en die geobserveerd wordt door de iris en facial scanner. Retailers zouden ook – voornamelijk in de eerste fases van implementatie – experten of I extra werknemers moeten inhuren om consumenten te assisteren en om hun vragen te beantwoorden over de technologie. Dit met het doet om de ervaring van mensen te vergemakkelijken. Hoewel er niet veel respondenten deelnamen, die ervaring hadden met deze technologieën, toonde het onderzoek aan dat de intentie van consumenten om biometrics te accepteren, verhoogde wanneer hun algemene ervaring steeg. Daarom zal het zeer moeilijk zijn om mensen de technologie in deze situatie te laten accepteren, zolang de technologie niet zal gebruikt worden bij omliggende retailers. Aangezien er twee verschillende identificatie technologieën worden toegepast in dit onderzoek, is het interessant om de verschillen tussen de twee te ontdekken. De resultaten tonen aan, via het gebruik van t-testen, dat consumenten significant meer comfortabel zijn met het fingerprint recognition systeem. Deze conclusie is niet enkel gebaseerd op het construct behavioral intention, maar op alle constructen van de scenario questions, behalve voor experience. Daarom zou het een aanbeveling aan retailers kunnen zijn, om, als ze customer experience willen verbeteren door middel van een biometric systeem, te beginnen met fingerprint. Iets om in gedachten te houden is dat deze studie het fingerprint systeem direct linkte als betaalmiddel en het iris scanning en facial recognition systeem als marketing tool. Het zou kunnen dat consumenten andere reacties hebben indien de technologieën in de omgekeerde situatie zouden gebracht worden: facial recognition aan de kassa bijvoorbeeld. Deze opmerking zou een bijdrage kunnen zijn voor verder onderzoek. Het effect van demografische variabelen op de constructen is ook onderzocht via een General Linear Model. Hoewel er geen duidelijke interactie-effecten zijn gevonden, heeft leeftijd een sterk hoofdeffect op BI, PU, PEOU, RA, PC en FC. De effecten zijn voornamelijk dezelfde: de uiterste leeftijdscategorieën hebben meer intentie tot acceptatie, zien meer usefulness (nuttigheid), meer ease of use (gebruiksgemak), meer relative advantages (voordelen), meer facilitating conditions (gemakkelijker makende condities) en hebben minder privacy concerns (zorgen over de privacy) dan de leeftijdscategorie 25 – 40 jaar. Deze trend is wel limitatief. Ten eerste zijn er zeer weinig respondenten in de leeftijdscategorie 18 (4.7 % van alle respondenten). Ten tweede geloven we dat de 60-plussers in deze studie de enquête meer theoretisch dan praktisch benaderden. Ten derde zijn de correlaties tussen leeftijd en de variabelen eerder laag en niet significant (zie appendix 10). II Ondanks dat het onderzoek veel hypothesen en veel variabel bevat, is ze in bepaalde opzichten limitatief en zijn er mogelijke suggesties voor toekomstig onderzoek. Bijvoorbeeld, het onderzoek is uitgevoerd in België, maar misschien bestaan er andere coëfficiënten voor andere landen of culturen. Een andere limitatie is dat het voor respondenten moeilijk is om zich iets voor te stellen dat ze nog nooit eerder hebben meegemaakt in praktijk. Men zou de hele studie kunnen herdoen, maar onder praktische omstandigheden. Ook focus groepen, laboratoria en experimenten zullen voor de retailer meer inzicht bieden dan een enquête. In het algemeen geeft de studie een goed inzicht in de behavioral intention van consumenten om identificatie technologieën te accepteren. Ze is gebaseerd op verschillende leeftijdscategorieën, op een dagelijkse omgeving en op verschillende biometrics. Retailers begrijpen hierdoor meer en beter de achterliggende redenen van consumenten om biometric systemen te accepteren (of te weigeren). Maar indien het implementatie proces van zulke technologieën niet met voorzichtigheid en niet doordacht wordt uitgevoerd, zal deze technologie als bedreigend worden opgevat. Dit zou zeer teleurstellend zijn, voornamelijk voor een technologie die zoveel te bieden heeft in de toekomst. III Acknowledgments This dissertation would not have been as it is now without the help of certain people. First of all, I like to thank the thirty respondents, who filled in the pretest and placed critical, but useful recommendations to form the final survey. Next, I would like to thank my parents, sister, friends and family who helped me distributing the survey to as many age categories as possible, both online and offline. I would also like to thank the readers of this final dissertation, for their time, input and critical view. Finally, I would like to thank my supervisor, Prof. Dr. Patrick Van Kenhove. He was honestly interested in the topic and helped me through the set-up of this final dissertation. IV Table of Contents Dutch Summary................................................................................................................................I Acknowledgments ......................................................................................................................... IV Table of Contents ........................................................................................................................... V List of Abbreviations ..................................................................................................................... IX List of Tables .................................................................................................................................. X List of Figures ............................................................................................................................... XI Chapter I: Introduction .................................................................................................................... 1 Chapter II: Background and Literature Review .............................................................................. 2 Biometrics ....................................................................................................................................... 3 Fingerprint recognition ............................................................................................................... 3 Iris scanning ................................................................................................................................ 5 Facial recognition ....................................................................................................................... 5 Technology Acceptance Models ..................................................................................................... 7 Ethical ideologies .......................................................................................................................... 11 Chapter III: Methodology.............................................................................................................. 14 Concepts, variables and specific hypotheses ................................................................................. 14 Dependent variables .................................................................................................................. 14 Independent variables ................................................................................................................ 15 Survey Content .............................................................................................................................. 20 Sample and Procedure ................................................................................................................... 21 Measurement of variables ............................................................................................................. 23 Scenario Questions .................................................................................................................. 23 Fingerprint recognition .......................................................................................................... 23 Iris scanning and facial recognition ...................................................................................... 23 General Questions ................................................................................................................... 25 Demographic Questions .......................................................................................................... 26 Chapter IV: Results and Interpretation .......................................................................................... 27 Measurement Model ...................................................................................................................... 27 Results ........................................................................................................................................... 30 Hypothesis testing .................................................................................................................... 30 The differences between the identification technologies ...................................................... 36 Significant differences between the biometric types: t-tests ...................................................... 36 V Main and interaction effects of demographic variables on behavioral intention to accept identification technologies – General Linear Model ................................................................ 39 Chapter V: Limitations and Suggestions for Future Research ...................................................... 41 Chapter VI: Conclusion & Pragmatically implications ................................................................. 42 References ........................................................................................................................................I Appendices ................................................................................................................................. - 1 Appendix 1: Survey – Dutch version ......................................................................................... - 1 Appendix 1.1 Fingerprint recognition – Vingerafdruk herkenning ....................................... - 1 Inleiding ............................................................................................................................. - 1 Deel 1: Scenariovragen ...................................................................................................... - 2 Deel 2: Algemene Vragen .................................................................................................. - 7 Deel 3: Demografische vragen ......................................................................................... - 12 Appendix 1.2 Iris scanning en facial recognition ( iris scanning en gezichtsherkenning) ... - 13 Inleiding ........................................................................................................................... - 13 Deel 1: Scenariovragen .................................................................................................... - 14 Deel 2: Algemene Vragen ................................................................................................ - 18 Deel 3: Demografische vragen ......................................................................................... - 23 Appendix 2: Survey – English version (translation) ................................................................ - 24 Appendix 2.1 Fingerprint recognition .................................................................................. - 24 Introduction ...................................................................................................................... - 24 Part 1: Scenario questions ................................................................................................ - 25 Part 2: General questions.................................................................................................. - 29 Part 3: Demographic Questions........................................................................................ - 34 Appendix 2.2 Iris scanning and facial recognition ............................................................... - 35 Introduction ...................................................................................................................... - 35 Part 1: Scenario questions ................................................................................................ - 36 Part 2: General questions.................................................................................................. - 40 Part 3: Demographic Questions........................................................................................ - 45 Appendix 3: Sources Instruments measure .............................................................................. - 46 Appendix 4: Reliability Analysis output .................................................................................. - 47 Appendix 4.1 Fingerprint recognition .................................................................................. - 47 Appendix 4.2 Iris scanning and facial recognition ............................................................... - 55 Appendix 5: Factor Analysis constructs Question 3 & 4 ......................................................... - 63 VI Appendix 5.1 Fingerprint recognition .................................................................................. - 63 Appendix 5.2 Iris scanning and facial recognition ............................................................... - 65 Appendix 6: Final list of items per construct (original: Dutch) ............................................... - 67 Appendix 6.1 Fingerprint recognition .................................................................................. - 67 Appendix 6.2 Iris scanning and facial recognition ............................................................... - 69 Appendix 7: Correlation Diagnostics and table ....................................................................... - 71 Appendix 7.1 Fingerprint recognition .................................................................................. - 71 Appendix 7.2 Iris scanning and facial recognition ............................................................... - 73 Appendix 8: mediator and moderator relations regression analysis ........................................ - 75 Appendix 8.1 mediation hypothesis 3b ................................................................................ - 75 Iris scanning and facial recognition ................................................................................. - 75 Fingerprint recognition ..................................................................................................... - 76 Appendix 8.2 mediation hypothesis 6 .................................................................................. - 77 Iris scanning and facial recognition ................................................................................. - 77 Fingerprint recognition ..................................................................................................... - 78 Appendix 8.3 moderation hypothesis 13b ............................................................................ - 79 Iris scanning and facial recognition ................................................................................. - 79 Fingerprint recognition ..................................................................................................... - 80 Appendix 8.4moderation hypothesis 14 ............................................................................... - 81 Iris scanning and facial recognition 14a ........................................................................... - 81 Iris scanning and facial recognition 14b .......................................................................... - 82 Iris scanning and facial recognition 14c ........................................................................... - 83 Fingerprint recognition 14a .............................................................................................. - 84 Fingerprint recognition 14b .............................................................................................. - 85 Fingerprint recognition 14c .............................................................................................. - 86 Appendix 9: T-tests between independent identification technologies .................................... - 87 Appendix 10: General Linear Model: interaction effects demographic variables on different identification technologies ....................................................................................................... - 90 Appendix 10.1 Demographic variables on BI of IS&FR and FP ......................................... - 90 Gender .............................................................................................................................. - 90 Age ................................................................................................................................... - 91 Highest obtained education .............................................................................................. - 92 Social status ...................................................................................................................... - 93 VII Profession ......................................................................................................................... - 94 Appendix 10.2 Main and interaction effect of age regarding independent variables........... - 95 Perceived Usefulness ........................................................................................................ - 95 Perceived Ease Of Use ..................................................................................................... - 96 Relative Advantage .......................................................................................................... - 97 Privacy concerns .............................................................................................................. - 98 Technology Anxiety ......................................................................................................... - 99 Facilitating Conditions ................................................................................................... - 100 Appendix 10.3 Correlations age – independent variables .................................................. - 100 - VIII List of Abbreviations IS Iris Scanning FR Facial Recognition FP Fingerprint recognition TAM Technology Acceptance Model CAT Consumer Acceptance of Technology PAD Pleasure, Arousal and Dominance (model) TR Technology Readiness TRAM Technology Readiness Acceptance Model DOI Diffusion of Innovations Model UTAUT Unified Theory of Acceptance and Use of Technology (model) BI Behavioral Intention to accept the identification technology BR Behavioral intention to Recommend the identification technology PU Perceived Usefulness PEOU Perceived Ease Of Use RA Relative Advantage PC Privacy Concerns TA Technology Anxiety FC Facilitating Conditions Exp Experience Innov Innovativeness SI Social Influence ID Idealism RE Relativism RC Resultant Conservation SE Self-Enhancement IX List of Tables Table 1 Taxonomy of Ethical Ideologies (Forsyth, 1980, p.176). ............................................... 12 Table 2 Demographic characteristics of the sample ...................................................................... 22 Table 3 Cronbach's Alpha, number of items, mean, standard deviation of constructs ................. 28 Table 4 Results for the independent variables on Behavioral Intention and hypothesis testing ... 35 Table 5 Differences between constructs and biometric applications: mean, standard deviation, pvalue .............................................................................................................................................. 38 Table 6 Main effect of age on independent variables (PU, PEOU, RA, PC, FC) ......................... 40 X List of Figures Figure 1 Technology Acceptance Model (TAM) (Davis et al., 1989, p.985). ................................ 7 Figure 2 Consumer Acceptance of Technology (CAT) model (Kulviwat et al., 2007, p.1064). .... 9 Figure 3 Research model UTAUT (Venkatesh et al., 2003, p.447). ............................................. 10 Figure 4 Summary of Findings (Venkatesh et al., 2003, p. 468). ................................................. 10 Figure 5 Proposed Theoretical Framework (Miltgen et al., 2013, p.106). .................................... 11 Figure 6 Theoretical model of relations among 10 personal values (Steenhaut and Van Kenhove, 2006, p.140)................................................................................................................................... 13 Figure 7 Proposed Theoretical Framework ................................................................................... 19 Figure 8 Picture pay by touch: Mindfully.org, 2005, Piggly Wiggly Fingerprint Scanners, http://www.mindfully.org/Technology/2005/Piggly-Wiggly-Fingerprint11feb05.htm.).Appendix 1.1-2Figure 9 Facial Recognition camera ( Marieclaire.com, 2013, How Do You Shop? A Technology May Already Know. Hearst Communication, Inc., < http://www.marieclaire.com/blog/facialrecognition-shopping-technology>. ) ...................................................................Appendix 1.2 -14Figure 10 Picture pay by touch: Mindfully.org, 2005, Piggly Wiggly Fingerprint Scanners, http://www.mindfully.org/Technology/2005/Piggly-Wiggly-Fingerprint11feb05.htm.Appendix 2.1 -25Figure 11 Facial Recognition Camera (Marieclaire.com, 2013, How Do You Shop? A Technology May Already Know. Hearst Communication, Inc., < http://www.marieclaire.com/blog/facial-recognition-shopping-technology>. ) Appendix 2.2 -36- XI Chapter I: Introduction There has been a lot of research regarding identification technology or biometrics. The existing research deals primarily with the systems of biometrics, the advantages and disadvantages, and looks at it particularly from a corporate point of view, rather than from a consumer’s perspective. But the latter is equally important. The increasing identification technologies used in other industries and sectors make the question ‘Why will consumers accept or reject identification technologies?’ more and more important. Furthermore, the arise of these type of technologies is not something that is happening miles and miles away from the consumer’s daily live. On the contrary, it moves closer! It is already known that people accept these technologies when they are mandatory and when they are used in a logical situation (Casinos, airports, border controls…), but are people also willing to accept them in a voluntary situation, for instance: at their department store? Piggly Wiggly and Wall Mart (US) are already testing these applications, but it is important to know for retailers (and managers) how they should approach consumers to facilitate and enhance their acceptance of biometric technologies. This dissertation discusses the acceptance of identification technology by consumers, specifically in a retail setting. It investigates the acceptance of three well-known types: fingerprint recognition, iris scanning and facial recognition. The first one is investigated in a ‘check-out’ situation: pay by touch. The two other, iris scanning and facial recognition are addressed from a marketing perspective: at the point-of-sale (in the store). First, we investigate the biometric applications separately to see which factors influence the consumers’ choice to accepting or rejecting them. Next, we examine if there is a difference in how consumers perceive the different biometrics systems: do they see them as similar technologies or do they have different opinions about each biometric technology? The purpose and the research of this dissertation is therefore twofold. First, it offers a theoretical framework, containing factors related to technology acceptance, discovered by other researchers and by ourselves. Secondly, it gives a pragmatic answer (for retailers) to the question which factors have an important impact on the consumer’s acceptance of identification technology in a retail setting. We offer a solution by formulating several hypotheses regarding the dependent variable (the behavioral intention of consumers to accept identification technology) and test them with an appropriate survey and SPSS analysis. An answer on this is also provided based on the results of the survey, but is more pragmatically discussed in the conclusion. 1 The next section provides a detailed background and literature overview of the research topic in order to offer the reader a compact amount of background (literature and frameworks) to fully understand the research topic and the used concepts. Next, in chapter III, there is a detailed overview of the used dependent and independent variables. Related to each variable, an appropriate hypothesis is described. All the variables and hypotheses are summarized in one unified theoretical framework. Furthermore, the survey is outlined in detail: its content, the sample, the procedure and the measurement of the variables. In Chapter IV the outcome of the surveys is describes and the hypotheses and research questions are tested. Interpretations about the data are given, and fully explained with summarized tables and figures. Chapter V defines the limitations of the dissertation and contains suggestions for future research. The last chapter, chapter VI, gives a general conclusion on this research and its results. Chapter II: Background and Literature Review The literature review gives a clear picture of what identification technology or biometrics is today and how it evolved over the past decades. Only few older background studies are used, in favor of more recent published papers and articles that are written since the beginning of the 21st century. First there is a review about the content of biometrics, the use of different identification technologies in practice and the advantages or disadvantages of these applications. Secondly, the literature of technology acceptance is applied to form an idea how and why consumers would be likely to accept identification technologies. A summary of the useful technology acceptance, adoption and readiness models is provided. For each applicable model, there is clearly indicated which constructs or items are applied in the research. Thirdly, since Miltgen et al. (2013) recently discussed that the most important drivers to explain biometrics acceptance and recommendation are not from the traditional adoption models, but from the trust and privacy literature, a complementary subchapter is included on the ethical ideologies exploring whether consumers, who are likely to accept biometrics, are more idealistic or relativistic oriented. In addition, an extension on the ethical ideologies is given by introducing the personal values of Schwartz (1992) in the model. 2 Biometrics The application of biometrics is an increasing phenomenon as a result of the recent technological evolutions of the past decades. When searching ‘Biometrics’ in a dictionary, the following definition is found: “the process by which a person's unique physical and other traits are detected and recorded by an electronic device or system as a means of confirming identity.” (dictionary.com, 2014). Or, the definition of Miltgen et al. (2013): “Biometric identification systems recognize and authenticate people based on a person’s unique physical or behavioral features.” Biometrics can be seen as a form of identification. Today, there are three main possible processes of identification. The first is something one has or owns, like a card. Secondly, a person can be identified by something that he or she knows, like a password or a PIN. And a third way of identification is by something that is part of an individual o that is done by the individual. This third category is called biometrics (Davies, 1994). There are different types of biometrics and with these different types, different applications and different patterns of acceptance. First, a well-known universal type (fingerprint recognition) is discussed in this dissertation, looking at it as a paying system at the check-out in a retail environment. Secondly, two other types in this study, namely iris scanning and facial recognition, are considered. These two types are less known in retail, but can be applied when searching for consumer behaviors in the store itself. Each paragraph gives a brief description of the biometric system, supported by practical examples, and describes some advantages or opportunities and disadvantages or concerns. Fingerprint recognition “Fingerprint recognition identifies people by using the impressions made by the minute ridge formations or patterns found on the fingertips.” (Human Recognition Systems, 2014). This dissertation concentrates on the use of fingerprint recognition in a retail setting, at point-of-sale and more specifically, at the check-out. Although we will pursue our research in a retail setting, fingerprint recognition is a worldwide phenomenon, applied in different sectors. Disney World uses fingerprint scanners at the entrance to recognize season pass holders and resort guests. Retrieving cash at ATMs is another example of how fingerprint recognition is being used today. Grocery stores like Piggly Wiggly are among the first retailers where scanning your finger is as normal as searching for your credit card. According to Garf (2005), a retail analyst at the Bostonbased research firm AMR Research Inc., consumers do not express their concerns about privacy rights at Piggly Wiggly, but they embrace the fingerprint recognition system as a safer, more secure and more convenient checkout process. 3 Fingerprint scanning is one of the cheapest, most prolific and most accurate tools of biometrics (Brass 2003, Brownstein 2004, and Middlemiss 2004). The advantages of fingerprint recognition are multiple, both for the retail manager as well as for the consumer. In comparison to other biometric technologies, fingerprint identification has a low cost, a high accuracy and is easy to use. This dissertation concentrates on the consumer’s benefits. Fingerprint recognition can create an overall customer convenience: it can reduce queuing times (because there is no need to search for any loyalty or credit card) and it eliminates the burden to remember any password or PIN. Replacing loyalty cards by storing the consumer’s fingerprint patterns in an independent database is both a reduction of plastic waste as well as a simplification for the consumer. Fingerprint recognition guards the integrity of information and identification: identity theft is not possible despite several assumptions of amputated fingers in movies (Davies, 1994). Potentially, the storage of customers’ identification can lead to improved customer service, as management has a faster and better understanding of their customers. For the customer, enhanced security is another advantage of fingerprint recognition: no fraudulent use of credit cards and no need to take an amount of cash to the store. Furthermore, the decrease of queuing time consequently increases customer satisfaction (Jones et al., 2007). As mentioned before (see p.2), the arguments against the use of fingerprint recognition (or any other form of identification technology) are privacy concerns and trust issues (Miltgen et al., 2013). People seem to have fewer problems with opening up their lives on social networking platforms, than with exchanging private information for an enhanced security. The storage of consumers’ identities in databases is not well accepted by the public. People still associate the scanning of fingerprints with criminal convictions. Some people are concerned with hygiene. Others perceive the identification process as a cultural or religious taboo (Bleicher, 2005). In practice, some people can simply not or are difficult to be scanned: senior citizens and blue collar workers whose fingertips are worn down or people with a thin skin, injured fingers or limited movement can have problems with fingerprints scanning. (Clodfelter, 2010). Trocchia and Ainscoogh (2006) identified eight categories of concerns towards identification technology, summarized in three general themes (technology itself, security of collected data and issues with the technology). The eight categories are the following: convenience concerns (time and effort for consumers), health concerns, personal security concerns (assault fear), cost concerns, identity theft concerns, privacy concerns (where is the 4 personal information shared or is it used in an appropriate manner?), humanity concerns and morality concerns. Iris scanning Iris scanning is another form of identification technology. “Iris cameras perform recognition detection of a person’s identity by mathematical analysis of the random patterns that are visible within the iris of an eye from some distance. It combines computer vision, pattern recognition, statistical inference and optics.” (findBIOMETRICS, 2014). Iris scanning applications are mostly used in a governmental setting. Also, airports’ border controls (Canada and the Netherlands) and entrance controls at particular sites are situations where iris scanning is applicable. A typical advantage of iris scanning is that it is immune to environmental issues, except for its pupillary response to light (Lawson, 2003). Borre et al. (2004) claim that iris scanning belongs to the most secure identification technologies. Iris recognition supplies a person’s identity at an enormous speed and resistance to False Matches. It eliminates the cultural and religious taboos, as well as the hygiene concerns related to fingerprint recognition. However, iris scanning has its disadvantages. It is a relatively new technology and therefore quiet expensive. Although the iris cannot be copied, the pupil can dilate due to alcohol consumption, causing deformation in the iris pattern (Arora, Vatsa, Singh and Jain, 2012). Border controls in several countries and Google’s iris scanners to access databases are examples of the practical use of iris scanning. Few studies have researched the acceptance of iris scanning, but one study (Miltgen et al, 2013) introduces the acceptance of iris scanning in a consumer context. The results show that people are more inclined to accept the iris scanning when they see a greater perceived usefulness in the system, when they have a greater perceived compatibility, when there are facilitating conditions, when they are more trustworthy regarding to technology and when they have a higher personal innovativeness. People, who put greater value in perceived risks, are less inclined to accept iris scanning systems. Apart from the latter, the examples used in this subchapter are more applied in a non-retail setting. Facial recognition The third identification technology discussed in this dissertation is facial recognition. Facial recognition is, like fingerprint recognition, more common and more known in a marketing environment. As Weinzierl (2010) describes in his article ‘The body as password’, facial 5 recognition knows a strong trend towards a non-intrusive system, while it is, on the contrary, no longer immediately recognized by customers. Despite some cultural or religious taboos (Lawson, 2003), facial recognition is an acceptable biometric tool and is applied in various situations: surveillance in high crime neighborhoods, tracking or locating suspected criminals, law enforcement and the entertainment sector (both in social networking as well as in casinos). Facial recognition is widely accepted because of its use in voluntary situations: Facebook, for example, recently launched a facial recognition tool to help users tag photographs uploaded to Facebook (Buckley and Hunter, 2011). Facial recognition is not only used to identify people, it can also be useful in marketing applications to identify characteristics about an individual by observing the (potential) customer’s behavior (Buckley and Hunter, 2011). There are already some examples of companies using facial recognition to enhance their marketing objectives: Kraft announced a joint project with an unidentified supermarket chain using the technology to identify and target those shoppers most likely to buy its products. Adidas is working with Intel, creating digital walls to recognize the gender and age of individuals walking by, followed by a presentation of advertisements of products that these people probably would buy (Buckley and Hunter, 2011). Tesco launches digital advertising screens at petrol stations in the UK. Using a facial detection technology, they are able to determine basic demographics. As a result, Tesco can deliver more measurable campaigns and reveals more relevant screen content to the customer. Although it seems to be futuristic, an Italian company is already producing shop dummies to observe the customer and report his behavior back to the retail manager. Being a passive biometric system, it is expected that privacy concerns may arise, so companies will have to inform individuals about the use of the facial recognition system. Although consumers seem to accept some loss of privacy in exchange for enhanced security (Davis and Silver, 2004), several perceived concerns and disadvantages create a lack of consumer acceptance of identification technologies. 6 Technology Acceptance Models During the past years (and decades) several models are created, combined and adjusted in order to find an answer to the technology acceptance of consumers. In this study, the consumer acceptance of identification technology, different constructs and factors of different models are used to determine the main drivers that influence the decision to accept identification technology. Davis et al (1989) created the Technology Acceptance Model (TAM), measuring the intentions to use a specific system. Originated from the Theory of Reasoned Action (TRA) from Fishbein and Ajzen (1975), the TAM model’s behavioral intention is influenced by two beliefs: perceived usefulness and perceived ease of use. “Perceived usefulness is defined as the prospective user’s subjective probability that using a specific application system will increase his or her job performance within an organizational context” (Davis, 1989, p.985). “Perceived ease of use refers to the degree to which the prospective user expects the target system to be free of effort” (Davis, 1989, p.985). These concepts will also be used in this study, but in a consumer context. Both are significant indicators of people’s intentions. Perceived ease of use is both a direct indicator of behavioral intention to use, as well as an indirect indicator through perceived usefulness. As the model shows, external variables have an impact on the perceived usefulness and on the perceived ease of use of a technology. According to Davis (1989), perceived usefulness is a major factor of people’s intention to use new technologies (in his study the new technology was ‘using computers’) and perceived ease of use is a second significant determinant of these intentions. The following figure explains the Technology Acceptance Model. Figure 1 Technology Acceptance Model (TAM) (Davis et al., 1989, p.985). Several extensions of the TAM model exist. The study of Venkatesh and Morris (2000), for example, suggests that different genders are more or less impacted by the former indicators. 7 Men’s technology usage decisions are more strongly influenced by perceptions of usefulness, while women are more influenced by perceptions of ease of use. During the years, subjective norm knows little significant evidence of influence on behavioral intention to use technology (Venkatesh et al., 2003). Others claim there is a relation between subjective norm and perceived usefulness and behavioral intention to use (Schepers and Wetzels, 2007, Robinson 2006, Kulviwat 2008). Kulviwat et al. (2007) discussed a unified theory of consumer acceptance technology, namely the Consumer Acceptance of Technology (CAT) model. They merge the TAM and PAD (Pleasure, Arousal and Dominance) (Mehrabian – Russell, 1974) models into one unified model, supporting their belief that cognitive factors are not enough to predict consumer acceptance of technology. According to them, the integration of affect cannot be neglected. Their findings indicate that pleasure (β = 0.41, p < 0.01) and arousal (β = 0.19, p < 0.01) are significant predictors related to the attitude to accept, while dominance has no significant impact (β = - 0.01, p = n.s.). These factors are not included in the model of this study; otherwise the model would become too crowded. However, it could be a suggestion for future research to implement the PAD model. They also implement another factor, relative advantage, and this item should have an indirect effect on the attitude towards technology via perceived usefulness (β = 0.95, p < 0.01), but no direct effect on the adoption intention (β = - 0.35, p = n.s.). “Relative Advantage is the degree to which an innovation is perceived as being better than its precursor” (Moore and Benbasat, 1991, p. 195). Individuals are therefore more likely to use new technologies when these technologies have a relative advantage over the alternatives. This variable is included in this study, because we believe relative advantage interacts directly with the intention to accept identification technologies. The next figure provides an overview of the CAT model. 8 Figure 2 Consumer Acceptance of Technology (CAT) model (Kulviwat et al., 2007, p.1064). Another factor to measure how consumers look upon technology is the Technology Readiness (TR). Technology readiness is the customer’s mental readiness to accept new technologies (Lilijander, 2006). TR consists of four dimensions: discomfort, insecurity, optimism and innovativeness. In order to integrate the TR into technology acceptance theory, Linc et al (2007) implemented it into the technology acceptance model (TRAM). Next, the UTAUT model was introduced and invented by Venkatesh, Morris, Davis GB and Davis FD (2003). These authors reviewed different technology acceptance models and formulated the Unified Theory of Acceptance and Use of Technology model. The UTAUT model defines three direct determinants of intention to use (performance expectancy, effort expectancy and social influence) and two direct determinants of usage behavior (intention and facilitating conditions). It also indicates the moderating influence of gender, age, experience and voluntariness on social influence (Venkatesh et al, 2003). The following two figures describe the proposed framework of the UTAUT and give a summary of the findings of the authors. In this study several determinants of the UTAUT model are used, namely facilitating conditions, social influence, anxiety and experience. 9 Figure 3 Research model UTAUT (Venkatesh et al., 2003, p.447). Figure 4 Summary of Findings (Venkatesh et al., 2003, p. 468). Finally, Miltgen, Popovic and Oliveira (2013) proposed a new model by integrating the ‘Big 3’ models of technology acceptance together within a privacy context. Their study is particularly applicable on the acceptance of biometrics by end-users and is therefore an important basis for this study. The drivers to explain biometric acceptance come from the ‘Big 3’: the Technology acceptance model (TAM), the Diffusion Of Innovations model (DOI) of Rogers (1995) and the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003) and 10 more importantly, form the trust and privacy literature. Not all the factors in this framework are used in this study, neither are the hypotheses, but it is a good basic model to introduce the theoretical framework. The following figure gives an image of their proposed framework: Figure 5 Proposed Theoretical Framework (Miltgen et al., 2013, p.106). This dissertation applies the constructs of the TAM model (Perceived ease of use and Perceived usefulness), the constructs of the UTAUT model (Social influence, Facilitating conditions, Anxiety and Experience) and the consequent factors: Behavioral intention to accept the technology (Biometrics) and Behavioral intention to recommend using the technology (Biometrics). Also, it includes constructs like innovativeness, trust in technology (Biometrics) and privacy concerns. Several drivers of technology acceptance are implemented. It includes new factors and factors from the mentioned models to create a new model and to potentially define the main drivers of consumer acceptance. Ethical ideologies As the evolution of biometrics grows, so do privacy concerns. People often have doubts about the storage of fingerprints and the invasion of their autonomy and identity through the use of iris scanning and facial recognition. Nowadays, the ethics of a company, product or technology 11 become increasingly important for consumers. Although biometric scanning systems do not record the entire imprint of a physical feature, but a template, time-invariant within some statistical limit (Alterman, 2003), people still concern about their privacy and the abuse of stored database information. This study examines if there is a relation between the ethical principles or ideologies of people and their intention to accept types of identification technology. The ethical ideologies of Forsyth (1980) are used, distinguishing two scales: idealism and relativism. “Idealism refers to the degree to which an individual believes that the right decision can be made in an ethically questionable situation” (Steenhaut and Van Kenhove, 2006, p.141). “Relativism, on the other hand, refers to the rejection of universal rules in making ethical judgments and focuses on the social consequences of behavior” (Steenhaut and Van Kenhove, 2006, p.141). The difference between the two constructs is adequately explained by Davis, Andersen and Curtis (2001, p.35): “Highly relativistic individuals ostensibly question the value of universal moral principles, while those adopting a less relativistic stance emphasize the importance of universal moral rules. Individuals high in idealism seek always to avoid harm by assuming that good is often mixed with bad. Less idealistic persons pragmatically assume good is often mixed with bad.” Both items are measured and scaled by the Ethics Position Questionnaire (EPQ). The table below details the four ethical perspectives based on these two dimensions. RELATIVISM IDEALISM High Low High Situationists Absolutists Reject moral rules: Assume that the best advocates individualistic possible outcome can analysis of each activity in always be achieved by each situation. following universal moral rules. Low Subjectivists Exceptionists Appraisals based on Moral absolutes guide personal values and judgments but pragmatically perspective rather than open to exceptions to these universal moral principles. standards, utilitarian. Table 1 Taxonomy of Ethical Ideologies (Forsyth, 1980, p.76). 12 Steenhaut and Van Kenhove (2006) extend the vision of Forsyth and examine the relationships among an individual’s personal values, ethical ideology and ethical beliefs. For this study, the constructs used to measure an individual’s personal values are important. On the one hand, dimension conservatism versus openness to change indicates a person’s ethical ideology and belief. Briefly, the conservation versus openness to change dimension defines “values in terms of the extent to which they motivate people to preserve the status quo and the certainty it provides in relationships with close others, institutions, and traditions versus following their own emotional and intellectual interests in unpredictable and uncertain directions” (Schwartz, 1992, p.43). Resultant conservation relates to terms like tradition, conformity and security. On the other hand, openness to change relates to terms like self-direction and stimulation. The index resultant conservation is formed by the items’ scores of conservatism minus the items’ scores of openness to change. Self-enhancement versus self-transcendence are “values in terms of the extent to which they motivate people to enhance their own personal interests (even at the expense of others) versus to transcend selfish concerns and promote the welfare of others, close and distant, and of nature” (Schwartz, 1992, p. 43). Self-enhancement refers to power, achievement and hedonism; self-transcendence on the other hand refers to the value types universalism and benevolence. Index self-enhancement is formed by the items’ scores of selfenhancement minus the items’ scores of self-transcendence. Figure 6 Theoretical model of relations among 10 personal values (Steenhaut and Van Kenhove, 2006, p.140). 13 The next chapter offers the methodology of this study: concepts, variables hypotheses, the model’s framework, survey content, sample and procedure and measurement variables. Chapter III: Methodology Concepts, variables and specific hypotheses As mentioned before, the study mainly contains determinants of the theoretical framework of Miltgen et al. (2013) and of the unified view of technology acceptance model (UTAUM) of Venkatesh et al. (2003). The variables are categorized in two large groups: dependent variables and independent variables. The latter consists of potential enablers and barriers of the acceptance of identification technology in a real life setting. Below every concept and variable used, specific hypotheses are formulated. Each hypothesis is separately analyzed for iris scanning and facial recognition and for fingerprint recognition. Dependent variables Behavioral Intention to accept the identification technology (BI) In many of the models that we discussed, behavior is the result of, on the one hand, beliefs about the technology, and on the other hand, a set of affective responses to the behavior (Miltgen et al., 2013). This study questions the behavioral intention to accept identification technology based on background literature and self-composed questions. Behavioral intention to Recommend the identification technology (BR) Whether a model is successful or not, does not only depend on the intention to accept or use the technology but also on the intention to recommend a used technology. Behavioral intention to recommend the identification technology is the second dependent variable. Now more than ever, social network sites and fora increase the opportunity for people to discuss their opinions with fellow peers. To measure the success of a product, companies often use the Net Promotor Score1. The questions about the intention to recommend the identification technology are developed by ourselves, but based on previous literature. 1 Net promotors are defined as the percentage of customers who are promotors of a brand or company (score 9/10). The Net promotor score are those promotors minus the percentage who are detractors (score 0-6). 14 H1: The intention to accept the biometric system positively influences the intention to recommend this technology to others. Independent variables Perceived Usefulness (PU) Perceived usefulness is defined as “the degree to which a person believes that using a particular system would enhance his or her job performance” (Davis, 1989, p.320). Perceived usefulness is a well-known determinant of the TAM model and, as mentioned before (see p.7), has the most significant impact on the behavioral intention to accept a new technology and has been proven in many previous studies. H2: The greater the perceived usefulness, the greater the intention to accept a biometric system. Perceived Ease Of Use (PEOU) Perceived ease of use refers to ‘The degree to which a person believes that using a particular system would be free of effort.’(Davis, 1989, p.320). Perceived ease of use is a significant indicator and originates directly from the TAM from Davis (1989). Perceived ease of use belongs to the possible benefits of identification technology. As seen before (see p.7), perceived ease of use has both a direct and an indirect effect on behavioral intention to use. (Davis, 1989). H3a: The greater the perceived ease of use, the greater the intention to accept a biometric system. H3b: The perceived ease of use has an indirect, positive effect on the intention to accept a biometric system, through perceived usefulness. Thus, perceived usefulness will be the mediator in the relation perceived ease of use – behavioral intention to accept. Relative Advantage (RA) Relative advantage belongs, besides to other models (Venkatesh et al., 2003), also to the Innovation Diffusion Theory (IDT): a model used since the 1960s. The IDT was namely applicable in different industries, but Moore and Benbasat (1991) refined the set of constructs used in Roger’s IDT to fit with their study on individual technology acceptance. They describe relative advantage as “the degree to which an innovation is perceived as being better than its precursor” (Moore and Benbasat, 1991, p.195). Relative advantage can be compared with perceived usefulness, where the perceived job enhancement of using the technology is similar to 15 applying the technology instead of an alternative form to obtain a better performance. That is why we perceive relative advantage to have a direct, positive effect on the behavioral intention to accept a technology. H4: The more perceived relative advantage the identification technology offers, the more an individual will have the intention to accept the identification technology. Privacy Concerns (PC) Miltgen et al. (2013) recognized that nowadays, the research to consumer acceptance of a technology is not complete without the implementation of determinants of the privacy and trust literature. Privacy concerns are an important construct since biometric identification is a relatively new concept in retail setting and the public does not know for sure where the data storage takes place, who can access their personal information and whether these systems do not increase possible fraud and identity theft. Miltgen et al. (2013) indicated that the privacy concerns about biometrics have an indirect impact on behavioral intention to use it, through perceived risk. This study does not use the term perceived risks, but directly links privacy concerns to intention to acceptance. H5: Individuals with higher privacy concerns will have less intention to accept a biometric system. Technological Anxiety & Technological Trust (TA) In this study, the above constructs are clearly opposites. Technological Anxiety is the anxious reaction towards the use of technology or towards the performance of a behavior using the technology. Technological trust is the opposite. Trust reduces the uncertainty of a behavior and makes us familiar with the situation. As a consequence, trust in an identification technology reduces the need to be anxious; the more trustworthy, the less anxious an individual is. Therefore, technological trust items are recoded and used in the technology anxiety construct. H6: The more anxious an individual is towards technology, the more privacy concerns the individual adopts and thus the less inclined he or she is to accept the identification technology. Therefore, privacy concerns will be a mediator between technology anxiety and behavioral intention to accept the biometric system. H7: Consumer’s anxiety in the technology has a negative influence on the intention to accept a biometric system. 16 Resultant Conservation and Self-Enhancement (RC) (SE) Although Schwartz (1993) investigated resultant conservation and self-enhancement in an ethical study, we will relate these determinants to this marketing-related study. In the literature review (see p.13), a figure adapted and modified from Schwartz (1992, p.45) is implemented, explaining the four dimensions in this model. H8: The more resultant conservation oriented a consumer is, the more he or she is inclined to reject the identification technology. H9: The more self-enhanced a consumer is, the more he or she is inclined to accept the identification technology. Idealism and Relativism (ID) (RE) Forsyth (1980) constructed taxonomy of ethical ideologies. Based on two dimensions (idealism and relativism), he developed four categories of individuals regarding ethical perspectives. These categories are not further discussed in this study, but it is investigated whether the behavioral intention to accept identification technologies is influenced by the fact that individuals are idealistic or relativistic oriented. “Idealism refers to the concern of the individual to the welfare of others, while relativism refers to the extent that individuals base their beliefs on moral judgments more on universal ethical rules” (Forsyth et al., 1988, p. 244). The coherent hypotheses are: H10: The more idealistic oriented a consumer is, the less he or she will have the intention to accept the identification technology. H11: The more relativistic oriented a consumer is, the more he or she will have the intention to accept the identification technology. Innovativeness (Innov) The determinant ‘innovativeness’ comes from the Technology Readiness model. It refers to “people’s propensity to embrace and use new technologies for accomplishing goals in home life and at work.” (Parasuraman, 2000, p. 308). The most important drivers of technology readiness are optimism and innovativeness. As Technology Readiness is included in The Technology Acceptance Model by Lin et al. (2007), innovativeness, as a determinant of technology readiness, can have a direct impact on the behavioral intention to accept a new technology. Also, Miltgen et al. (2013) confirm that innovativeness directly influences perceived ease of use. The coherent hypotheses will be: 17 H12a: Higher innovative consumers intend to perceive ease of use more positively. H12b: The more personal innovativeness a consumer has, the more willingly he or she will accept identification technology. Facilitating Conditions (FC) Facilitating conditions are defined as “the degree to which an individual believes that an organizational and technical infrastructure exists to support the use of the system.” (Venkatesh et al, 2003, p.453). Examples of facilitating conditions in this research are: the fact that you only need your finger and no other resources to access your bank account, assistive explanations on how to use the technology and the widespread use of the technology (one loyalty card for all stores). H13a: The more facilitating conditions consumers have, the more they will intend to accept the identification technology. H13b: The influence of facilitating conditions on behavioral intention to accept biometrics will be moderated by age, such that the effect will be stronger for older consumers. Subjective norm or Social influence (SI) Subjective norm or social influence is defined as “the person’s perception that most people who are important to him think he should or should not perform the behavior in question” (Fishbein and Ajzen, 1975, p.302). Social influence is investigated in many studies, but implemented as a real indicator in the UTAUT by Venkatesh et al. (2003). This study will use the term ‘Social Influence’. In former models, there was no significant relationship between social influence and the intention, at least not in a voluntary situation. This study does also not perceive that social influence has a direct impact on behavioral intention, but that the determinant will be moderated by gender, age and experience. (Venkatesh et al., 2003). Venkatesh and Morris (2000) discussed that women consider more the opinions of peers and especially in the early stages of the technology introduction. H14: The impact of social influence on behavioral intention in a voluntary retail situation will be moderated by gender (Gen)(a), age (Age)(b) and experience (Exp)(c), such that the effect will be stronger for women, older people and when the individual lacks experience. 18 Experience with the technology (Exp) Experience will be discussed as a direct determinant on behavioral intention, and as a moderator between independent and dependent variables. Individuals having an Iphone 5s already have a certain experience with biometrics: they can unlock their phone by using a fingerprint recognition system. That is just one example of the widespread increasing use of fingerprint recognition. People become familiar with the technology in different sectors: they are becoming experienced. The prediction is that an enhanced experience with biometrics will enhance the likelihood of acceptance. H15: The more experienced a consumer is with identification technology, the more intention he or she has to accept the technology in a retail setting. Previous research has confirmed the moderating effect of experience. Although experience was not directly incorporated in most of the models, Karahanna et al. (1999) discovered that subjective norm became less important with increasing experience and Davis et al. (1989) discovered that ease of use becomes non-significant with increased experience. This study only investigates the former. The following figure shows the proposed theoretical framework. Figure 7 Proposed Theoretical Framework 19 Survey Content The prime goal of this study is to investigate the behavioral intention to accept biometrics in a retail environment. Therefore the survey has been distributed among different age categories. The original survey (Pretest) was one relatively large survey, distributed offline among several persons. Of each age category, three well-known but critical respondents were asked to fill in this questionnaire and to write down their remarks on the paper version of the survey. It contained four parts: one about a scenario regarding fingerprint recognition, one about a scenario regarding iris scanning and facial recognition, the third part were general questions (to measure several independent variables) and the final part contained demographic questions. As the remarks were collected and analyzed, it became clear that several people had difficulties filling in the general questions due to a different perspective on fingerprint recognition and on iris scanning and facial recognition. Furthermore, there were some remarks about the lay-out, the ambiguity of some questions and the length of the entire survey. As a consequence, the survey was split into two separate surveys: one about fingerprint recognition (and an adapted scenario question) and one about iris scanning and facial recognition with an adapted scenario. Thus, the two final surveys each contained one scenario section, one section with general questions and one section with demographic questions. Furthermore, some questions were made more comprehensive for the younger and older age categories (or were simply deleted). One additional question about personal values was added as well. The final adaptation was the re-categorization of the age classes and the inclusion of more social statuses and professions. There were four large questions in the scenario section and the following variables were measured: behavioral intention to accept the biometric application (6 items), behavioral recommendation to accept the biometric application (3 items) , the perceived usefulness (5 items in the iris & facial survey, 6 items in the fingerprint survey), the perceived ease of use (3 items), the relative advantage (3 items), privacy concerns (5 items), technology anxiety & technology trust (5 items), facilitating conditions (3 items) and experience (3 items). The general questions section is formed by four questions about: innovativeness (3 items), social influence (3 items), idealism and relativism (20 items) and personal values (10 items). The last demographic part analyzed gender, age, highest obtained education, social status and profession. 20 Sample and Procedure Previous studies have examined the acceptance of biometrics (in a retail setting) among students. The aim of this study was to go beyond this age category and to examine the acceptance of biometrics among every person able to go to a retail setting, in other words, among all age categories. In order to fill this age gap, the survey was distributed both online and offline. The two surveys were distributed in Dutch to reach respondents of all age categories, educations and professions. The online surveys were made on Qualtrics and distributed via social network sites (Facebook, LinkedIn) and via email. The offline versions were shared among friends, family and acquaintances and were handed out in a hair salon, while people were waiting. In total there were 252 respondents collected regarding the online and offline fingerprint questionnaire and 198 respondents online and offline regarding the iris scanning & facial recognition questionnaire. A lot of respondents did not fill in the complete survey. Therefore, only 187 respondents of the fingerprint recognition survey and 151 respondents of the iris scanning and facial recognition survey remained as valuable. Table 2 (see p.22) gives an overview of the characteristics of the sample. 21 Fingerprint recognition Iris scanning & (%) facial recognition (%) Gender Male 35.3 33.1 Female 64.7 66.9 < 18 5.3 5.8 18 – 24 31.1 34.8 25 – 34 7.9 10.1 35 – 44 16.6 13.8 45 – 54 17.2 18.1 55 – 65 11.9 11.6 > 65 9.9 5.8 Primary Education 0.7 1.4 Secondary Education short-type 11.9 7.2 Secondary Education long-type 29.8 31.9 Professional Bachelor 32.5 31.2 Academic Bachelor 10.6 13.0 Academic Master 14.6 15.2 Single 21.2 22.5 In a relationship 19.2 25.4 Cohabiting 7.9 9.4 Married 47.7 39.9 Divorced 2.0 1.4 Widow/Widower 2.0 1.4 Student 31.5 39.1 Unemployed/Job Seeker 4.7 2.9 Worker 2.7 7.2 Employee 22.8 24.6 Manager 4.7 3.6 Official 7.4 5.8 Self-employed 10.7 6.5 Retired 15.4 10.1 Age Highest obtained education Social Status Profession Table 2 Demographic characteristics of the sample 22 Measurement of variables Scenario Questions As mentioned before, the goal of the scenario question was to measure specific variables regarding the biometric application itself. The two scenarios are included in the surveys in appendix 1(Dutch version) and 2 (English version), but because of their importance, they are also outlined here. Fingerprint recognition The scenario is as follows: you decide to do some grocery shopping in your favorite department store. After you have – again – loaded too many items in your shopping cart, you finally arrive at the check-out. Everything seems the same, but your store has changed one element. You can still pay by credit or debit card or cash, but now there is also an additional device at the check-out: a fingerprint scanner. With this device, you can pay by just putting your finger on the device. The latter recognizes you (and identifies you) and automatically deduct your payable amount from your bank account. Thus, no need for a credit/debit card, a PIN or for cash money to finish your payment. You just need that object that you always have with you: your finger. Only at your first visit to the store, you probably would have to go through a registration procedure, but once this is done, your finger is all you need to pay. What is your decision when you arrive at the check-out and how do you view this payment method? Please, fill in the next questions. Iris scanning and facial recognition The situation is as follows: you arrive at one of your favorite department stores. When entering the store, you see a sign mentioning the following text: ‘We use identification technology to keep you more satisfied and to let you go home with a good feeling.’ What does this mean? There have been placed several cameras in the department store. Cameras, which can scan your irises and facial expressions. The scanning of the irises is to recognize you as a person, the scanning of your facial expression is to identify your feelings about certain products. 23 For example: when you would stop at a certain champagne and your facial expression seems positive, the camera will identify you (by scanning your face) and in the next array you will receive a personal message on a display about certain appetizers that would perfectly match with that same champagne. You will receive an explanation about those appetizers, where they are located in the store, how much they cost: hence, a personalized advertising. Thus, you are being watched during your visit in the department store, but you receive useful information about products, chosen by you. How do you view this new technology? An explanation of the measurement of each variable is given in the following paragraph. The questions originate from other authors, but were transformed to fit into this study and to match with these biometric applications (see appendix 3). An example of the entire survey is submitted at the end of this dissertation in appendices 1 and 2. All scenario questions except one were measured on a 5-point Likert scale, ranging from 1 ‘totally disagree’ to 5 ‘totally agree’. The detailed items can be found in appendix 6. Behavioral intention was measured in question 1 and 2, but under different scales. Question 1 asked directly whether the respondent would accept the technology in his or her favorite department store. The semantic differential bipolar scale measured the intention of the respondent to engage in a specified behavior (on a scale from 1 to 5). For example: highly unlikely (1), unlikely (2), no opinion (3), likely (4), highly likely (5). Question 2 measured the behavioral intention on a 5-point Likert scale, based on the research of Venkatesh and Davis (2000) and Venkatesh et al. (2003). Behavioral recommendation was also measured in question 2 by three sub questions (5-point Likert scale) by Price and Arnould (1999), describing word - of - mouth intentions. Perceived usefulness was measured by item 1, 3, 4 and 5 of question 3 of the iris scanning and facial recognition survey and by item 1, 3, 4, and 6 of question 3 of the fingerprint recognition survey. Question 3 was also measured by a 5-point Likert scale regarding both surveys. Two of the five items were determined by Miltgen et al. (2013), who deducted them from Davis (1989). The other two items were directly deducted from Davis (1989). Some sub questions were left out in the analysis because there was no match with the other items (Cronbach Alpha & factor analysis: see appendix 4, 5 and 6), as explained later in this dissertation (see p. 27). 24 Perceived ease of use was obtained by item 6 and 7 of question 3 in the iris scanning and facial recognition survey and question 7 and 8 in the fingerprint recognition survey. One of them was determined by Miltgen et al. (2013) who again deducted them from Davis (1989). The other item originated from Venkatesh and Davis (2000). Relative advantage was also measured in question 3 and contained the last four items of this question (in both surveys). Although the last three originated from Walker et al. (2002), the first item was primitively measured for the perceived ease of use construct by Miltgen et al. (2013), but had a better match with the relative advantage construct (see p.27 ). Privacy concerns were measured by the first five items in question 4. Question 4 was also measured by a 5-point Likert scale. The first three were deducted from Miltgen et al. (2013), while this paper took the items from Fogel and Nehmad (2009). The other two items are self – developed. Technology anxiety and technology trust were combined into one construct (high cronbach Alpha, see p.28). The first three items were technology anxiety related, while the other two were trust in technology. The items for technology anxiety were created by the author of this study, but the reversed technology trust items were subtracted from Miltgen et al. (2013), who took the items from Pavlou (2003). Facilitating conditions consisted out of the items 11 to 13 from question 4. For fingerprint recognition, only items 11 and 13 were valuable (see p.29). The first two were determined by the dissertation of Venkatesh et al. (2003), but the third was invented in this study Experience was measured by the last three items of question 4 and these items were constructed by common sense. General Questions The general questions were measured in question 5, 6 and 7. In question 5, the following two items were analyzed: innovativeness and social influence, both on a 5-point Likert Scale. Innovativeness was measured by the first three items of question 5, all deducted from the paper of Miltgen et al. (2013), who took the questions of this construct from Yi et al. (2006). Social influence was measured through the last three items of this question that were created by the author of this study. Ethical Ideologies. Question 6 analyzed whether the respondents were idealistic or relativistic oriented (i.e. ethical ideology). The Ethics Position Questionnaire of Forsyth (1980) was used. Respondents were asked to rate their (dis)agreement with the 20 items on a 5-point Likert Scale 25 ranging from 1 ‘totally disagree’ to 5 ‘totally agree’. The translation of this EPQ for the Dutch survey was obtained from Van Kenhove, Vemeir and Verniers (2001). Personal Values. Question 7 handles the measurement of personal values. The personal values were originally assessed by Schwartz (1994) using 56 items, but were reduced to 10 personal values and used by Lindeman and Verkasalo (2006). Different values belonged to different dimensions and with these measurements, the resultant conservations construct and the selfenhancement construct were formed to see whether people’s conservatism or self-enhancement were related to their behavioral intention to accept biometrics in a retail setting. Each value was rated on a 9-point importance scale ranging from 0 ‘opposed to my principles’, to 1 ‘not important’ to 4 ‘important’ to 8 ‘supreme important’. Demographic Questions The demographic questions contained standard questions. They measured gender (male, female), age (<18, 18 – 24, 25 – 34, 35 – 44, 45 – 54, 55 – 65, >65), highest obtained education (primary education, secondary education short-type, secondary education long-type, professional bachelor, academic bachelor, academic master), social status (single, in a relationship, cohabiting, married, divorced, widow/widower), profession (student, unemployed/job seeker, worker, employee, manager, official, self-employed, retired). These were all measured by multiple choice questions. The survey was distributed in Dutch, so it is important to note that every value, item and question was translated from English to Dutch. It is important to take into consideration that small differences could occur if the survey would be distributed in English. The next chapter will provide the results and interpretations of this study. 26 Chapter IV: Results and Interpretation Measurement Model This section provides an outline on how the final measurement model was developed by different analyses with regard to the iris scanning & facial recognition and the fingerprint recognition survey. A Reliability Analysis was implemented in order to verify the consistency between the items in the survey and to construct the dependent and independent variables. A good cronbach’s alpha for every perceived construct was followed by calculating the mean of the relevant items to create that construct. A summary of the constructs, their cronbach’s alpha’s, means and standard deviations of both the identification technologies can be found in table 3 (see p.28). A detailed outline of each item’s analysis can be found in appendix 4 and 5. To form some constructs, some items were left out in order for the construct to be consistent. The second item in question three measuring perceived usefulness was not consistent with the other items (cronbach’s α: 0.76, cronbach’s α if it item deleted for item 2 was 0.84 and cronbach’s α 0.82 and cronbach’s α if it item deleted for item 2 was 0.83 in the fingerprint recognition analysis). In the fingerprint recognition analysis, the fifth item of the construct perceived usefulness was left out as well, because this item was not used in the iris scanning and facial recognition survey, which would otherwise compromise comparison later. It would be difficult to compare the results of both biometric systems when they do not contain the same items. The prospected element of perceived ease of use consisted of three items, but the third item matched better with the relative advantage construct (otherwise the cronbach’s α of perceived ease of use was 0.65). The prospected element of perceived ease of use in the fingerprint recognition survey consisted of three items and would be acceptable in terms of reliability (cronbach’s α: 0.79), but in order to be consistent with the other survey, the third prospected item of perceived ease of use was left out to match it with the relative advantage construct. The second item of the prospected ‘facilitating conditions’ factor was left out in the fingerprint recognition survey due to inconsistency with the other items. (Cronbach’s α: 0.51). This is not consistent with the other survey, but such a low cronbach’s alpha would not show reliability. The last item of the prospected factor ‘relativism’ was eliminated due to a high cronbach’s α it item deleted (cronbach’s α: 0.73 in the two surveys). Finally, there exists a low cronbach’s alpha for dimension self-transcendence (cronbach’s α: 0.55 for IS&FR & 0.61 for FP), but there will be no reduction of items in this construct because it only has two items. 27 An exploratory factor analysis was used to create the constructs of question 3 (perceived usefulness, perceived ease of use, relative advantage, privacy concerns, technology anxiety, facilitating conditions and experience). The factor analysis (see appendix 5) shows that there are seven different constructs, explaining 72 % of the variance in the iris scanning and facial recognition output and 70 % in the fingerprint recognition output. One factor measures the Perceived Usefulness, one Perceived Ease of Use, one Relative Advantage, one Privacy Concerns, one Technology Anxiety, one Innovativeness and one the Experience The outcome of the factor analysis was verified by a reliability analysis for each construct (appendix 4). Iris scanning & facial recognition Construct Cronbach’s Number Number α of of final original items Mean Fingerprint recognition Standard Cronbach’s Number Number Deviation α of of final original items items Behavioral Mean Standard Deviation items 0.91 6 6 2.7 0.98 0.97 6 6 3.23 1.21 0.95 3 3 2.63 1.03 0.96 3 3 3.08 1.12 0.84 5 4 2.67 0.86 0.82 6 4 3.54 0.86 0.76 3 2 3.48 0.82 0.75 3 2 3.93 0.76 0.89 3 4 2.56 0.81 0.78 3 4 3.44 0.78 0.83 5 5 3.77 0.77 0.86 5 5 3.50 0.80 0.78 5 5 3.04 0.73 0.78 5 5 2.64 0.71 Intention to accept (BI) Behavioral Recommendation (BR) Perceived Usefulness (PU) Perceived Ease Of Use (PEOU) Relative Advantage (RA) Privacy Concerns Technology Anxiety (TA) 28 Iris scanning & facial recognition Construct Cronbach’s Number Number α of of final original items Mean Fingerprint recognition Standard Cronbach’s Number Number Deviation α of of final original items items Mean Standard Deviation items 0.65 3 3 3.05 0.8 0.63 3 2 3.38 0.68 Experience (Exp) 0.79 3 3 1.92 0.86 0.77 3 3 1.94 0.85 Innovativeness 0.85 3 3 2.79 0.86 0.83 3 3 2.86 0.85 0.74 3 3 3.29 0.80 0.79 3 3 3.26 0.77 Idealism (ID) 0.91 10 10 3.73 0.61 0.84 10 10 3.66 0.53 Relativism (RE) 0.72 10 9 3.42 0.49 0.73 10 9 3.33 0.52 Dimension Self- 0.69 3 3 4,73 1.50 0.74 3 3 4.80 1.47 0.69 2 2 5,43 1.41 0.76 2 2 5.49 1.54 0.55 2 2 5,71 1.27 0.61 2 2 5.95 1.27 0.75 3 3 5,48 1.33 0.74 3 3 5.73 1.25 Facilitating Conditions (FC) (Innov) Social Influence (SI) Enhancement Dimension Openness to Change Dimension SelfTranscendence Dimension Conservation Table 3 Cronbach's Alpha, number of items, mean, standard deviation of constructs 29 Results In the next chapter the hypotheses are tested one by one, describing each identification technology per hypothesis. To end this chapter the differences in variables between iris scanning and facial recognition and fingerprint identification are compared. The hypotheses are confirmed or not by a regression analysis. Hypothesis testing H1: The intention to accept the biometric system positively influences the intention to recommend this technology to others. For iris scanning and facial recognition, this hypothesis could be confirmed (R²=0.72, β = 0.85 and p < 0.001). This hypothesis could also be confirmed for fingerprint recognition (R² = 0.73, β = 0.85 and p < 0.001). The following hypotheses are analyzed and tested chronologically. However, hypotheses 2, 3a, 4, 5, 7, 8, 9, 10, 11, 12b, 13a and 15 all make predictions with different independent variables but with the same dependent variable: behavioral intention to accept. Normally, a multiple regression based on these variables should be performed but this will not be the case due to high correlations between several independent variables. (See appendix 7). A single linear aggression analysis is conducted for each independent variable separately. Furthermore, there are two hypotheses testing mediation, and two testing moderation (see appendix 8 for output). For each hypothesis, there are results and interpretations for both biometric systems. A summarized table (table 4) is included on page 35. H2: The greater the perceived usefulness, the greater the intention to accept a biometric system. For iris scanning and facial recognition this hypothesis can be confirmed (R²=0.45, β = 0.67 and p < 0.001). The same can be stated for fingerprint recognition (R²=0.49, β = 0.70 and p < 0.001). 30 H3a: The greater the perceived ease of use, the greater the intention to accept a biometric system. For iris scanning and facial recognition, the hypothesis can be confirmed (R²=0.05, β = 0.24 and p = 0.004). The same goes for fingerprint recognition (R² = 0.23, β = 0.48 and p < 0.001). H3b: The perceived ease of use has an indirect, positive effect on the intention to accept a biometric system, through perceived usefulness. Therefore, perceived usefulness will be the mediator in the relation perceived ease of use – behavioral intention to accept. The previous hypothesis stated that there is a significant relation between the perceived ease of use and the behavioral intention to accept (see hypothesis 3a). According to the Method of Barry and Kenny (1986), there is only a mediation when the independent variable (Perceived Ease Of Use) has also a significant relation with the mediator (Perceived Usefulness) (p < 0.001) and when the mediator has a significant relation with the dependent variable (Behavioral Intention to accept), which has been proven in hypothesis 2 (see p.30). All three conditions are met for both biometric applications. However, Perceived Ease Of Use is not significant when we include Perceived Usefulness in the model (p = 0.88 for iris scanning and facial recognition and p = 0.45 for fingerprint recognition). This means that hypothesis 3b counts for both biometric systems and is a complete mediation. (See appendix 8.1). β = 0.34 IS & FR Perceived Usefulness β = 0.67 IS & FR β = 0.66 FP β = 0.65 FP Perceived Ease Of Use Behavioral Intention β = 0.24 IS & FR β = 0.48 FP H4: The more perceived relative advantage the identification technology offers, the more an individual will have the intention to accept the identification technology. Relating to the iris scanning and facial recognition analysis, this hypothesis can be confirmed (R² = 0.4, β = 0.63, p < 0.001). The same goes for the fingerprint recognition analysis. (R² = 0.58, β = 0.77, p < 0.001). 31 H5: Individuals with higher privacy concerns will have less intention to accept a biometric system. Again, for both biometric applications, the hypothesis can be confirmed. (Iris scanning & facial recognition: R² = 0.20, β = -0.45, p < 0.001 and fingerprint recognition: R² = 0.28, β = - 0.54, p < 0.001). H6: The more anxious an individual is towards technology, the more privacy concerns the individual adopts and thus the less inclined he or she is to accept the identification technology. Therefore, privacy concerns will be a mediator between technology anxiety and behavioral intention to accept the biometric system. For iris scanning and facial recognition, this mediation hypothesis can be confirmed; it is, however, not a complete mediation but a partial mediation. The significance between the independent variable (Privacy Concerns) and the dependent variable (Behavioral Intention) can be confirmed by hypothesis 5. Privacy concerns and technology anxiety (mediator) have also a significant relation (p< 0.001). The two variables, put in one model, both turn out to be significant regarding their relation with behavioral intention to accept (TA: p<0.001 and PC: p = 0.015). That is why this mediation is partial (see appendix8.2 for more detailed output). β = 0.56 IS & FC Technology Anxiety β = - 0.44 IS & FC β = - 0.66 FR β = 0.55 FR Privacy Concerns Behavioral Intention β = - 0.45 IS & FC β = - 0.54 FR H7: Consumer’s anxiety in the technology has a negative influence on the intention to accept a biometric system. For both biometric systems, the hypothesis can be confirmed (Iris scanning & facial recognition: R²=0.30, β = - 0.55, p < 0.001 and fingerprint recognition: R²=0.57, β = - 0.76, p < 0.001). Remarkable is that technology anxiety has more impact on the BI than privacy concerns! 32 H8: The more resultant conservation oriented a consumer is, the more he or she is inclined to reject the identification technology. H9: The more self-enhanced a consumer is, the more he or she is inclined to accept the identification technology. For iris scanning and facial recognition, hypothesis 8 cannot be confirmed (R²=0.002, β = 0.01, p = 0.250), but hypothesis 9 can be (R²=0.03, β = 0.18, p = 0.034). Therefore, people who are more egocentric oriented (power, achievement, hedonism) are inclined to accept the iris scanning and facial recognition in a retail setting. On the contrary, for fingerprint recognition, neither construct provide enough significance to confirm the hypotheses (H8: R²= 0.006, β = - 0.075, p = 0.361; H9: R²=0.02, β = 0.141, p = 0.08). H10: The more idealistic oriented a consumer is, the less he or she will have the intention to accept the identification technology. H11: The more relativistic oriented a consumer is, the more he or she will have the intention to accept the identification technology. For both iris scanning & facial recognition and fingerprint recognition, the above hypotheses cannot be confirmed (H10: Iris scanning & facial recognition: R²=-0.006, β = 0.04, p = 0.631; fingerprint recognition: R²= 0.0, β = 0.08, p = 0.312; H11: iris scanning & facial recognition: R² = - 0.001, β = 0.08, p = 0.360; fingerprint recognition: R²= -0.004, β = -0.05, p = 0.556). H12a: Higher innovative consumers intend to perceive ease of use more positively. Regarding to iris scanning and facial recognition, this hypothesis cannot be confirmed. (R²= -0.003, β = 0.06, p = 0.672). On the other hand, the hypothesis can be confirmed regarding to fingerprint recognition (R²= 0.05, β = 0.241, p = 0.002). People who are more innovative seem to perceive the use of fingerprint recognition systems more easily, than the use of iris scanning and facial recognition applications. H12b: The more personal innovativeness a consumer has, the more willingly he or she will accept identification technology. The hypothesis can also be confirmed for both biometric applications (Iris scanning & facial recognition: R²= 0.11, β = 0.34, p < 0.001; fingerprint recognition: R²=0.02, β= 0.16, p = 0.039). 33 H13a: The more facilitating conditions consumers have, the more they will intend to accept the identification technology. For both biometric applications, this hypothesis can be confirmed. (Iris scanning and facial recognition: R²=0.23, β = 0.49, p <0.001 & fingerprint recognition: R²=0.24, β = 0.49, p <0.001). For fingerprint applications as well as for iris or facial applications, consumers seem to better accept the applications when there are facilitating conditions involved. H13b: The influence of facilitating conditions on behavioral intention to accept biometrics will be moderated by age, such that the effect will be stronger for older consumers. For iris scanning and facial recognition, this hypothesis cannot be confirmed and because of the insignificance of the moderated relation (significant F change: p = 0.308), there is no use in determining any β coefficients. The same conclusion can be made for fingerprint recognition (significant F change: p = 0.08), however the p-value lies closely to 0.05, which indicates an almost significant moderation effect (see appendix 8.3 for detailed output). H14: The impact of social influence on behavioral intention in a voluntary retail situation will be moderated by gender (Gen) (a), age (Age)(b) and experience (Exp)(c) , such that the effect will be stronger for women, older people and when the individual lacks experience. Hypothesis 14a cannot be confirmed, neither for iris scanning & facial recognition, nor for fingerprint recognition (significant F change for iris scanning & facial recognition: p = 0.79 and for fingerprint recognition p = 0.93). There is also no significance to prove hypothesis 14b. (Significant F change for iris scanning & facial recognition: p = 0.48 and for fingerprint recognition p = 0.29). Hypothesis 14c can also not be confirmed. (Significant F change for iris scanning & facial recognition: p = 0.681 and for fingerprint recognition p = 0.124) (See appendix 8 for more detailed output) (See appendix 8.4). H15: The more experienced a consumer is with identification technology in general, the more intention he or she has to accept the technology in a retail setting. This hypothesis can be confirmed for both biometric systems (iris scanning & facial recognition: R²=0.07, β = 0.27, p = 0.001 and fingerprint recognition: R² = 0.03, β = 0.19, p = 0.014). 34 R² β t-value p-value Hypothesis Behavioral Intention Perceived Usefulness H2 Iris scanning & facial recognition 0.45 0.67 10.914 < 0.001 Yes Fingerprint Recognition 0.49 0.70 12.854 < 0.001 Yes Perceived Ease of Use H3a Iris scanning & facial recognition 0.05 0.24 2.887 0.004 Yes Fingerprint Recognition 0.23 0.48 7.172 < 0.001 Yes Relative Advantage H4 Iris scanning & facial recognition 0.4 0.63 9.738 < 0.001 Yes Fingerprint Recognition 0.58 0.77 15.422 < 0.001 Yes Privacy Concerns H5 Iris scanning & facial recognition 0.20 -0.45 -5.993 < 0.001 Yes Fingerprint Recognition 0.28 -0.54 -8.013 < 0.001 Yes Technology Anxiety H7 Iris scanning & facial recognition 0.30 -0.55 -7.835 < 0.001 Yes Fingerprint Recognition 0.57 -0.76 -14.548 < 0.001 Yes Resultant Conservation H8 Iris scanning & facial recognition 0.002 0.01 1.155 0.250 No Fingerprint Recognition 0.006 -0.075 -0.915 0.361 No Resultant Self-Enhancement H9 Iris scanning & facial recognition 0.03 0.18 2.140 0.034 Yes Fingerprint Recognition 0.02 0.14 1.738 0.08 No Idealism H10 Iris scanning & facial recognition - 0.006 0.04 0.481 0.631 No Fingerprint Recognition 0.0 0.08 1.015 0.312 No Relativism H11 Iris scanning & facial recognition -0.001 0.08 0.918 0.360 No Fingerprint Recognition -0.004 -0.05 -0.590 0.556 No Innovativeness H12b Iris scanning & facial recognition 0.11 0.34 4.339 0.001 Yes Fingerprint Recognition 0.02 0.16 2.083 0.039 Yes Facilitating Conditions H13a Iris scanning & facial recognition 0.23 0.49 6.589 < 0.001 Yes Fingerprint Recognition 0.24 0.49 7.052 < 0.001 Yes Experience H15 Iris scanning & facial recognition 0.07 0.27 3.288 0.001 Yes Fingerprint Recognition 0.03 0.19 2.482 0.014 Yes Table 4 Results for the independent variables on Behavioral Intention and hypothesis testing 35 The results show a few assumptions (which are tested in the next chapter). The more perceived usefulness, the more perceived ease of use and the more relative advantages create more behavioral intention to accept the biometric system, but the effect is greater for fingerprint recognition. On the contrary, the positive effect is greater for iris scanning and facial recognition regarding higher innovativeness and more experience. Also, privacy concerns and technology anxiety have negative effects on the behavioral intention to accept, but these impacts seem greater for fingerprint recognition than for iris scanning and facial recognition. For now, these remarks are just assumptions and the significant differences between these two application types are tested in the next subchapter. The differences between the identification technologies In the next subchapter, the two different identification technology applications are compared on the basis of the formed constructs (of the scenario questions) by independent samples t-tests. It gives a good insight on how people think differently about the two technologically systems and it could give a pragmatic insight for retailers which biometric system to choose. How can they facilitate the transformation from traditional marketing practices to iris scanning and facial recognition applications (based on the different constructs)? Answers to these questions are provided in this chapter as well as in the conclusive chapter. Furthermore, the study examines whether there are main effects of the demographic variables. Interaction effects of these demographic variables between the two types of biometric applications are discussed. The output can help retailers to form an idea on which type of consumers to focus more when implementing an identification technology in their store. Significant differences between the biometric types: t-tests By comparing the means of each construct of both identification technologies, it is possible to see which constructs or elements make people think differently about different types of biometrics. The output is summarized in table 5 (p.39) and appendix 9. In order to fully comprehend the means, the number indicates what answer has been given: 1 = totally disagree, 2 = disagree, 3 = nor disagree, or agree, 4 = agree and 5 = totally agree. 36 Based on the results (see table 5, p.39), the two biometric applications are significantly different for almost every construct, except for experience. As most people that do not have any experience with the technology (means are 1.92 and 1.93), experience seems to be irrelevant. As the table shows, there is a significant difference in how people intend to accept both biometrics (t (336) = -4.139, p < 0.001). Respondents obviously would rather accept the fingerprint recognition system at the check-out than they would accept the marketing observation applications of iris scanning and facial recognition. Although the average respondent does not have a clear opinion on whether or not they would accept fingerprint recognition (mean = 3.30), iris scanning and facial recognition are rated below 3, meaning that it probably would not be accepted. An assumption could be that people are more familiar with fingerprint recognition at the check-out, hence it is recommended for retailers to implement this technology first. The same conclusion can be made for behavioral recommendation (t (321) =-3.802, p< 0.001). Although fingerprint recognition’s mean does not indicate great acceptance, it differs with 0.467 from the iris scanning and facial recognition mean. Therefore people are more inclined to recommend the fingerprint recognition application than the iris scanning and facial recognition application. While people do not value the time-saving and value-offering characteristics of the iris scanning and facial recognition system (mean: 2.78), they do recognize these elements in the fingerprint system (mean: 3.65). The perceived usefulness is therefore also significantly different between both biometrics (t (314) = -8.598, p< 0.001). The results of perceived ease of use also show significant differences (t (313) = -5.520, p< 0.001), but indicates positive means for both systems (3.59 for iris scanning and facial recognition and 4.08 for fingerprint recognition). People obviously perceive both biometric applications as easy to use; it does not mean that they are willing to accept them. Retailers must be aware that focusing on this element, when implementing the identification technology, will not have a great impact. The fingerprint recognition system creates more relative advantages than the iris scanning and facial recognition system (3.58 vs 2.66). They also differ significantly (t (314) = -9.922, p< 0.001). Consumers realize that the fingerprint system can offer advantages compared to cash and credit cards (the retailer may want to do some more research to investigate the exact advantages), but consumers do not appreciate these advantages with iris scanning and facial recognition compared to traditional marketing methods. The means of both biometric applications are relatively high with regard to privacy concerns (3.81 for IS&FR and 3.52 for FP). Furthermore, the difference between the two identification 37 technologies with regard to privacy concerns, is significant (t (302) =2.858, p = 0.005). Retailers must consider different actions to reduce the privacy concerns when launching these systems in their store. But, the results show lower means for both biometrics for technology anxiety (IS&FR: 3.05 & FP: 2.65). This construct differs also significant between the two types (t (301) = 4.520, p< 0.001). Although hypothesis 6 (see p.31) confirmed that the more technology anxious people are, the more privacy concerns they have. They seem to be less technology anxious about these technologies than that they have problems with sharing their private information. Especially with fingerprint recognition: the average buyer would not go to another store or would be scared or have doubts to use the technology. Therefore – a reminder for retailers – respondents seem not to be afraid of using or undergoing (in the case of iris scanning and facial recognition) the technology, they are afraid of what is happening with their personal information when they have been using a biometric system. Next, there is a significant difference between the two applications regarding facilitating conditions (t (301) = -3.815, p<0.001). Again, respondents would rather accept the fingerprint recognition system when there would be assistance to answer questions than that they would accept the iris scanning and facial recognition system. The last construct, experience, shows no significant difference between the two types of identification technologies (t (301) = -0.081, p= 0.936). Perhaps this is a consequence of the low average experiences for both biometric applications. All these conclusions and valid hypotheses conclude that retailers must be careful when implementing iris scanning and facial recognition applications. According to the regression analysis, they affect the behavioral intention to accept the identification technologies, but the ttest suggests that the amount of impact on the acceptance differs from one biometric applicationto the other. 38 Construct Iris scanning and facial recognition Mean Standard P-value Fingerprint recognition Mean Deviation Standard p-value Deviation BI 2.79 0.98 < 0.001 3.30 1.23 < 0.001 BR 2.60 1.06 < 0.001 3.07 1.14 < 0.001 PU 2.78 0.89 < 0.001 3.65 0.91 < 0.001 PEOU 3.59 0.81 < 0.001 4.08 0.76 < 0.001 RA 2.66 0.85 < 0.001 3.58 0.82 < 0.001 PC 3.81 0.87 0.005 3.52 0.88 0.005 TA 3.05 0.79 < 0.001 2.65 0.75 < 0.001 FC 3.08 0.85 < 0.001 3.43 0.74 < 0.001 Exp 1.92 0.87 0.936 1.93 0.88 0.936 Table 5 Differences between constructs and biometric applications: mean, standard deviation, p-value Main and interaction effects of demographic variables on behavioral intention to accept identification technologies – General Linear Model This subchapter is about examining the effects of the demographic variables: main effects on the construct behavioral intention to accept and interaction effects of gender on the acceptance and the type of biometric applications. The detailed output can be found in appendix 10. For each effect, a General Linear Model is used. The results for an effect of gender show that there is no significant main effect of gender on the BI (F (1) = 0.518, p = 0.472), nor an interaction effect on the BI of IS&FR and FP (F (1) = 0.15, p= 0.700). The results for an effect of age show that there is a significant main effect of age on the BI (F (6) = 3.944, p= 0.001), but there is no interaction effect on the BI of IS&FR and FP (F (6) = 1.167, p= 0.324). However, the correlation between age and BI is rather low but significant (r = 0.13, p =0.028). The estimates (appendix 10.1) of age on the BI indicate a high acceptance with young people (<18) (mean: 3.563), but indicate that the trend goes downwards when people age until a certain moment (the age of 40). After people passed this age, they start to intend to accept the biometric systems again. This perceived trend, however, is limitative. First, the survey contains few respondents in the age category of – 18 (4.7 % of all respondents). Second, we believe the + 60 age category evaluated the use of identification technologies rather theoretically, instead of practically (mean= 3.354). Third, the correlation between age and the BI is rather low. 39 Regarding the highest obtained education of respondents, there is nor a significant main effect (F (5) = 0.950, p= 0.449), nor a significant interaction effect on the two types of biometric systems (F (5) = 0.739, p= 0.595). This conclusion can also be made, based on this study’s results, for the main effect of social status (F (5) = 1.493, p= 0.192) or the interaction effect (F (5) = 0.372, p= 0.868). There is also no significant main effect regarding the profession (F (7) = 1.307, p= 0.247), nor a significant interaction effect (F (7) = 1.913, p= 0.068). Although the latter is almost significant, there is no trend found. The detailed output is given in appendix 10.1. The behavioral intention to accept depends, as tested and confirmed by the regression analysis, on several constructs (independent variables). In order to enhance the chance that buyers would accept the identification technology in retailers’ stores, the retailer must be well informed which independent variables to focus on. Another GLM test shows that there is a main effect of age on privacy concerns (appendix 10.2) (F (6) = 3.359, p= 0.003). As the output in appendix 10.1 indicates, the age category of 25 till 65 have the most concerns regarding their privacy, while the 18-24 and +65 age categories have the lowest levels of concerns. Retailers should use adapted marketing tools to convince the former age categories to accept the biometrics in their store. The same conclusion can be made for age on the perceived usefulness on the biometric systems (F (6) = 4.164, p= 0.001). As summarized in table 6, these assumptions can be made for almost every independent variable that has a significant regression effect on BI (see table 4, p.35). Age is therefore a strong determinant. For each variable, the correlation with age is measured to strengthen or weaken this assumption (see appendix 10.3). The factors ‘Technology Anxiety’ and ‘Experience’ were left out because of a different trend than the other variables (see appendix 10.2). Construct Df F Sig r PU 6 4.164 0.001 0.048 (p= 0.415) PEOU 6 2.137 0.049 0.068 (p= 0.248) RA 6 6.339 < 0.001 0.172 (p= 0.003) PC 6 3.359 0.003 -0.068 (p=0.247) FC 6 2.429 0.026 -0.027 (p=0.645) Table 6 Main effect of age on independent variables (PU, PEOU, RA, PC, FC) 40 The next chapter offers limitations of this study and suggestions for further research. Chapter V: Limitations and Suggestions for Future Research Although this study examines different influencing variables, that it goes beyond the student age category and that it includes different biometric systems, there are some limitations as well as possible directions for future research. First of all, there was no significance regarding the idealism and relativism constructs towards the behavioral intention to accept. Some respondents, however, remarked that they were influenced by the scenario questions when they filled in the general questions. Perhaps, results and significance would be possible if the general questions were put first in the survey. Hereby, respondents would perhaps not be influenced by the identification technologies when pointing out their view on ethics. The personal values of Schwartz (1992) were also translated in Dutch and could give another perception than when they would have been maintained in English. Another possible limitation of the survey itself is its length. A lot of respondents did not finish the survey and therefore, there were relatively many missing values. Next, not every construct contained a lot of items. For example: dimension selftranscendence carries only two items (benevolence and universalism) and shows a low cronbach’s alpha (0.55) as a result. Also, privacy concerns only consisted of five items, but already had a significant relation with the behavioral intention to accept (Iris scanning & facial recognition: R² = 0.20, β = -0.45, p < 0.001 and fingerprint recognition: R² = 0.28, β = - 0.54, p < 0.001). Further research could analyze which elements create the most privacy concerns with consumers. Consumers should come up with their own reasons, based on focus groups in order for the retailer to really comprehend their thoughts about the topic. This is not only valid for privacy concerns. The whole research should be done more experimentally and empirically to gain deeper insights. People’s answers are more relevant and useful when they actually have undergone a situation in the past, and less relevant when they have to predict how they would react. Furthermore, due to a high correlation among the independent variables, it was not possible to analyze these variables in one model. Therefore, the independent variables were examined one by one to the dependent variable, which could give a biased interpretation. A last important limitation involves the comparison of the two biometric systems regarding the demographic variables. There were too few respondents to spot obvious trends (for example only two 41 respondents just had a primary school degree, only eight were older than 65 …). With that amount of respondents, generalizations could be overestimated. Regarding suggestions for future research: there was no hypothesis describing a direct relationship between social influence and behavioral intention, mainly because it did not show any significance in previous studies. But in this world, where direct advertising becomes more challenging because consumers listen more to their peers (word of mouth, fora on internet,…), it is difficult to believe that social influence does not affect the behavioral intention to accept an identification technology. Further research could examine this possible relation into more detail, perhaps even via behavioral intention to recommend. Also, the survey was done in Belgium. It would be interesting to see if other European countries or continents would score differently. The results could even be different for other ethnic groups. Furthermore, other variables could be included in future research as well. What if it was mandatory to pay by touch for several stores in the neighborhood or what would be the impact of a general use of these technologies in different stores in the respondent’s environment? Also, could store commitment have an impact on a person’s decision to enter the iris scanning and facial recognition store or not? These are all suggestions for future research, but the main recommendation would be to convert the survey into an experiential research for the respondent. Chapter VI: Conclusion & Pragmatically implications The topic of this dissertation (Consumer Acceptance of Identification Technology) is gaining popularity each year. However, although people seem to accept these biometric applications in a mandatory setting (casinos, border controls, access to particular sites), few studies have investigated the acceptance of consumers in a voluntary setting or in an environment where people or consumers are positioned daily. This study examines consumers’ acceptance of biometrics in a retail setting with three types of identification technologies: fingerprint recognition, iris scanning and facial recognition. “Fingerprint recognition identifies people by using the impressions made by the minute ridge formations or patterns found on the fingertips” (Human Recognition Systems, 2014). “Iris cameras perform recognition detection of a person’s identity by mathematical analysis of the random patterns that are visible within the iris of an eye from some distance” (findBIOMETRICS, 2014,). 42 The composed theoretical framework of this topic (see page 19) does not only provide an academic model for research, but provides pragmatic insight on how retailers can implement fingerprint recognition (as a payment method) and iris scanning and facial recognition scanners (as a marketing tool) in their stores, keeping influencing variables on consumers’ acceptance in mind. Several hypotheses were tested among 187 fingerprint and 151 iris scanning and facial recognition survey respondents and significant results were found. The behavioral intention to accept these identification technologies by consumers depends significantly on the perceived usefulness of the technology (β: 0.67 for IS&FR, 0.70 for FP), the perceived ease of use (β: 0.24 for IS&FR, 0.48 for FP), the relative advantage of the technology compared to other payment methods or marketing tools (β: 0.63 for IS&FR, 0.77 for FP), the privacy concerns of consumers regarding the technologies (β: -0.45 for IS&FR, - 0.54 for FP), the anxiety of consumers towards these technologies (β: - 0.55 for IS&FR, - 0.76 for FP) the innovativeness of consumers in general (β: 0.34 for IS&FR, 0.16 for FP), the facilitating conditions surrounding these technologies (β: 0.49 for IS&FR and for FP) and the experience consumers have with the technology (β: 0.27 for IS&FR, 0.19 for FP). Retailers should definitely therefore reduce the privacy concerns of consumers and although there is a greater effect of the technology anxiety, research indicates that people are less anxious about using the technology but more about what happens with their personal data. Retailers should provide enough information on what happens with the data that is collected by the pay by touch mechanism and observed by the iris and facial scanner. Retailers should also – especially in the early stages of implementation – hire experts or extra employees assisting people and answering questions about the technology to facilitate people’s experience. Talking about experience: although we did not find many respondents who had any experience in this area, the intention of consumers to accept the technology would be enhanced when they had more experience. Therefore, as long as technology is not implemented by many retailers in the neighborhood of consumers, it will be very difficult to let them accept the identification technology by this variable. Because there are two different biometric applications measured in this survey, it is interesting to see the differences between the two. By using a ‘two independent samples t-test’, the results show that consumers are significantly more comfortable with the fingerprint recognition system, among all constructs (of the scenario questions: PU, PEOU, RA, PC, TA, FC) except for experience. That is why it would be advisable for retailers that, if they would like to enhance customer experience by an identification technology, to start with the fingerprint scanner. Hereby, people would more easily adapt to future iris scanning and facial recognition technology 43 in their department store. A little notation on this conclusion is that this dissertation links the fingerprint with the payment method, and the iris scanning and facial recognition with the marketing tool. Perhaps consumers have opposite reactions towards these technologies just because of their usage situation (payment or advertising) and not because of the technology. Implementation of face recognition at the check-out could be a suggestion for further research. Using a General Linear Model, we examined the effect of demographic variables on behavioral intention to accept (main –and interaction effect between the two types of biometrics) as well as on relevant constructs. Although there were no interaction effects to be found, age had a strong main effect on BI, PU, PEOU, RA, PC and FC. The trends of the effects are all the same, the extreme age categories have more intention to accept, see more usefulness, ease of use, relative advantages, facilitating conditions and have less privacy concerns than the age category 25 – 40. However, the trend is limitative due to several elements. First, the survey contains few respondents in the age category of – 18 (4.7 % of all respondents). Second, we believe the + 60 age category evaluated the use of identification technologies rather theoretically, instead of practically. Third, the correlation between age and the variables is rather low or non-significant. Although the study handles many hypotheses and takes many variables into consideration, there are limitations and possible suggestions for future research. For example, the study takes place in Belgium, but perhaps there are different coefficients for different cultures or countries. Another example could be that it is difficult for respondents to imagine a situation they have never experienced before. The whole study could be redone, but under pragmatic circumstances. Also, focus groups, laboratories and experiments will give more insights for the retailer than a survey. In summary, the study gives a good insight of the behavioral intention of consumers to accept identification technologies. It is based on different age categories, a daily environment and different biometrics. It facilitates retailers to understand the reasons behind consumers’ (probable) acceptance of these biometric systems. But unless the implementation process of such technologies in retail settings is done with caution and consideration of the surrounding variables, it will be seen as invasive (more for iris scanning and facial recognition applications than for fingerprint recognition), which would be very unfortunate for a technology that could offer so much in the near future. 44 References Aggarwal, P. and Cha, T. (1997). Surrogate buyers and the new product adoption process: a conceptualization and managerial framework. Journal of Consumer Marketing, 14(5), 391-400. Ajzen, I. and Fishbein, M., Understanding attitudes and predicting social behavior, Prentice Hall, Englewood cliffs, 1980, 278 pages. Alterman, A. (2003). “A piece of yourself”: Ethical issues in biometric identification. Ethics and Information Technology, 5, 139-150. Baron, R.M. and Kenny, D.A. (1986). The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, 51 (6), 1173 – 1182. Barton, B., Byciuk, S., Harris, C., Schumack, D. and Webster, K. (2005). The emerging cyber risks of biometrics. Risk Management, 52(10), 26-28, 30-31. Bitner, M.J., Brown, S.W. and Meuter, M.L. (2000). Technology Infusion in Service Encounters. Journal of the Academy of Marketing Science, 28, 138-149. Brass, L. (2003). Firms Dealing with Fingerprint Technology See Growing Demand. Knight Ridder Tribune Business News, December 1. Brownstein, R. (2004). E-commerce Becomes Mainstream amidst Security Concerns. Electronic Design, 52(13), 75-76. Bruner II, G.C., James, K.E. and Hensel, P.J., Marketing Scales Handbook, Volume III: A Compilation of Multi-Item Measures (Marketing Sales Handbooks), South-Western Educational Pub, 2001, 1651 pages. Buckley, B. and Hunter, M. (2011). Say cheese! Privacy and facial recognition. Computer Law & Security Review, 27, 637-640. Carrigan, M. and Attalla, A. (2001). The myth of the ethical consumer - do ethics matter in purchase Behavior? Journal of Consumer Marketing, 18(7), 560 - 577. Clodfelter, R. (2010). Biometric technology in retailing: Will consumers accept fingerprint authentication? Journal of Retailing and Consumer Services, 17, 181-188. Czegledy, N. and Czegledy, A. P. (2002). The Body as Password: Biometrics and Corporeal Dispossession. Filozofski Vestnik, 23(2): 75-92. Davies, S. G. (1994). Touching Big Brother: How Biometric Technology Will Fuse Flesh and Machine. Information Technology & People, 7(4), 38-47. Davis, F.D., Bagozzi, R.P. and Warshaw, P.R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science , 35(8), 982-1003. I Davis, M.A., Andersen, M.G. and Curtis, M.B. (2001). Measuring Ethical Ideology in Business Ethics : a Critical Analysis of the Ethics Position Questionnaire. Journal of Business Ethics, 32, 35-53. De Pelsmacker, P. and Van Kenhove, P., Marktonderzoek: methoden en toepassingen, Pearson Benelux B.V., Amsterdam, 2010, 568 pages. Dictionary.com. (2014) URL: < http://dictionary.reference.com/browse/biometrics>. (17/10/2013). DigitalPersona. (2009). Combating Retail/Restaurant Fraud with Fingerprint Biometrics, whitepaper, URL: <http://www.digitalpersona.com/Resources/White-Papers/>. (02/02/2014). FindBIOMETRICS. (2014). Consumer/Residential Biometrics. URL: <http://findbiometrics.com/applications/consumerresidential-biometrics/>. (13/11/2013) FindBIOMETRICS, (2014). Iris Scanners & Recognition, URL: <http://findbiometrics.com/solutions/iris-scanners-recognition/>. (13/11/2013). Fishben, M. and Ajzen, I. Belief, attitude, intention and behavior: An Introduction to theory and Research, Addison-Wesley, Reading, MA, 1975, 578 pages. Fogel, J. and Nehmad, E. (2009). Internet social network communities: risk taking, trust, and privacy concerns. Computers in Human Behavior, 25(1), 153-160. Forsyth, D.R. (1980). A Taxonomy of Ethical Ideologies. Journal of Personality and Social Psychology, 39 (1), 175-184. Forsyth, D.R. and Berger, R.E. (1982). The effects of Ethical Ideology on Moral Behavior. The Journal of Social Psychology, 117, 53-56. Gelderman, C. J., Ghijsen, P.W.Th. and Van Diemen, R. (2011). Choosing self-service technologies or interpersonal services—The impact of situational factors and technology-related attitudes. Journal of Retailing and Consumer Services, 18, 414-421. Gold, S. (2012). Biometrics at the ATM - the need for customer authentication. Biometric Technology Today, June 2012(6), 7-10. Hausman, A. and Stock J. R. (2003). Adoption and implementation of technological innovations within long-term relationships. Journal of Business Research, 56, 681-686. Hozanne, C. (2012). The future of biometrics in retail. Biometric Technology Today, June 2012(6), 5-7 Human Recognition Systems. (2014). Fingerprint Recognition, URL: < http://www.hrsid.com/company/technology/finger-recognition>. (07/05/2014). Im, S., Bayus, B.L. and Mason, C.H. (2003). An Empirical Study of Innate Consumer Innovativeness, Personal Characteristics, and New-Product Adoption Behavior. Journal of the Academy of Marketing Science, 31, 61-73. Janssens, W., Wijnen, K., De Pelsmacker, P. and Van Kenhove, P., Marketing Research with SPSS, Pearson education limited, Essex, 2008, 441 pages. II Jones, P., Williams, P., Hillier, D. and Comfort, D. (2007). Biometrics in retailing. International Journal of Retail & Distribution Management, 35(3), 217-222. Karahanna, E., Straub D.W. and Chervany, N.L. (1999). Information Technology Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. MIS Quarterly, 23(2), 183-213. Kimaldi Electronics. (2014). Payment solution through biometric fingerprint system. URL: <http://www.kimaldi.com/kimaldi_eng/sectors/hotels_and_catering/payment_solution_through_biome tric_fingerprint_system>. (07/05/2014). Kulviwat, S., Bruner II, G.C. and Al-Shuridah, O. (2009). The role of social influence on adoption of high tech innovations: The moderating effect of public/private consumption. Journal of Business Research, 62, 706-712. Kulviwat, S., et al. (2007). Toward a Unified Theory of Consumer Acceptance Technology. Psychology &Marketing, 24(12), 1059-1084. Langenderfer, J. and Linnhoff, S. (2005). The Emergence of Biometrics and Its Effect on Consumers. The Journal of Consumer Affairs, 39(2), 314-338. Lawson, W. J. (2003). Enhancing assistive technologies: through the theoretical adaptation of biometric technologies to people of variable abilities. Dissertation, School of Business Kennedy-Western University, 205 pages. Lee, Y., Lee J. and Lee Z. (2006). Social Influence on Technology Behavior: Self-identity Theory Perspective. Data Base for Advances in Information Systems, 37(2 & 3), 60-75. Leroux, M. (2012, November 24), Warning, She’s watching you: the mannequin who spies. The Times, URL: <http://www.thetimes.co.uk/tto/news/uk/article3610466.ece>. (13/11/2013). Liljander, V., Gillberg, F., Gummerus, J. and Van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13, 177-191. Lin, C., Shih, H. and Sher, P.J. (2007). Integrating Technology Readiness into Technology Acceptance: The TRAM Model. Psychology and Marketing, 24(7), 641-657. Lindeman, M. and Verkasalo, M. (2005). Measuring Values with the Short Schwartz’s Value Survey. Journal of Personality Assessment, 85 (2), 170–178. Manning, K. C., Bearden, W.O. and Madden T.J. (1995). Consumer Innovativeness and the Adoption Process. Journal of Consumer Psychology, 4(4), 329-345. Marieclaire.com. (2013). How Do You Shop? A Technology May Already Know. Hearst Communication, Inc., URL: < http://www.marieclaire.com/blog/facial-recognition-shoppingtechnology>. (20/03/2014). Mehrabian, A., and Russell, J.A., An approach to environmental psychology, MIT Press, Cambridge, 1974, 266 pages. III Mennecke, B. and Peters, A. (2013). Avatars to Mavatars: The Role of Marketing Avatars and Embodied Representations in Consumer Profiling. Business Horizons, 26 pages. Middlemiss, J., (2004, March 26), Biometrics Add Security in Insecure Times, Wall Street & Technology, URL: <www.wallstreettech.com/electronic-trading/biometrics-add-security-in-insecure times/18402883/.>. (13/11/2013). Miltgen, C., Popovič A. and Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114. Mindfully.org. (2005). Piggly Wiggly Fingerprint Scanners. URL: <http://www.mindfully.org/Technology/2005/Piggly-Wiggly-Fingerprint11feb05.htm>. (13/11/2013). Moore, G.C. and Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 191-222. Norton, J.A. and Bass, F.M. (1987). A Diffusion Theory Model of Adoption and Substitution for Successive Generations of High-Technology Products. Management Science, 33(9), 1069-1086. Ozaki, R. and Dodgson, M. (2010). Adopting and Consuming innovations. Prometheus, 28 (4), 311-326. Parasuraman, A. (2000). Technology Readiness Index (Tri): A Multiple-Item Scale to Measure Readiness to Embrace New Technologies. Journal of Service Research, 2, 307-320. Pavlou, P.A. (2003). Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101-134. Planet Biometrics. (2013). Tesco offers up personalized ads based on facial indicators. URL: <http://www.planetbiometrics.com/article-details/i/1783/> (12/12/2013). Price, L.L. and Arnould, E.J. (1999). Commercial Friendships: Service Provider – Client Relationships in Context. Journal of Marketing, 63, 38-56. Robinson, L. Jr. (2006). Moving Beyond Adoption: Exploring the Determinants of Student Intention to Use Technology. Marketing Education Review, 16(2), 79-88. Rogers, E.M., Diffusion of Innovations, 4th edition, The Free Press, New York, 1995, 518 pages. Schepers, J. and Wetzels, M. (2007). A meta-analysis of the technology acceptance model: Investigating subjective norm and moderation effects. Information and Management, 44, 90-103. Schwartz, S.H. (1992). Universals in the Content and Structure of Values: Theoretical Advances and Empirical Tests in 20 countries. Advances in Experimental Social Psychology, 25, 1–65. Schwartz, S.H. (1994). Are there Universal Aspects in the Structure and Contents of Human Values? Journal of Social Issues, 50(1), 19-45. Selling biometrics to the retail sector. (2003). Biometric Technology Today, 11(6), 9-11. Steenhaut, S. and Van Kenhove, P. (2006) An Empirical Investigation of the Relationships among a Consumer’s Personal Values, Ethical Ideology and Ethical Beliefs. Journal of Business Ethics, 64, 137-155. IV Straub, E.T. (2009), Understanding Technology Adoption: Theory and Future Directions for Informal Learning. Review of Educational Research, 79 (2), 625-649. Trader, J. (2010). The Top 15 Reasons To Use Biometric Technology In Workforce Management And Retail Point Of Sale, blog, URL: <http://blog.m2sys.com/workforce- management/blog-series-%E2%80%93-the-top-15-reasons-to-use-biometric-technology-in-workforcemanagement-and-retail-point-of-service/> (15/02/2014). Trocchia, P. J. and Ainscough T. L. (2006). Characterizing consumer concerns about identification technology. International Journal of Retail & Distribution Management, 34(8), 609-620. Tse, A.C.B. (1999). Factors affecting consumer perceptions on product safety. European Journal of Marketing, 33(9/10), 911-925. Van Kenhove, P., Vermeir, I. and Verniers, S. (2001). An Empirical Investigation of the Relationships between Ethical Beliefs, Ethical Ideology, Political Preference and Need for Closure. Journal of Business Ethics, 32, 347-361. Venkatesh, V. and Davis. F.D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204. Venkatesh, V. and Morris. M.G. (2000). Why Don't Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115139. Venkatesh, V., Morris, M.G., Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information Technology: Toward a Unified View. MISQuarterly, 27(3), 425-478. Vitell, S.J. (2003) Consumer Ethics Research: Review, Synthesis and Suggestions for the Future. Journal of Business Ethics, 43, 33-47. Walker, R., Craig-Lees, M., Hecker, R. and Francis, H. (2002). Technology-enabled service delivery: An investigation of reasons affecting customer adoption and rejection. International Journal of Service Industry Management, 13(1), 91-106. Weinzierl, P. (2010). The body as password. Biometric Technology Today, June 2010(6), 6-8. Ybarra, M. (2005). Grocer bags a Biometric System. URL: <http://searchcio.techtarget.com/magazineContent/Grocer-Bags-a-Biometric-System> (13/11/2013). Yi, M.Y., Jackson, J.D., Park, J.S. and Probst, J.C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350-363. Zhang, W. and Gutierrez, O. (2007). Information Technology Acceptance in the Social Services Sector Context: An Exploration. Social Work, 52(3), 221-231. V Appendices Appendix 1: Survey – Dutch version Appendix 1.1 Fingerprint recognition – Vingerafdruk herkenning Aanvaarding van Identificatie Technologie door consumenten Inleiding Vandaag de dag draait alles om technologie. We kijken naar technologie, we luisteren naar technologie, we voelen de technologie en bovenal, we zijn soms zelf de technologie. Daarover handelt deze enquête: hoe gaan mensen om met het feit dat wij soms zelf de technologie zijn? Bijvoorbeeld: de irissen van onze ogen worden gescand alvorens we een vliegtuig mogen opstappen, we openen onze gsm’s door middel van onze vingerafdruk en in casino’s worden onze gezichten continu gescand (voor het geval we criminelen zouden zijn). Deze soort technologie noemt: identificatie technologie of gewoonweg Biometrics. Biometrics wordt gebruikt om personen te identificeren of te herkennen: we zijn als het ware ons eigen wachtwoord. Er zijn voornamelijk drie typen biometrics: fingerprint, iris scanning en facial recognition. In het Nederlands wordt dit Vingerafdruk, Iris Scanning en Gezicht herkenning. Bij fingerprint worden patronen in onze vingers gescand als we een vingerafdruk achterlaten. Bij iris scanning worden de irissen van onze ogen gescand en bij facial recognition worden we herkend op basis van onze gezichtsstructuur. Deze technologieën zijn al bekend in verschillende sectoren en situaties, maar stel je nu eens voor dat ze gebruikt worden in onze dagdagelijkse omgeving: warenhuizen. Wij proberen uit te zoeken, aan de hand van deze enquête, hoe mensen zouden staan ten opzichte van het gebruik van deze technologieën en welke soort mensen het snelst deze technologie zullen aanvaarden. Eén ding is zeker: de toekomst is minder ver weg dan we denken. Deze enquête zal fingerprint recognition behandelen. De vragenlijst maakt deel uit van mijn masterproef uit Master Toegepaste Economische Wetenschappen – Marketing. Gelieve telkens één antwoord te geven, indien anders gevraagd, en deze enquête zo eerlijk mogelijk in te vullen. Deze enquête zal volledig anoniem behandeld worden. Ik wil u alvast hartelijk bedanken voor uw deelname. Hylke Huys, master Studente TEW - Marketing Appendix 1.1 | - 1 - Deel 1: Scenariovragen De situatie is als volgt: u beslist om boodschappen te gaan doen naar uw favoriete warenhuis. Na weer veel te veel in uw winkelwagen te hebben geladen, komt u uiteindelijk aan de kassa. Alles lijkt hetzelfde, maar er is één grote wijziging. U kan nog steeds met uw bankkaart of cash betalen, maar aan de kassa bevindt zich nog een derde apparaat (behalve de kassa en de bankcontact): een vingerafdruk lezer. Met dit apparaat betaalt u door uw vinger op het toestel te leggen, waardoor het apparaat u herkent en automatisch het bedrag, dat u moet betalen, aftrekt van uw bankrekening. U hebt dus geen bankkaart, pincode of geld nodig om uw betaling te doen. U hebt juist datgene nodig wat u altijd bij heeft: uw vinger. Als dit uw eerste bezoek aan de winkel was, zal u eerst nog een korte registratie moeten ondergaan, maar nadien is uw vinger telkens genoeg om te betalen. Wat is uw beslissing wanneer u aan de kassa staat en hoe staat u tegenover deze wijze van betalen? Gelieve de volgende vragen te beantwoorden. Figure 8 Picture pay by touch: Mindfully.org, 2005, Piggly Wiggly Fingerprint Scanners, <http://www.mindfully.org/Technology/2005/Piggly-WigglyFingerprint11feb05.htm>. Appendix 1.1 | - 2 - 1. Bepaal de kans dat u het vingerafdruk toestel gaat gebruiken in plaats van uw bankkaart of cash. Omcirkel het voor uw gepaste antwoord. De schalen zijn als volgt verdeeld: 1= zeer onwaarschijnlijk (vb.), 2= redelijk onwaarschijnlijk (vb.), 3 =geen mening, 4 =redelijk waarschijnlijk (vb.), 5= zeer waarschijnlijk (vb.).) = QUESTION 1 Onwaarschijnlijk 1 Waarschijnlijk 2 3 4 5 Onmogelijk Mogelijk 1 2 3 4 Zou het zeker niet gebruiken 1 5 Zou het zeker en vast gebruiken 2 3 4 5 2. Beantwoordt de volgende vragen aan de hand van de schalen. = QUESTION 2 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Aangezien ik het vingerafdruk toestel kan gebruiken, ben ik van plan h et te gebruiken. O O O Ik neem mij voor het toestel nogmaals te gebruiken in de komende maanden. O O O O O Ik ga het toestel zeker gebruiken in de komende maanden. O O O O O Volgende keer, als ik mijn vrienden/familie zie, zal ik zeker positief vertellen over dit nieuwe systeem. O O O O O Ik zou dit vingerafdruk systeem aanraden aan anderen. O O O O O Ik zou dit vingerafdruk systeem aanraden aan mensen, die mijn advies vragen. O O O O O Ik ben zeker van mijn vorige antwoorden. O O O O O Appendix 1.1 | - 3 - 3. Bepaal in welke mate de volgende uitspraken voor u van toepassing zijn. = QUESTION 3 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Het Vingerafdruksysteem zorgt voor een waardevolle dienstverlening. O O O Met het Vingerafdruksysteem wordt het makkelijker om iemand te identificeren. O O O O O Door het Vingerafdruksysteem te kiezen als betaalmiddel, zal ik mij tijd besparen. O O O O O Kunnen betalen met behulp van een Vingerafdruksysteem maakt winkelen gemakkelijker. O O O O O Met het Vingerafdruksysteem kan ik op een veiligere manier betalen. O O O O O Met het Vingerafdruksysteem worden mijn persoonlijke gegevens op een gemakkelijke manier bijgehouden. O O O O O Het gebruik van een Vingerafdruksysteem is gemakkelijk. O O O O O Het gebruik van een Vingerafdruksysteem vergt weinig kennis of mentale inspanning. O O O O O Het Vingerafdruksysteem is simpeler dan andere betaalmiddelen. O O O O O Het Vingerafdruksysteem levert een snellere dienstverlening. O O O O O O O O O O O O O O O Het Vingerafdruksysteem levert een betrouwbaardere dienstverlening. Het Vingerafdruksysteem levert een meer geschikte dienstverlening. Appendix 1.1 | - 4 - 4. Bepaal in welke mate je akkoord gaat met de volgende uitspraken over de systemen. = QUESTION 4 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Met het Vingerafdruk systeem krijgen bedrijven persoonlijke informatie over mij, die ik als privé beschouw. O O O Met het Vingerafdruk systeem wordt mijn persoonlijke informatie gebruikt zonder mijn medeweten. O O O O O Met het Vingerafdruk systeem worden mijn persoonlijke gegevens met verschillende mensen en zonder mijn toestemming gedeeld. O O O O O Ik ben bezorgd over de gevolgen door mijn persoonlijke informatie te delen. O O O O O Ik ben er zeker van dat mijn persoonlijke informatie goed wordt beschermd. O O O O O Ik ben bang om het Vingerafdruk systeem te gebruiken. O O O O O Vanwege mijn angst voor technologie, zou ik eerder naar andere winkels gaan, waar ze het Vingerafdruk systeem niet gebruiken. O O O O O Ik twijfel om het Vingerafdruk systeem te gebruiken uit schrik voor schade aan mijn eigen lichaam. O O O O O Ik zou het Vingerafdruk systeem vertrouwen. O O O O O Ik denk dat de dienstverlening met het Vingerafdruk systeem betrouwbaar is. O O O O O Het Vingerafdruk systeem is gemakkelijk omdat ik niets anders nodig heb dan mijn eigen lichaam. O O O O O Ik zou het Vingerafdruk systeem eerder gebruiken indien er personen beschikbaar zijn voor eventuele vragen/problemen te beantwoorden. O O O O O Ik zou de het Vingerafdruk systeem eerder gebruiken omdat de identificatie van mensen zo gemakkelijker is. O O O O O Appendix 1.1 | - 5 - Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Ik heb ervaring met de systemen in andere situaties/omgevingen. (Voorbeelden: in de luchthaven, Iphone,…) O O O Ik gebruik de systemen frequent in andere situaties/omgevingen. O O O O O Ik heb ervaring met de systemen in een warenhuis-omgeving. O O O O O Appendix 1.1 | - 6 - Deel 2: Algemene Vragen In het volgende deel worden er vragen gesteld om een beter beeld te krijgen van u, als persoon. 1. Bepaal in welke mate je akkoord gaat met de volgende vragen. Deze vragen staan volledig los van Vingerafdruk systemen en zijn dus algemeen. = QUESTION 5 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Ik ben ten opzichte van mijn vrienden/familie één van de eersten om een nieuwe technologie uit te proberen. O O O Wanneer ik hoor dat er een nieuwe technologie op de markt is, zoek ik meteen naar manieren om aan deze technologie te geraken. O O O O O Ik hou ervan om te experimenteren met nieuwe technologieën. O O O O O Als mijn vrienden mij iets aanraden, ben ik geneigd om dit te proberen. O O O O O Ik ben beïnvloedbaar door de mening van mijn familie of vrienden. O O O O O Ik hecht veel waarde aan de mening van mijn vrienden of familie. O O O O O Appendix 1.1 | - 7 - 2. De volgende vragen hebben met ethiek te maken. Bepaal in welke mate je akkoord gaat met de volgende vragen. Alvorens je de vragen beantwoordt, geven we een duidelijke betekenis aan de woorden ethiek en moreel. = QUESTION 6 Ethiek: Ethiek is het geheel van gedachten over en visies op de gedragsregels die mensen tegenover elkaar en tegenover de natuurlijke omgeving in acht moeten nemen, het is het nadenken over wat goed of slecht is. Ethisch gedrag betekent dus juist handelen. Moreel: heeft te maken met hoe iets hoort te zijn. Bijvoorbeeld: het is moreel je ouders te gehoorzamen. De tegenpool van moreel is immoreel. Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Vooraleer een actie te ondernemen moet men er zeker van zijn dat men door deze actie niemand zal kwetsen of beledigen. O O O Als een handeling anderen kan kwetsen of beledigen mag men deze actie niet ondernemen. O O O O O Iets doen dat een ander kan schaden is steeds fout, ongeacht de voordelen voor jezelf. O O O O O Men mag een ander nooit fysisch of emotioneel kwetsen. O O O O O Acties die de waardigheid of het welzijn van een ander schaden, mag men niet stellen O O O O O Als iemand die niets met uw actie te maken heeft schade kan oplopen, hoe klein ook, is deze actie onverantwoord. O O O O O Een beslissing nemen omtrent het uitvoeren of niet van een handeling die anderen schade kan toebrengen, enkel en alleen op basis van het afwegen van de voor- en nadelen voor zichzelf, is immoreel. O O O O O De zorg voor de waardigheid en het niet schaden van het welzijn van de medemensen zou de meest belangrijke zorg moeten zijn in elke maatschappij. O O O O O Het is in geen geval goed acties te ondernemen die anderen kunnen schaden. O O O O O Ethisch gedrag is dat gedrag dat idealerwijs de minst mogelijke risico’s op schade inhoudt voor anderen. O O O O O Appendix 1.1 | - 8 - Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Wat ethisch aanvaardbaar is of niet is zo situatie gebonden dat je dit niet in een algemene gedragscode of wet kunt onderbrengen. O O O Wanneer iets ethisch is of niet, is volgens mij sterk afhankelijk van de situatie. O O O O O Wat de ene persoon als ethisch ziet, kan een ander persoon gerust onethisch vinden en omgekeerd. O O O O O Wanneer verschillende volkeren of groepen in de maatschappij andere ethische normen hanteren, mag men niet stellen dat de ene ethische norm juister is dan de andere. O O O O O Aangezien ethische opvattingen individueel zijn, kan men geen algemeen geldende ethische gedragsregels opstellen. O O O O O Ethische normen vertellen ons enkel hoe één persoon zich zou moeten gedragen en mogen daarom niet gebruikt worden om anderen te beoordelen. O O O O O Met betrekking tot interpersoonlijke relaties moet iedereen vrij zijn om zijn eigen morele regels te kunnen bepalen. O O O O O Alles wat met ethiek te maken heeft in regels en wetten vastleggen is zinloos daar ethiek een zeer persoonsgebonden iets is. O O O O O In het algemeen stellen dat liegen steeds onethisch is, is onmogelijk want of een leugen gerechtvaardigd is of niet hangt volledig af van de context of situatie. O O O O O Men zal nooit of te nimmer liegen. O O O O O Appendix 1.1 | - 9 - 3. In de volgende en laatste vraag van dit deel vragen we u om aan te duiden in hoeverre deze principes voor u belangrijk zijn in uw leven. De schaal is als volgt verdeeld: 0 = tegen mijn principes 1 = niet belangrijk 4 = belangrijk 8 = zeer belangrijk De niet vernoemde waarden liggen tussen de bovenstaande waarden. = QUESTION 7 MACHT (sociale macht, autoriteit hebben, rijkdom hebben) 0 1 2 3 4 5 6 7 8 PRESTATIE (succes, capaciteiten hebben, ambitie, invloed hebben op mensen en gebeurtenissen) 0 1 2 3 4 5 6 7 8 HEDONISME (een voldoening van je verlangens, vreugde in het leven, genotzucht) 0 1 2 3 4 5 6 7 8 STIMULATIE (durf hebben, een gevarieerd en uitdagend leven, een opwindend leven) 0 1 2 3 4 5 6 7 8 ZELFSTURING (creativiteit, vrijheid, nieuwsgierigheid, onafhankelijkheid, je eigen doelen in het leven kiezen) 0 1 2 3 4 5 6 7 8 UNIVERSALISME (ruimdenkend, de schoonheid van de natuur en de kunsten, sociale rechtvaardigheid, wereldvrede, gelijkheid, wijsheid, eenheid met de natuur, milieubescherming) 0 1 2 3 4 5 6 7 8 WELWILLENDHEID (hulpvaardig, eerlijkheid, vergevensgezind, trouw, verantwoordelijkheid) 0 1 2 3 4 5 6 7 8 TRADITIE (respect voor traditie, nederigheid, je plaats in het leven accepteren, toewijding, bescheidenheid) 0 1 2 3 4 5 6 7 8 Appendix 1.1 | - 10 - OVEREENSTEMMING (gehoorzaamheid, ouders en ouderen eren, zelfdiscipline, beleefdheid) 0 1 2 3 4 5 6 7 8 VEILIGHEID (nationale veiligheid, familiale veiligheid, sociale orde, netheid, wederkeren van gunsten) 0 1 2 3 4 5 6 7 8 Appendix 1.1 | - 11 - Deel 3: Demografische vragen Deze laatste vragen zijn standaardvragen om een beeld te hebben van de soort personen die onze enquête invullen. Geslacht O Mannelijk O Vrouwelijk Leeftijd O < 18 jaar O 18 – 24 jaar O 25 – 34 jaar O 35 – 44 jaar O 45 – 54 jaar O 55 – 65 jaar O > 65 jaar Hoogste opleidingsgraad O Lagere School O Lager Secundair/Middelbaar Onderwijs O Hoger Secundair/Middelbaar Onderwijs O Professionele Bachelor (Hogeschool) O Academische Bachelor (Universiteit) O Academische Master Sociale status O Vrijgezel O In een relatie O Samenwonend O Gehuwd O Gescheiden O Weduwe/Weduwnaar O Student O Werkloos/werkzoekend O Arbeider O Bediende O Manager O Ambtenaar O Zelfstandig O Gepensioneerd Beroep Hartelijk dank voor het invullen van deze enquête. Hylke Huys, Master studente TEW – Marketing. Appendix 1.1 | - 12 - Appendix 1.2 Iris scanning en facial recognition ( iris scanning en gezichtsherkenning) Aanvaarding van Identificatie Technologie door consumenten Inleiding Vandaag de dag draait alles om technologie. We kijken naar technologie, we luisteren naar technologie, we voelen de technologie en bovenal, we zijn soms zelf de technologie. Daarover handelt deze enquête: hoe gaan mensen om met het feit dat wij soms zelf de technologie zijn? Bijvoorbeeld: de irissen van onze ogen worden gescand alvorens we een vliegtuig mogen opstappen, we openen onze gsm’s door middel van onze vingerafdruk en in casino’s worden onze gezichten continu gescand (voor het geval we criminelen zouden zijn). Deze soort technologie noemt: identificatie technologie of gewoonweg Biometrics. Biometrics wordt gebruikt om personen te identificeren of te herkennen: we zijn als het ware ons eigen wachtwoord. Er zijn voornamelijk drie typen biometrics: fingerprint, iris scanning en facial recognition. In het Nederlands wordt dit Vingerafdruk, Iris Scanning en Gezicht herkenning. Bij fingerprint worden patronen in onze vingers gescand als we een vingerafdruk achterlaten. Bij iris scanning worden de irissen van onze ogen gescand en bij facial recognition worden we herkend op basis van onze gezichtsstructuur. Deze technologieën zijn al bekend in verschillende sectoren en situaties, maar stel je nu eens voor dat ze gebruikt worden in onze dagdagelijkse omgeving: warenhuizen. Wij proberen uit te zoeken, aan de hand van deze enquête, hoe mensen zouden staan ten opzichte van het gebruik van deze technologieën en welke soort mensen het snelst deze technologie zullen aanvaarden. Eén ding is zeker: de toekomst is minder ver weg dan we denken. Deze enquête zal iris scanning en facial recognition behandelen. De vragenlijst maakt deel uit van mijn masterproef uit Master Toegepaste Economische Wetenschappen – Marketing. Gelieve telkens één antwoord te geven, indien anders gevraagd, en deze enquête zo eerlijk mogelijk in te vullen. Deze enquête zal volledig anoniem behandeld worden. Ik wil u alvast hartelijk bedanken voor uw deelname. Hylke Huys, master Studente TEW - Marketing Appendix 1.2 | - 13 - Deel 1: Scenariovragen De situatie is als volgt: U komt weer toe aan één van uw favoriete warenhuizen. Bij het binnenkomen, bevindt zich een bord met de vermelding: ‘Wij gebruiken identificatie technologie om u meer tevreden en met een goed gevoel naar huis te kunnen laten gaan.’ Wat wil dit zeggen? In het warenhuis zelf zijn camera’s geplaatst die uw irissen en gezichtsuitdrukkingen kunnen scannen. Het scannen van uw irissen is om u als persoon te herkennen; het scannen van uw gezicht is om uw gevoelens over bepaalde producten te identificeren. Bijvoorbeeld: wanneer u stilstaat bij een bepaalde Cava en uw gezichtsuitdrukking lijkt positief, zal de camera u identificeren (door uw gezicht te scannen) en krijgt u in de volgende gang een persoonlijke boodschap op een beeldscherm over de aperitiefhapjes die uitstekend passen bij diezelfde Cava. U krijgt uitleg over de aperitiefhapjes, waar ze zich bevinden in de winkel en over de prijs: een gepersonaliseerde reclameboodschap dus. U wordt dus tijdens uw bezoek in het warenhuis bekeken, maar krijgt nuttige informatie over de door u verkozen producten. Hoe staat u tegenover deze nieuwe technologie? Figure 9 Facial Recognition camera ( Marieclaire.com, 2013, How Do You Shop? A Technology May Already Know. Hearst Communication, Inc., < http://www.marieclaire.com/blog/facialrecognition-shopping-technology>.) Appendix 1.2 | - 14 - 1. In hoeverre accepteert u het gebruik van deze technologieën in uw favoriete warenhuis? De schalen zijn als volgt verdeeld: 1= zeer onwaarschijnlijk (vb.), 2= redelijk onwaarschijnlijk (vb.), 3 =geen mening, 4 =redelijk waarschijnlijk (vb.), 5= zeer waarschijnlijk (vb.).)= QUESTION 1 Onwaarschijnlijk 1 Waarschijnlijk 2 3 4 5 Onmogelijk 1 Mogelijk 2 3 4 5 Zou het zeker niet gebruiken 1 2. 2 Zou het zeker en vast gebruiken 3 4 5 Beantwoordt de volgende vragen aan de hand van de schalen.= QUESTION 2 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Aangezien deze technologie mij helpt bij het uitkiezen van bepaalde producten, ga ik de winkel binnengaan. O O O Ik neem mij voor de winkel nogmaals te bezoeken in de komende maanden. O O O O O Ik ga de winkel zeker blijven gebruiken in de komende maanden. O O O O O Volgende keer, als ik mijn vrienden/familie zie, zal ik zeker positief vertellen over de technologieën dat deze winkel gebruikt. O O O O O Ik zou deze manier van winkelen aanraden aan anderen. O O O O O Ik zou deze manier van winkelen aanraden aan mensen die mijn advies vragen. O O O O O Ik ben zeker van mijn vorige antwoorden. O O O O O Appendix 1.2 | - 15 - 3. Bepaal in welke mate je akkoord gaat met de volgende uitspraken. = QUESTION 3 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O De Iris Scanning en de Gezicht Scanner zorgen voor een waardevolle dienstverlening. O O O Met de Iris Scanning en de Gezicht Scanner wordt het makkelijker om iemand te identificeren. O O O O O Door een winkel te kiezen dat Iris Scanning & Gezicht Scanning gebruikt, zal ik mij tijd besparen. O O O O O Iris Scanning & Gezicht Scanning maken winkelen gemakkelijker. O O O O O Met Iris Scanning & Gezicht Scanning wordt het voor mij als koper makkelijker want mijn persoonlijke gegevens worden op een gemakkelijke manier bijgehouden. O O O O O Het gebruik van Iris Scanning & Gezicht Scanning vergt een minimum aan inspanning. O O O O O Iris Scanning & Gezicht Scanning vergen weinig kennis of mentale inspanning. O O O O O Een winkel met Iris Scanning & Gezicht Scanning is simpeler dan winkels zonder. O O O O O Een winkel met Iris Scanning en een Gezicht Scanner levert een snellere dienstverlening dan een winkel zonder deze technologieën. O O O O O Een winkel met Iris Scanning en een Gezicht Scanner levert een betrouwbaardere dienstverlening dan een winkel zonder deze technologieën. O O O O O Een winkel met Iris Scanning en Gezicht Scanner levert een meer geschikte dienstverlening dan winkels zonder deze technologieën. O O O O O Appendix 1.2 | - 16 - 4. Bepaal in welke mate je akkoord gaat met de volgende uitspraken over de systemen Gezicht Scanning & Iris Scanning. = QUESTION 4 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Met deze systemen krijgen bedrijven persoonlijke informatie over mij, die ik als privé beschouw. O O O Met deze systemen wordt mijn persoonlijke informatie gebruikt zonder mijn medeweten. O O O O O Met deze systemen worden mijn persoonlijke gegevens met verschillende mensen en zonder mijn toestemming gedeeld. O O O O O Ik ben bezorgd over de gevolgen door mijn persoonlijke informatie te delen. O O O O O Ik ben er zeker van dat mijn persoonlijke informatie goed wordt beschermd. O O O O O Ik ben bang om de systemen toe te staan. O O O O O Vanwege mijn angst voor technologie, zou ik eerder naar andere winkels gaan, waar ze deze systemen niet gebruiken. O O O O O Ik twijfel om de systemen toe te staan uit schrik voor schade aan mijn eigen lichaam. O O O O O Ik zou de systemen vertrouwen. O O O O O Ik denk dat de dienstverlening met deze systemen betrouwbaar is. O O O O O De systemen zijn gemakkelijk omdat ik niets anders nodig heb dan mijn eigen lichaam. O O O O O Ik zou de systemen eerder gebruiken/toestaan indien er personen beschikbaar zijn voor eventuele vragen/problemen te beantwoorden. O O O O O Ik zou de systemen eerder toestaan omdat de identificatie van mensen zo gemakkelijk is. O O O O O Ik heb ervaring met de systemen in andere situaties/omgevingen. (Luchthavens, Casino’s) O O O O O Ik gebruik de systemen frequent in andere situaties/omgevingen. O O O O O Ik heb ervaring met de systemen in een warenhuis-omgeving. O O O O O Appendix 1.2 | - 17 - Deel 2: Algemene Vragen In het volgende deel worden er vragen gesteld om een beter beeld te krijgen van u, als persoon. 1. Bepaal in welke mate je akkoord gaat met de volgende vragen. = QUESTION 5 Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Ik ben ten opzichte van mijn vrienden/familie één van de eersten om een nieuwe technologie uit te proberen. O O O Wanneer ik hoor dat er een nieuwe technologie op de markt is, zoek ik meteen naar manieren om aan deze technologie te geraken. O O O O O Ik hou ervan om te experimenteren met nieuwe technologieën. O O O O O Als mijn vrienden mij iets aanraden, ben ik geneigd om dit te proberen. O O O O O Ik ben beïnvloedbaar door de mening van mijn familie of vrienden. O O O O O Ik hecht veel waarde aan de mening van mijn vrienden of familie. O O O O O Appendix 1.2 | - 18 - 2. De volgende vragen hebben met ethiek te maken. Bepaal in welke mate je akkoord gaat met de volgende vragen. Alvorens je de vragen beantwoordt geven we een duidelijke betekenis aan de woorden ethiek en moreel. = QUESTION 6 Ethiek: Ethiek is het geheel van gedachten over en visies op de gedragsregels die mensen tegenover elkaar en tegenover de natuurlijke omgeving in acht moeten nemen, het is het nadenken over wat goed of slecht is. Ethisch gedrag betekent dus juist handelen. Moreel: heeft te maken met hoe iets hoort te zijn. Bijvoorbeeld: het is moreel je ouders te gehoorzamen. De tegenpool van moreel is immoreel. Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Vooraleer een actie te ondernemen moet men er zeker van zijn dat men door deze actie niemand zal kwetsen of beledigen. O O O Als een handeling anderen kan kwetsen of beledigen mag men deze actie niet ondernemen. O O O O O Iets doen dat een ander kan schaden is steeds fout, ongeacht de voordelen voor jezelf. O O O O O Men mag een ander nooit fysisch of emotioneel kwetsen. O O O O O Acties die de waardigheid of het welzijn van een ander schaden, mag men niet stellen Als iemand die niets met uw actie te maken heeft schade kan oplopen, hoe klein ook, is deze actie onverantwoord. O O O O O O O O O O Een beslissing nemen omtrent het uitvoeren of niet van een handeling die anderen schade kan toebrengen, enkel en alleen op basis van het afwegen van de voor- en nadelen voor zichzelf, is immoreel. O O O O O De zorg voor de waardigheid en het niet schaden van het welzijn van de medemensen zou de meest belangrijke zorg moeten zijn in elke maatschappij. O O O O O Het is in geen geval goed acties te ondernemen die anderen kunnen schaden. O O O O O Ethisch gedrag is dat gedrag dat idealerwijs de minst mogelijke risico’s op schade inhoudt voor anderen. O O O O O Wat ethisch aanvaardbaar is of niet is zo situatie gebonden dat je dit niet in een algemene gedragscode of wet kunt onderbrengen. O O O O O Appendix 1.2 | - 19 - Helemaal niet akkoord Niet akkoord Akkoord Helemaal akkoord O Noch akkoord, noch niet akkoord O Wanneer iets ethisch is of niet, is volgens mij sterk afhankelijk van de situatie. O O O Wat de ene persoon als ethisch ziet, kan een ander persoon gerust onethisch vinden en omgekeerd. O O O O O Wanneer verschillende volkeren of groepen in de maatschappij andere ethische normen hanteren, mag men niet stellen dat de ene ethische norm juister is dan de andere. O O O O O Aangezien ethische opvattingen individueel zijn, kan men geen algemeen geldende ethische gedragsregels opstellen. O O O O O Ethische normen vertellen ons enkel hoe één persoon zich zou moeten gedragen en mogen daarom niet gebruikt worden om anderen te beoordelen. O O O O O Met betrekking tot interpersoonlijke relaties moet iedereen vrij zijn om zijn eigen morele regels te kunnen bepalen. O O O O O Alles wat met ethiek te maken heeft in regels en wetten vastleggen is zinloos daar ethiek een zeer persoonsgebonden iets is. O O O O O In het algemeen stellen dat liegen steeds onethisch is, is onmogelijk want of een leugen gerechtvaardigd is of niet hangt volledig af van de context of situatie. O O O O O Men zal nooit of te nimmer liegen. O O O O O Appendix 1.2 | - 20 - 3. In de volgende en laatste vraag van dit deel vragen we u om aan te duiden in hoeverre deze principes voor u belangrijk zijn in uw leven. De schaal is als volgt verdeeld: 0 = tegen mijn principes 1 = niet belangrijk 4 = belangrijk 8 = zeer belangrijk De niet vernoemde waarden liggen tussen de bovenstaande waarden. = QUESTION 7 MACHT (sociale macht, autoriteit hebben, rijkdom hebben) 0 1 2 3 4 5 6 7 8 PRESTATIE (succes, capaciteiten hebben, ambitie, invloed hebben op mensen en gebeurtenissen) 0 1 2 3 4 5 6 7 8 HEDONISME (een voldoening van je verlangens, vreugde in het leven, genotzucht) 0 1 2 3 4 5 6 7 8 STIMULATIE (durf hebben, een gevarieerd en uitdagend leven, een opwindend leven) 0 1 2 3 4 5 6 7 8 ZELFSTURING (creativiteit, vrijheid, nieuwsgierigheid, onafhankelijkheid, je eigen doelen in het leven kiezen) 0 1 2 3 4 5 6 7 8 UNIVERSALISME (ruimdenkend, de schoonheid van de natuur en de kunsten, sociale rechtvaardigheid, wereldvrede, gelijkheid, wijsheid, eenheid met de natuur, milieubescherming) 0 1 2 3 4 5 6 7 8 WELWILLENDHEID (hulpvaardig, eerlijkheid, vergevensgezind, trouw, verantwoordelijkheid) 0 1 2 3 4 5 6 7 8 TRADITIE (respect voor traditie, nederigheid, je plaats in het leven accepteren, toewijding, bescheidenheid) 0 1 2 3 4 5 6 7 8 Appendix 1.2 | - 21 - OVEREENSTEMMING (gehoorzaamheid, ouders en ouderen eren, zelfdiscipline, beleefdheid) 0 1 2 3 4 5 6 7 8 VEILIGHEID (nationale veiligheid, familiale veiligheid, sociale orde, netheid, wederkeren van gunsten) 0 1 2 3 4 5 6 7 8 Appendix 1.2 | - 22 - Deel 3: Demografische vragen Deze laatste vragen zijn standaardvragen om een beeld te hebben van de soort personen die onze enquête invullen. Geslacht O Mannelijk O Vrouwelijk Leeftijd O < 18 jaar O 18 – 24 jaar O 25 – 34 jaar O 35 – 44 jaar O 45 – 54 jaar O 55 – 65 jaar O > 65 jaar Hoogste opleidingsgraad O Lagere School O Lager Secundair Onderwijs O Hoger Secundair Onderwijs O Professionele Bachelor (Hogeschool) O Academische Bachelor (Universiteit) O Academische Master Sociale status O Vrijgezel O In een relatie O Samenwonend O Gehuwd O Gescheiden O Weduwe/Weduwnaar Beroep O Student O Werkloos/werkzoekend O Arbeider O Bediende O Manager O Ambtenaar O Zelfstandig O Gepensioneerd Hartelijk dank voor het invullen van deze enquête. Hylke Huys, Master student TEW – Marketing. Appendix 1.2 | - 23 - Appendix 2: Survey – English version (translation) Appendix 2.1 Fingerprint recognition Consumer Acceptance of Identification Technology Introduction Today, everything is breathing technology. We look at technology, we listen to technology, we feel technology and on top of that, sometimes we are the technology. That is the topic of this survey: how do people deal with the fact that we sometimes are the technology? For example: the irises of our eyes are scanned before we may enter an airplane, we open our mobile phones by using our fingerprint and at casinos, our faces are continuously scanned (in case we are criminals). This kind of technology is called identification technology or Biometrics. Biometrics are used to identify people or to recognize them: we are our own password. There are primary three types of biometrics: fingerprint, iris scanning and facial recognition. In Dutch these are called: Vingerafdruk, Iris Scanning and Gezicht herkenning. With fingerprint identification, the patterns in our fingers are scanned if we leave our fingerprint. Using Iris scanning, the irises of our eyes are scanned and using facial recognition, we are being recognized by our facial structure. These technologies are already known in different sectors and situations, but imagine for a minute that they are used in our daily environment: department stores. We try to find out, by this survey, how people would look at the use of these technologies and which kind of people would accept these technologies the most quickly. One thing is certain: the future is much closer then we perceive. This survey will treat fingerprint Recognition. The survey is part of my Master of Science in Business Economics- Marketing master thesis. Please, always indicate only one answer, except when it is requested otherwise, and try to fill in this survey as honest as possible. This survey will be treated completely anonymously. I would already like to thank you for your participation. Hylke Huys Master Student Business Economics - Marketing Appendix 2.1 | - 24 - Part 1: Scenario questions The scenario is as follows: you decide to do some grocery shopping in your favorite department store. After you have – again – loaded too many items in your shopping cart, you finally arrive at the check-out. Everything seems the same, but your store has changed one element. You can still pay by credit or debit card or cash, but now there is also an additional device at the check-out: a fingerprint scanner. With this device, you can pay by just putting your finger on the device. The latter recognizes you (and identifies you) and automatically deduct your payable amount from your bank account. Thus, no need for a credit/debit card, a PIN or for cash money to finish your payment. You just need that object that you always have with you: your finger. Only at your first visit to the store, you probably would have to go through a registration procedure, but once this is done, your finger is all you need to pay. What is your decision when you arrive at the check-out and how do you view this payment method? Please, fill in the next questions. Figure 10 Picture pay by touch: Mindfully.org, 2005, Piggly Wiggly Fingerprint Scanners, <http://www.mindfully.org/Technology/2005/Piggly-WigglyFingerprint11feb05.htm>. Appendix 2.1 | - 25 - 1. Rate the probability that you will use the fingerprint scanner instead of your debit/credit card or cash. Circle the for you appropriate answer. The scales are divided as follows: 1 = highly unlikely (for example), 2 = fairly unlikely (for example), 3 = no opinion, 4 = reasonably likely (for example), 5 = highly likely (for example). = QUESTION 1 Unlikely Likely 1 2 3 4 5 Impossible Possible 1 2 3 4 5 Would definitely not use it 1 Would definitely use it 2 3 4 5 2. Answer the next questions according to the scales.= QUESTION 2 Totally Disagree Disagree Nor disagree, nor agree Agree Totally Agree O O O O O O O O O O O O O O O O O O O O I would recommend this fingerprint system to others. O O O O O I would recommend this fingerprint system to people, who ask my advice. O O O O O I am certain of my previous answers. O O O O O Since I can use the fingerprint scanner, I am planning to use it. I have decided to use the device again in the coming months. I will certainly use the device in the coming months. Next time, when I see my friends/family, I will definitely talk about this new system. Appendix 2.1 | - 26 - 3. Determine in what degree the next statements are applicable for you. = QUESTION 3 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree The Fingerprint system ensures a valuable service. O O O O O With the Fingerprint system, it becomes easier to identify someone. O O O O O I will save time by choosing the Fingerprint system as payment method. O O O O O Being able to pay with the Fingerprint system, makes shopping easier. O O O O O I can pay more safely with the Fingerprint system. O O O O O My personal data is stored in an easy way with the Fingerprint system. O O O O O The use of a Fingerprint system is easy. O O O O O The use of a Fingerprint system requires little knowledge or mental effort. O O O O O The Fingerprint system is easier than other payment methods. O O O O O The Fingerprint system delivers a faster service. O O O O O The Fingerprint system delivers a more reliable service. O O O O O The Fingerprint system delivers a more appropriate service. O O O O O Appendix 2.1 | - 27 - 4. Determine in what degree you agree with the next statements about the system. = QUESTION 4 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree With the Fingerprint system, companies receive personal information about me, which I consider as private. O O O O O My personal information is used without my knowledge with the Fingerprint system. O O O O O With the Fingerprint system, my personal data is shared among many people and without my permission. O O O O O I am worried about the consequences by sharing my personal information. O O O O O I am certain that my personal information is well protected. O O O O O I am afraid to use the Fingerprint system. O O O O O Due to my fear for technology, I would rather go to other stores, where the Fingerprint system is not used. O O O O O I doubt to use the Fingerprint system out of fear to damage my own body. O O O O O I would trust the fingerprint system. O O O O O I think that the service with the Fingerprint system is more reliable. O O O O O The Fingerprint system is easy because I do not need anything else than my own body. O O O O O I would rather use the Fingerprint system if there were people available to answer any questions/issues. O O O O O I would rather use the Fingerprint system because of the easiness to identify people. O O O O O I have experience with the systems in other situations/environments. (For example: at the airport, Iphone, …). O O O O O I frequently use the systems in other situations/environments. O O O O O Appendix 2.1 | - 28 - I have experience with the systems in a retail – environment. O O O O O Part 2: General questions The type of questions asked in the next pare are to get a better image of you, as respondent. 1. Determine how much you agree with the next questions. These questions are completely separated from the Fingerprint system and are therefore general questions. = QUESTION 5 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree I am, compared to my friends/family, one of the first people to try a new technology. O O O O O When I discover that there is a new technology on the market, I immediately search for ways to get that new technology. O O O O O I love to experiment with new technologies. O O O O O If my friends recommend something to me, I am inclined to try it. O O O O O I am influenced by the opinion of my family and friends. O O O O O I attach a lot of value to the opinion of my friends and family. O O O O O Appendix 2.1 | - 29 - 2. The next questions are about ethics. Determine how much you agree with the next questions. Before you answer the questions, we give a clear meaning to the words ethics and moral. = QUESTION 6 Ethics is the set of ideas and views on the conduct that people must respect against each other and against the natural environment; it is thinking about what is good or bad. Ethical behavior means thus act correctly. Moral: has to do with how something is supposed to be. For example, it is morally to obey your parents. The opposite of moral is immoral. Totally disagree Disagree Nor disagree, nor agree Agree Totally agree A person should make certain that their actions never intentionally harm another even to a small degree. O O O O O Risks to another should never be tolerated, irrespective of how small the risks might be. O O O O O The existence of potential harm of others is always wrong, irrespective of the benefits gained. O O O O O One should never psychologically or physically harm another person. O O O O O One should not perform an action that might in any way threaten the dignity and welfare of another individual. O O O O O If an action could harm an innocent other, then it should not be done. O O O O O Deciding whether or not to perform an act by balancing the positive consequences of the act against the negative consequences of the act is immoral. O O O O O The dignity and welfare of people should be the most important concern in any society. O O O O O It’s never necessary to sacrifice the welfare of others. O O O O O Moral actions are those which closely match ideals of the most “perfect” action. O O O O O Appendix 2.1 | - 30 - There are no ethical principles that are so important that they should be a part of any code of ethics. O O O O O Totally disagree Disagree Agree Totally agree What is ethical varies from one situation and society to another. O O Nor disagree, nor agree O O O Moral standards should be seen as being individualistic; what one person considers being moral may be judged to be immoral by another person. O O O O O Different types of moralities cannot be compared as to rightness. O O O O O What is ethical for everyone can never be resolved since what is moral or immoral is up to the individual. O O O O O Moral standards are simply personal rules which indicate how a person should behave, and are not to be applied in making judgments of others. O O O O O Ethical considerations in interpersonal relations are so complex that individuals should be allowed to formulate their own individual codes. O O O O O Rigidly codifying an ethical position that prevents certain types of actions stand in the way of better human relations and adjustment. O O O O O No rule concerning lying can be formulated; whether a lie is permissible or not permissible totally depends upon the situation. O O O O O Whether a lie is judged to be immoral depends upon the circumstances surrounding the actions. O O O O O Appendix 2.1 | - 31 - 3. In the next and last question of this part, we ask you to indicate how much these principles are important in your life. The scale is divides as follows: 0 = opposed to my principles 1 = not important 4 = important 8 = supreme important The values that are not mentioned are lying between the above values. = QUESTION 7 POWER (social power, authority, wealth) 0 1 2 3 4 5 6 7 8 ACHIEVEMENT (Successful ,capable , ambitious, influential on people and situations) 0 1 2 3 4 5 6 7 8 HEDONISM (self-indulgent, , enjoying life, pleasure) 0 1 2 3 4 5 6 7 8 STIMULATION (daring, a varied life, an exciting life) 0 1 2 3 4 5 6 7 8 SELF - DIRECTION (creativity, freedom, curious, independent, choosing own goals in life) 0 1 2 3 4 5 6 7 8 UNIVERSALISM (broad-minded, a world of beauty, social justice, a world at peace , equality, wisdom, unity with nature protecting the environment) 0 1 2 3 4 5 6 7 8 BENEVOLENCE (helpful, honest, forgiving, loyal, responsible) 0 1 2 3 4 5 6 7 8 TRADITION (respect for tradition, humble, accepting portion in life, devout, moderate) 0 1 2 3 4 5 6 7 8 Appendix 2.1 | - 32 - CONFORMITY (obedient, honoring parents and elders, self-discipline, politeness) 0 1 2 3 4 5 6 7 8 SECURITY (national security, family security, social order, clean, reciprocation of favors) 0 1 2 3 4 5 6 7 8 Appendix 2.1 | - 33 - Part 3: Demographic Questions These last questions are standard questions to get an image of the respondents who fill in our survey. Gender O Male O Female Age O < 18 jaar O 18 – 24 jaar O 25 – 34 jaar O 35 – 44 jaar O 45 – 54 jaar O 55 – 65 jaar O > 65 jaar Highest obtained education O Primary School O Secondary School Short – type O Secondary School Long – type O Professional Bachelor O Academic Bachelor O Academic Master Social status O Single O In a relationship O Cohabiting O Married O Divorced O Widow/Widower Beroep O Student O Unemployed/ Job Seeker O Worker O Employee O Manager O Official O Self-employed O Retired Thank you for your participation. Hylke Huys, Master student Business Economics – Marketing. Appendix 2.1 | - 34 - Appendix 2.2 Iris scanning and facial recognition Consumer Acceptance of Identification Technology Introduction Today, everything is breathing technology. We look at technology, we listen to technology, we feel technology and on top of that, sometimes we are the technology. That is the topic of this survey: how do people deal with the fact that we sometimes are the technology? For example: the irises of our eyes are scanned before we may enter an airplane, we open our mobile phones by using our fingerprint and at casinos, our faces are continuously scanned (in case we are criminals). This kind of technology is called identification technology or Biometrics. Biometrics are used to identify people or to recognize them: we are our own password. There are primary three types of biometrics: fingerprint, iris scanning and facial recognition. In Dutch these are called: Vingerafdruk, Iris Scanning and Gezicht herkenning. With fingerprint identification, the patterns in our fingers are scanned if we leave our fingerprint. Using Iris scanning, the irises of our eyes are scanned and using facial recognition, we are being recognized by our facial structure. These technologies are already known in different sectors and situations, but imagine for a minute that they are used in our daily environment: department stores. We try to find out, by this survey, how people would look at the use of these technologies and which kind of people would accept these technologies the most quickly. One thing is certain: the future is much closer then we perceive. This survey will treat iris scanning and facial recognition. The survey is part of my Master of Science in Business Economics- Marketing master thesis. Please, always indicate only one answer, except when it is requested otherwise, and try to fill in this survey as honest as possible. This survey will be treated completely anonymously. I would already like to thank you for your participation. Hylke Huys Master Student Business Economics – Marketing Appendix 2.2 | - 35 - Part 1: Scenario questions This is the situation: you arrive at one of your favorite department stores. When entering the store, you see a sign mentioning the following text: ‘We use identification technology to keep you more satisfied and to let you go home with a good feeling.’ What does this mean? There have been placed several cameras in the department stores. Cameras, which can scan your irises and facial expressions. The scanning of the irises is to recognize you as a person, the scanning of your facial expression is to identify your feelings about certain products. For example: when you would stop at a certain cava and your facial expression seems positive, the camera will identify you (by scanning your face) and in the next array you will receive a personal message on a display about certain appetizers that would perfectly match with that same cava. You will receive an explanation about those appetizers, where they are situated in the store, how much they cost: hence, a personalized advertising. Thus, you are being watched during your visit in the department store, but you receive useful information about products, chosen by you. How do you look upon this new technology? Figure 11 Facial Recognition Camera (Marieclaire.com, 2013, How Do You Shop? A Technology May Already Know. Hearst Communication, Inc., < http://www.marieclaire.com/blog/facial-recognition-shopping-technology>. ) Appendix 2.2 | - 36 - 1. Rate the probability that you will use the fingerprint scanner instead of your debit/credit card or cash. Circle the for you appropriate answer. The scales are divided as follows: 1 = highly unlikely (for example), 2 = fairly unlikely (for example), 3 = no opinion, 4 = reasonably likely (for example), 5 = highly likely (for example). = QUESTION 1 Unlikely Likely 1 2 3 4 5 Impossible Possible 1 2 3 4 5 Would definitely not use it 1 Would definitely use it 2 3 4 5 2. Answer the following questions according to the scales. = QUESTION 2 Totally Disagree Disagree Nor disagree, nor agree Agree Totally Agree O O O O O O O O O O O O O O O O O O O O I would recommend this way of shopping to others. O O O O O II would recommend this way of shopping to people, who ask my advice. O O O O O I am certain of my previous answers. O O O O O Since this technology helps me choosing certain products, I will enter the store. I intend to visit the store again in the coming months. I will certainly keep visiting the store in the coming months. Next time, when I see my friends/family, I will definitely talk about the technologies that this store is using. Appendix 2.2 | - 37 - 3. Determine in what degree the next statements are applicable for you. = QUESTION 3 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree The Iris Scanning and Facial Recognition applications ensure a valuable service. O O O O O With the Iris scanning and Facial recognition applications, it becomes easier to identify someone. O O O O O I will save time by choosing a store that uses Iris Scanning and Facial Recognition applications. O O O O O The Iris Scanning and Facial Recognition applications make shopping easier. O O O O O It becomes, for me as a buyer, easier with Iris Scanning and Facial Recognition applications because my personal data is stored in an easy way. O O O O O The use of Iris Scanning and Facial Recognition applications requires a minimum of effort. O O O O O The use of Iris Scanning and Facial Recognition applications requires little knowledge or mental effort. O O O O O A store with Iris Scanning and Facial Recognition applications is easier than a store without these technologies. O O O O O A store with Iris Scanning and Facial Recognition applications delivers a faster service than a store without these technologies. O O O O O A store with Iris Scanning and Facial Recognition applications delivers a more reliable service than a store without these technologies. O O O O O A store with Iris Scanning and Facial Recognition applications delivers a more appropriate service than a store without these technologies. O O O O O Appendix 2.2 | - 38 - 4. Determine in what degree you agree with the next statements about the system. = QUESTION 4 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree With these systems, companies receive personal information about me, which I consider as private. O O O O O My personal information is used without my knowledge with these systems. O O O O O With these systems, my personal data is shared among many people and without my permission. O O O O O I am worried about the consequences by sharing my personal information. O O O O O I am certain that my personal information is well protected. O O O O O I am afraid to allow these systems. O O O O O Due to my fear for technology, I would rather go to other stores, where these systems are not used. O O O O O I doubt to use these systems out of fear to damage my own body. O O O O O I would trust these systems. O O O O O I think that the service with these systems is more reliable. O O O O O The systems are easy because I do not need anything else than my own body. O O O O O I would rather use/allow these systems if there were people available to answer any questions/issues. O O O O O I would rather allow these systems because of the easiness to identify people. O O O O O I have experience with these systems in other situations/environments. (For example: at the airport, Casinos …). O O O O O I frequently use the systems in other situations/environments. O O O O O I have experience with the systems in a retail – environment. O O O O O Appendix 2.2 | - 39 - Part 2: General questions The type of questions asked in the next pare are to get a better image of you, as respondent. 1. Determine how much you agree with the next questions. These questions are completely separated from the Fingerprint system and are therefore general questions. = QUESTION 5 Totally disagree Disagree Nor disagree, nor agree Agree Totally agree I am, compared to my friends/family, one of the first people to try a new technology. O O O O O When I discover that there is a new technology on the market, I immediately search for ways to get that new technology. O O O O O I love to experiment with new technologies. O O O O O If my friends recommend something to me, I am inclined to try it. O O O O O I am influenced by the opinion of my family and friends. O O O O O I attach a lot of value to the opinion of my friends and family. O O O O O Appendix 2.2 | - 40 - 2. The next questions are about ethics. Determine how much you agree with the next questions. Before you answer the questions, we give a clear meaning to the words ethics and moral. = QUESTION 6 Ethics is the set of ideas and views on the conduct that people must respect against each other and against the natural environment; it is thinking about what is good or bad. Ethical behavior means thus act correctly. Moral: has to do with how something is supposed to be. For example, it is morally to obey your parents. The opposite of moral is immoral. Totally disagree Disagree Nor disagree, nor agree Agree Totally agree A person should make certain that their actions never intentionally harm another even to a small degree. O O O O O Risks to another should never be tolerated, irrespective of how small the risks might be. O O O O O The existence of potential harm of others is always wrong, irrespective of the benefits gained. O O O O O One should never psychologically or physically harm another person. O O O O O One should not perform an action that might in any way threaten the dignity and welfare of another individual. O O O O O If an action could harm an innocent other, then it should not be done. O O O O O Deciding whether or not to perform an act by balancing the positive consequences of the act against the negative consequences of the act is immoral. O O O O O The dignity and welfare of people should be the most important concern in any society. O O O O O It’s never necessary to sacrifice the welfare of others. O O O O O Moral actions are those which closely match ideals of the most “perfect” action. O O O O O There are no ethical principles that are so important that they should be a part of any code of ethics. O O O O O Appendix 2.2 | - 41 - Totally disagree Disagree Agree Totally agree O Nor disagree, nor agree O What is ethical varies from one situation and society to another. O O O Moral standards should be seen as being individualistic; what one person considers being moral may be judged to be immoral by another person. O O O O O Different types of moralities cannot be compared as to rightness. O O O O O What is ethical for everyone can never be resolved since what is moral or immoral is up to the individual. O O O O O Moral standards are simply personal rules which indicate how a person should behave, and are not to be applied in making judgments of others. O O O O O Ethical considerations in interpersonal relations are so complex that individuals should be allowed to formulate their own individual codes. O O O O O Rigidly codifying an ethical position that prevents certain types of actions stand in the way of better human relations and adjustment. O O O O O No rule concerning lying can be formulated; whether a lie is permissible or not permissible totally depends upon the situation. O O O O O Whether a lie is judged to be immoral depends upon the circumstances surrounding the actions. O O O O O Appendix 2.2 | - 42 - 3. In the next and last question of this part, we ask you to indicate how much these principles are important in your life. The scale is divides as follows: 0 = opposed to my principles 1 = not important 4 = important 8 = supreme important The values that are not mentioned are lying between the above values. = QUESTION 7 POWER (social power, authority, wealth) 0 1 2 3 4 5 6 7 8 ACHIEVEMENT (Successful ,capable , ambitious, influential on people and situations) 0 1 2 3 4 5 6 7 8 HEDONISM (self-indulgent, , enjoying life, pleasure) 0 1 2 3 4 5 6 7 8 STIMULATION (daring, a varied life, an exciting life) 0 1 2 3 4 5 6 7 8 SELF - DIRECTION (creativity, freedom, curious, independent, choosing own goals in life) 0 1 2 3 4 5 6 7 8 UNIVERSALISM (broad-minded, a world of beauty, social justice, a world at peace , equality, wisdom, unity with nature protecting the environment) 0 1 2 3 4 5 6 7 8 BENEVOLENCE (helpful, honest, forgiving, loyal, responsible) 0 1 2 3 4 5 6 7 8 TRADITION (respect for tradition, humble, accepting portion in life, devout, moderate) 0 1 2 3 4 5 6 7 8 Appendix 2.2 | - 43 - CONFORMITY (obedient, honoring parents and elders, self-discipline, politeness) 0 1 2 3 4 5 6 7 8 SECURITY (national security, family security, social order, clean, reciprocation of favors) 0 1 2 3 4 5 6 7 8 Appendix 2.2 | - 44 - Part 3: Demographic Questions These last questions are standard questions to get an image of the respondents who fill in our survey. Gender O Male O Female Age O < 18 jaar O 18 – 24 jaar O 25 – 34 jaar O 35 – 44 jaar O 45 – 54 jaar O 55 – 65 jaar O > 65 jaar Highest obtained education O Primary School O Secondary School Short – type O Secondary School Long – type O Professional Bachelor O Academic Bachelor O Academic Master Social status O Single O In a relationship O Cohabiting O Married O Divorced O Widow/Widower Beroep O Student O Unemployed/ Job Seeker O Worker O Employee O Manager O Official O Self-employed O Retired Thank you for your participation. Hylke Huys, Master student Business Economics – Marketing. Appendix 2.2 | - 45 - Appendix 3: Sources Instruments measure Variable Source2 Behavioral Intention to accept identification Fishbein and Ajzen (1975) technology Ajzen and Fishbein (1980) Venkatesh and Davis (2000) Venkatesh et al. (2003) Behavioral intention to Recommend Price and Arnould (1999) identification technology Perceived Usefulness Davis et al. (1989) Miltgen et al. ( 2013) Perceived Ease of Use Davis (1989) Venkatesh and Davis (2000) Miltgen et al. (2013) Relative Advantage Walker et al. (2002) Miltgen et al. (2013) Privacy Concerns Fogel and Nehmad (2009) Miltgen et al. (2013) Technology Anxiety Pavlou (2003) Miltgen et al. ( 2013) Facilitating Conditions Venkatesh et al. ( 2013) Experience Self- developed Innovativeness Yi et al. (2006) Miltgen et al. (2013) Social Influence Self – developed Idealism & Relativism ( ethical ideologies ) Forsyth (1980) Personal Values Schwartz (1994) 2 The items are deducted from the sources, but most items are self-developed from the mentioned literature. Appendix 3 | - 46 - Appendix 4: Reliability Analysis output Appendix 4.1 Fingerprint recognition a. Behavioral Intention to accept identification technology - 6 items Reliability Statistics Cronbach's N of Items Alpha ,967 6 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted BI1 15,98 33,439 ,907 ,959 BI2 15,83 35,644 ,804 ,969 BI3 16,00 34,106 ,907 ,958 BI4 15,98 34,249 ,940 ,955 BI5 16,02 34,833 ,901 ,959 BI6 16,06 34,693 ,897 ,960 b. Behavioral intention to Recommend identification technology - 3 items Reliability Statistics Cronbach's N of Items Alpha ,961 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted BR1 6,11 5,166 ,910 ,947 BR2 6,25 5,103 ,927 ,934 BR3 6,09 4,997 ,912 ,946 c. Perceived Usefulness – 6 items Reliability Statistics Cronbach's N of Items Alpha ,825 6 Appendix 4.1 | - 47 - Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PU1 18,13 13,552 ,745 ,763 PU2 17,32 17,439 ,376 ,834 PU3 17,85 13,732 ,646 ,785 PU4 18,00 12,982 ,742 ,762 PU5 18,33 13,768 ,577 ,802 PU6 17,96 15,609 ,479 ,819 Perceived Usefulness – 4 items: removal PU2 & PU5 Reliability Statistics Cronbach's N of Items Alpha ,820 4 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PU1 10,74 6,742 ,700 ,748 PU3 10,46 6,550 ,665 ,763 PU4 10,61 5,999 ,777 ,706 PU6 10,57 8,115 ,445 ,855 d. Perceived Ease Of Use – 3 items Reliability Statistics Cronbach's N of Items Alpha ,789 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PEOU1 7,79 2,508 ,660 ,681 PEOU2 7,59 2,611 ,628 ,716 PEOU3 7,85 2,316 ,607 ,745 Appendix 4.1 | - 48 - Perceived Ease Of Use – 2 items after removal PEOU3 Reliability Statistics Cronbach's N of Items Alpha ,745 2 e. Relative Advantage – 4 items ( including PEOU3) Reliability Statistics Cronbach's N of Items Alpha ,781 4 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PEOU3 9,92 5,750 ,578 ,732 RA1 9,90 5,797 ,595 ,723 RA2 10,67 5,483 ,531 ,761 RA3 10,54 5,656 ,653 ,695 f. Privacy Concerns – 5 items Reliability Statistics Cronbach's N of Items Alpha ,861 5 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PC1 13,86 10,413 ,717 ,822 PC2 14,14 9,692 ,775 ,806 PC3 14,24 9,503 ,804 ,797 PC4 13,64 11,665 ,583 ,855 PC5r 14,15 11,789 ,525 ,868 Appendix 4.1 | - 49 - g. Technology Anxiety – 5 items Reliability Statistics Cronbach's N of Items Alpha ,776 5 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted TA1 10,29 8,067 ,602 ,716 TA2 10,78 8,146 ,640 ,703 TA3 11,37 10,530 ,231 ,827 TA4 10,26 7,989 ,651 ,698 TA5 10,24 8,134 ,642 ,702 h. Facilitating Conditions – 3 items Reliability Statistics Cronbach's N of Items Alpha ,514 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted FC1 6,26 2,335 ,389 ,322 FC2 7,10 2,631 ,192 ,629 FC3 6,94 1,965 ,427 ,233 Facilitating Conditions – 2 items after removal FC2 Reliability Statistics Cronbach's N of Items Alpha ,629 2 Appendix 4.1 | - 50 - i. Experience – 3 items Reliability Statistics Cronbach's N of Items Alpha ,766 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Exp1 3,52 2,277 ,678 ,631 Exp2 3,85 2,823 ,783 ,470 Exp3 4,30 4,596 ,442 ,846 j. Innovativeness – 3 items Reliability Statistics Cronbach's N of Items Alpha ,825 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Innov1 5,53 3,086 ,694 ,746 Innov2 6,10 3,294 ,674 ,767 Innov3 5,60 3,013 ,679 ,763 k. Social Influence – 3 items Reliability Statistics Cronbach's N of Items Alpha ,792 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted SI1 6,56 2,754 ,589 ,763 SI2 6,70 2,263 ,743 ,591 SI3 6,33 2,829 ,578 ,774 Appendix 4.1 | - 51 - l. Idealism – 10 items Reliability Statistics Cronbach's N of Items Alpha ,840 10 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted ID1 32,79 23,185 ,558 ,823 ID2 32,92 21,631 ,702 ,809 ID3 32,88 22,361 ,577 ,821 ID4 32,64 22,205 ,604 ,819 ID5 32,71 22,732 ,647 ,816 ID6 33,08 23,376 ,441 ,835 ID7 33,03 22,630 ,522 ,827 ID8 32,79 23,883 ,444 ,834 ID9 32,84 23,370 ,493 ,829 ID10 32,88 24,871 ,361 ,840 m. Relativism – 10 items Reliability Statistics Cronbach's N of Items Alpha ,692 10 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted RE1 29,41 15,299 ,550 ,629 RE2 29,03 17,567 ,332 ,673 RE3 28,87 18,469 ,199 ,692 RE4 29,24 17,731 ,216 ,693 RE5 29,81 15,566 ,546 ,632 RE6 29,72 16,422 ,396 ,660 RE7 29,56 16,454 ,359 ,668 RE8 29,56 15,152 ,590 ,622 RE9 29,17 17,457 ,323 ,674 RE10 30,23 18,727 ,055 ,726 Appendix 4.1 | - 52 - Relativism – 9 items after removal RE10 Reliability Statistics Cronbach's N of Items Alpha ,726 9 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted RE1 26,91 13,985 ,558 ,671 RE2 26,53 16,114 ,351 ,710 RE3 26,37 16,741 ,262 ,723 RE4 26,73 16,265 ,231 ,733 RE5 27,31 14,337 ,539 ,676 RE6 27,22 15,213 ,381 ,706 RE7 27,05 15,312 ,334 ,716 RE8 27,06 13,921 ,586 ,666 RE9 26,67 15,840 ,369 ,707 n. Self – Enhancement dimension – 3 items Reliability Statistics Cronbach's N of Items Alpha ,738 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Power 10,97 9,046 ,557 ,664 Achievement 9,49 8,715 ,702 ,481 Hedonism 8,35 11,407 ,448 ,775 o. Openness to change – 2 items Reliability Statistics Cronbach's N of Items Alpha ,757 2 Appendix 4.1 | - 53 - Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Stimulation Self Direction 5,80 2,557 ,615 . 5,18 3,366 ,615 . p. Self – Transcendence – 2 items Reliability Statistics Cronbach's N of Items Alpha ,612 2 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Universalism 6,34 2,041 ,443 . Benevolence 5,56 2,460 ,443 . q. Conservatism – 3 items Reliability Statistics Cronbach's N of Items Alpha ,742 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Tradition 12,11 6,189 ,564 ,677 Conformity 11,22 7,332 ,627 ,598 Security 11,02 7,726 ,532 ,699 Appendix 4.1 | - 54 - Appendix 4.2 Iris scanning and facial recognition a. Behavioral Intention to accept identification technology – 6 items Reliability Statistics Cronbach's N of Items Alpha ,913 6 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted BI1 13,27 22,884 ,770 ,896 BI2 13,02 23,609 ,679 ,910 BI3 13,48 22,398 ,789 ,893 BI4 13,56 23,906 ,794 ,893 BI5 13,27 24,233 ,750 ,899 BI6 13,27 24,229 ,781 ,895 b. Behavioral intention to Recommend identification technology – 3 items Reliability Statistics Cronbach's N of Items Alpha ,948 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted BR1 5,22 4,404 ,868 ,940 BR2 5,33 4,399 ,907 ,911 BR3 5,20 4,228 ,897 ,919 c. Perceived Usefulness – 5 items Reliability Statistics Cronbach's N of Items Alpha ,763 5 Appendix 4.2 | - 55 - Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PU1 11,85 8,366 ,497 ,734 PU2 10,67 11,751 ,052 ,837 PU3 12,26 7,650 ,654 ,674 PU4 12,17 7,472 ,711 ,651 PU5 12,10 7,143 ,745 ,635 Perceived Usefulness – 4 items after removal PU2 Reliability Statistics Cronbach's N of Items Alpha ,837 4 d. Perceived Ease Of Use – 3 items Reliability Statistics Cronbach's N of Items Alpha ,646 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PEOU1 6,16 1,967 ,543 ,418 PEOU2 5,87 2,201 ,556 ,416 PEOU3 6,97 2,682 ,294 ,754 Perceived Ease Of Use – 2 items after removal PEOU3 Reliability Statistics Cronbach's N of Items Alpha ,755 2 e. Relative Advantage – 4 items ( including PEOU3) Reliability Statistics Cronbach's N of Items Alpha Appendix 4.2 | - 56 - ,888 4 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PEOU3 7,74 6,252 ,744 ,861 RA1 7,59 5,712 ,764 ,855 RA2 7,77 6,178 ,774 ,850 RA3 7,72 6,149 ,746 ,860 f. Privacy Concerns – 5 items Reliability Statistics Cronbach's N of Items Alpha ,834 5 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted PC1 14,93 9,811 ,696 ,784 PC2 15,13 9,260 ,703 ,781 PC3 15,07 9,087 ,742 ,768 PC4 14,98 10,191 ,597 ,811 PC5r 15,19 11,488 ,439 ,849 g. Technology Anxiety – 5 items Reliability Statistics Cronbach's N of Items Alpha ,777 5 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted TA1 11,80 8,528 ,614 ,714 TA2 12,41 8,357 ,605 ,717 TA3 12,87 9,799 ,385 ,791 TT1r 11,77 8,875 ,650 ,705 TT2r 11,85 9,545 ,522 ,746 Appendix 4.2 | - 57 - h. Facilitating Conditions – 3 items Reliability Statistics Cronbach's N of Items Alpha ,647 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted FC1 5,83 3,242 ,404 ,620 FC2 6,13 2,869 ,473 ,529 FC3 6,33 3,021 ,498 ,495 i. Experience – 3 items Reliability Statistics Cronbach's N of Items Alpha ,794 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Exp1 3,49 2,815 ,555 ,862 Exp2 3,97 3,090 ,802 ,552 Exp3 4,08 3,866 ,624 ,749 j. Innovativeness – 3 items Reliability Statistics Cronbach's N of Items Alpha ,846 3 Appendix 4.2 | - 58 - Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Innov1 5,43 2,951 ,774 ,726 Innov2 5,97 3,506 ,690 ,811 Innov3 5,40 3,030 ,688 ,815 k. Social Influence – 3 items Reliability Statistics Cronbach's N of Items Alpha ,736 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted SI1 6,61 2,953 ,563 ,646 SI2 6,78 2,562 ,640 ,548 SI3 6,35 3,223 ,484 ,734 l. Idealism – 10 items Reliability Statistics Cronbach's N of Items Alpha ,910 10 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted ID1 33,53 30,438 ,736 ,897 ID2 33,60 29,553 ,768 ,895 ID3 33,64 29,028 ,763 ,895 ID4 33,50 29,268 ,733 ,897 ID5 33,50 29,955 ,714 ,898 ID6 33,81 29,840 ,660 ,902 ID7 33,61 32,364 ,503 ,910 ID8 33,57 30,982 ,623 ,903 ID9 33,54 29,641 ,778 ,894 ID10 33,61 32,942 ,439 ,913 Appendix 4.2 | - 59 - m. Relativism – 10 items Reliability Statistics Cronbach's N of Items Alpha ,674 10 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted RE1 29,76 16,037 ,464 ,627 RE2 29,46 17,530 ,284 ,660 RE3 29,36 16,939 ,423 ,639 RE4 29,58 17,715 ,221 ,671 RE5 30,06 15,232 ,540 ,609 RE6 30,20 15,777 ,448 ,628 RE7 29,99 16,162 ,344 ,649 RE8 30,09 14,792 ,574 ,599 RE9 29,75 17,967 ,166 ,681 RE10 30,78 18,966 -,009 ,722 Relativism – 9 items after removal RE10 Reliability Statistics Cronbach's N of Items Alpha ,722 9 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted RE1 27,31 15,040 ,486 ,681 RE2 27,01 16,279 ,344 ,706 RE3 26,92 15,942 ,445 ,692 RE4 27,14 16,591 ,255 ,721 RE5 27,61 14,533 ,518 ,674 RE6 27,75 15,203 ,404 ,696 RE7 27,54 15,265 ,348 ,708 RE8 27,65 13,965 ,574 ,661 RE9 27,31 16,744 ,212 ,729 Appendix 4.2 | - 60 - n. Self – Enhancement – 3 items Reliability Statistics Cronbach's N of Items Alpha ,693 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Power 10,89 8,869 ,549 ,551 Achievement 9,43 8,217 ,678 ,357 Hedonism 8,07 13,840 ,342 ,779 o. Openness to change – 2 items Reliability Statistics Cronbach's N of Items Alpha ,692 2 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Stimulation Self Direction 5,74 2,192 ,536 . 5,11 3,025 ,536 . p. Self – Transcendence – 2 items Reliability Statistics Cronbach's N of Items Alpha ,548 2 Appendix 4.2 | - 61 - Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Universalism 6,26 1,692 ,393 . Benevolence 5,17 2,994 ,393 . q. Conservatism – 3 items Reliability Statistics Cronbach's N of Items Alpha ,754 3 Item-Total Statistics Scale Mean if Scale Variance Corrected Item- Cronbach's Item Deleted if Item Deleted Total Alpha if Item Correlation Deleted Tradition 11,62 7,296 ,575 ,688 Conformity 10,76 7,611 ,679 ,563 Security 10,48 8,913 ,509 ,751 Appendix 4.2 | - 62 - Appendix 5: Factor Analysis constructs Question 3 & 4 Appendix 5.1 Fingerprint recognition Total Variance Explained Component Initial Eigenvalues Total % of Cumulative Variance % Extraction Sums of Squared Rotation Sums of Squared Loadings Loadings Total % of Cumulative Variance % Total % of Cumulative Variance % 1 9,851 35,183 35,183 9,851 35,183 35,183 5,387 19,240 19,240 2 2,526 9,023 44,205 2,526 9,023 44,205 4,756 16,987 36,227 3 2,054 7,335 51,540 2,054 7,335 51,540 3,216 11,486 47,713 4 1,687 6,025 57,565 1,687 6,025 57,565 2,148 7,671 55,384 5 1,331 4,755 62,320 1,331 4,755 62,320 1,731 6,181 61,565 6 1,147 4,096 66,415 1,147 4,096 66,415 1,297 4,631 66,196 7 1,054 3,765 70,180 1,054 3,765 70,180 1,115 3,984 70,180 8 ,839 2,997 73,177 Extraction Method: Principal Component Analysis. Appendix 5.1 | - 63 - Rotated Component Matrix a Component 1 2 3 PU1 ,571 ,513 PU2 ,251 ,287 PU3 ,759 PU4 ,717 ,303 PU5 ,326 ,783 PU6 ,516 ,392 PEOU1 ,800 ,241 PEOU2 ,658 PEOU3 ,751 RA1 ,787 RA2 ,221 ,817 RA3 ,543 ,483 4 5 6 -,207 ,593 -,247 -,321 ,226 PC1 ,850 PC2 ,836 PC3 ,864 -,396 ,578 -,558 ,367 TA1 -,637 ,265 ,332 TA2 -,484 ,267 ,625 PC4 PC5r -,268 ,276 ,742 TA4 -,315 -,705 ,218 TA5 -,243 -,651 ,255 FC1 ,651 -,274 -,213 -,290 -,247 ,232 -,380 ,873 FC2 ,337 ,515 ,220 Exp1 ,872 Exp2 ,896 Exp3 ,268 ,394 TA3 FC3 7 ,258 ,531 -,391 ,607 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 7 iterations. Appendix 5.1 | - 64 - Appendix 5.2 Iris scanning and facial recognition Total Variance Explained Component Initial Eigenvalues Total % of Cumulative Variance % Extraction Sums of Squared Rotation Sums of Squared Loadings Loadings Total % of Cumulative Variance % Total % of Cumulative Variance % 1 8,507 31,509 31,509 8,507 31,509 31,509 5,898 21,846 21,846 2 3,193 11,825 43,334 3,193 11,825 43,334 3,349 12,404 34,250 3 2,607 9,657 52,991 2,607 9,657 52,991 2,941 10,892 45,142 4 1,805 6,686 59,677 1,805 6,686 59,677 2,518 9,328 54,469 5 1,220 4,518 64,195 1,220 4,518 64,195 2,194 8,127 62,597 6 1,155 4,278 68,473 1,155 4,278 68,473 1,587 5,876 68,473 7 ,972 3,600 72,073 Extraction Method: Principal Component Analysis. Appendix 5.2 | - 65 - Rotated Component Matrix a Component 1 PU1 2 3 ,480 4 5 -,318 ,699 PU2 PU3 ,864 PU4 ,860 PU5 ,754 PEOU1 ,351 PEOU2 ,202 PEOU3 ,824 RA1 ,828 RA2 ,739 RA3 ,750 -,208 ,682 -,241 ,732 -,228 ,253 PC1 ,844 PC2 ,879 PC3 ,260 ,842 PC4 ,591 ,418 PC5r 6 -,403 ,536 TA1 ,671 TA2 ,793 -,246 ,343 TA3 ,333 ,673 TT1r -,336 ,687 ,208 TT2r -,406 ,492 ,308 FC1 -,230 ,238 -,202 -,271 ,236 FC3 ,337 ,443 ,835 ,669 ,292 ,796 Exp1 -,211 ,558 -,360 FC2 -,209 Exp2 ,209 ,866 Exp3 ,308 ,733 ,237 -,231 Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 6 iterations. Appendix 5.2 | - 66 - Appendix 6: Final list of items per construct (original: Dutch) Appendix 6.1 Fingerprint recognition Construct Questions Items BI Q1_1 onwaarschijnlijk – waarschijnlijk Q1_2 onmogelijk – mogelijk Q1_3 zou het zeker niet gebruiken – zou het zeker en vast gebruiken Q2_1 Aangezien ik het vingerafdruk toestel kan gebruiken, ben ik van plan het te gebruiken. BR Q2_2 Ik neem mij voor het toestel nogmaals te gebruiken in de komende maanden. Q2_3 Ik ga het toestel zeker gebruiken in de komende maanden. Q2_4 Volgende keer, als ik mijn vrienden/familie zie, zal ik zeker positief vertellen over dit nieuwe systeem. PU Q2_5 Ik zou dit vingerafdruk systeem aanraden aan anderen. Q2_6 Ik zou dit vingerafdruk systeem aanraden aan mensen, die mijn advies vragen. Q3_1 Het Vingerafdruksysteem zorgt voor een waardevolle dienstverlening. Q3_3 Door het Vingerafdruksysteem te kiezen als betaalmiddel, zal ik mij tijd besparen. Q3_4 Kunnen betalen met behulp van een Vingerafdruksysteem maakt winkelen gemakkelijker. Q3_6 Met het Vingerafdruksysteem worden mijn persoonlijke gegevens op een gemakkelijke manier bijgehouden. PEOU Q3_7 Het gebruik van een Vingerafdruksysteem is gemakkelijk. Q3_8 Het gebruik van een Vingerafdruksysteem vergt weinig kennis of mentale inspanning. RA PC Q3_9 Het Vingerafdruksysteem is simpeler dan andere betaalmiddelen. Q3_10 Het Vingerafdruksysteem levert een snellere dienstverlening. Q3_11 Het Vingerafdruksysteem levert een betrouwbaardere dienstverlening. Q3_12 Het Vingerafdruksysteem levert een meer geschikte dienstverlening. Q4_1 Met het Vingerafdruk systeem krijgen bedrijven persoonlijke informatie over mij, die ik als privé beschouw. Q4_2 Met het Vingerafdruk systeem wordt mijn persoonlijke informatie gebruikt zonder mijn medeweten. Q4_3 Met het Vingerafdruk systeem worden mijn persoonlijke gegevens met verschillende mensen en zonder mijn toestemming gedeeld. Q4_4 Ik ben bezorgd over de gevolgen door mijn persoonlijke informatie te delen. Q4_5 Ik ben er zeker van dat mijn persoonlijke informatie goed wordt beschermd. Appendix 6.1 | - 67 - Construct Questions Items TA Q4_6 Ik ben bang om het Vingerafdruk systeem te gebruiken. Q4_7 Vanwege mijn angst voor technologie, zou ik eerder naar andere winkels gaan, waar ze het Vingerafdruk systeem niet gebruiken. Q4_8 Ik twijfel om het Vingerafdruk systeem te gebruiken uit schrik voor schade aan mijn eigen lichaam. FC Q4_9 Ik zou het Vingerafdruk systeem vertrouwen. Q4_10 Ik denk dat de dienstverlening met het Vingerafdruk systeem betrouwbaar is. Q4_11 Het Vingerafdruk systeem is gemakkelijk omdat ik niets anders nodig heb dan mijn eigen lichaam. Q4_12 Ik zou het Vingerafdruk systeem eerder gebruiken indien er personen beschikbaar zijn voor eventuele vragen/problemen te beantwoorden. Q4_13 Ik zou de het Vingerafdruk systeem eerder gebruiken omdat de identificatie van mensen zo gemakkelijker is. Exp Q4_14 Ik heb ervaring met de systemen in andere situaties/omgevingen. (Voorbeelden: in de luchthaven, Iphone, ) Innov Q4_15 Ik gebruik de systemen frequent in andere situaties/omgevingen. Q4_16 Ik heb ervaring met de systemen in een warenhuis-omgeving. Q5_1 Ik ben ten opzichte van mijn vrienden/familie één van de eersten om een nieuwe technologie uit te proberen. Q5_2 Wanneer ik hoor dat er een nieuwe technologie op de markt is, zoek ik meteen naar manieren om aan deze technologie te geraken. SI ID Q5_3 Ik hou ervan om te experimenteren met nieuwe technologieën. Q5_4 Als mijn vrienden mij iets aanraden, ben ik geneigd om dit te proberen. Q5_5 Ik ben beïnvloedbaar door de mening van mijn familie of vrienden. Q5_6 Ik hecht veel waarde aan de mening van mijn vrienden of familie. Q6_1 – See survey appendix 1.1 general question 2 _10 RE Q6_11_19 See survey appendix 1.1 general question 2 Self – Q7_1 Macht Enhancement Q7_2 Prestatie Q7_3 Hedonisme Openness to Q7_4 Stimulatie change Q7_5 Zelfsturing Self- Q7_6 Universalisme Transcendence Q7_7 Welwillendheid Conservatism Q7_8 Traditie Q7_9 Overeenstemming Q7_10 Veiligheid Appendix 6.1 | - 68 - Appendix 6.2 Iris scanning and facial recognition Construct Questions Items BI Q1_1 onwaarschijnlijk – waarschijnlijk Q1_2 onmogelijk – mogelijk Q1_3 zou het zeker niet gebruiken – zou het zeker en vast gebruiken Q2_1 Aangezien deze technologie mij helpt bij het uitkiezen van bepaalde producten, ga ik de winkel binnengaan. BR Q2_2 Ik neem mij voor de winkel nogmaals te bezoeken in de komende maanden. Q2_3 Ik ga de winkel zeker blijven gebruiken in de komende maanden. Q2_4 Volgende keer, als ik mijn vrienden/familie zie, zal ik zeker positief vertellen over de technologieën dat deze winkel gebruikt. PU Q2_5 Ik zou deze manier van winkelen aanraden aan anderen. Q2_6 Ik zou deze manier van winkelen aanraden aan mensen die mijn advies vragen. Q3_1 De Iris Scanning en de Gezicht Scanner zorgen voor een waardevolle dienstverlening. Q3_3 Door een winkel te kiezen dat Iris Scanning & Gezicht Scanning gebruikt, zal ik mij tijd besparen. Q3_4 Iris Scanning & Gezicht Scanning maken winkelen gemakkelijker. Q3_5 Met Iris Scanning & Gezicht Scanning wordt het voor mij als koper makkelijker want mijn persoonlijke gegevens worden op een gemakkelijke manier bijghouden. PEOU Q3_6 Het gebruik van Iris Scanning & Gezicht Scanning vergt een minimum aan inspanning. RA Q3_7 Iris Scanning & Gezicht Scanning vergen weinig kennis of mentale inspanning. Q3_8 Een winkel met Iris Scanning & Gezicht Scanning is simpeler dan winkels zonder. Een winkel met Iris Scanning en een Gezicht Scanner levert een snellere Q3_9 dienstverlening dan een winkel zonder deze technologieën. Een winkel met Iris Scanning en een Gezicht Scanner levert een betrouwbaardere Q3_10 dienstverlening dan een winkel zonder deze technologieën. Een winkel met Iris Scanning en Gezicht Scanner levert een meer geschikte PC Q3_11 dienstverlening dan winkels zonder deze technologieën. Q4_1 Met deze systemen krijgen bedrijven persoonlijke informatie over mij, die ik als privé beschouw. Q4_2 Met deze systemen wordt mijn persoonlijke informatie gebruikt zonder mijn medeweten. Q4_3 Ik ben er zeker van dat mijn persoonlijke informatie goed wordt beschermd. Q4_4 Ik ben bezorgd over de gevolgen door mijn persoonlijke informatie te delen. Q4_5 Met deze systemen worden mijn persoonlijke gegevens met verschillende mensen en zonder mijn toestemming gedeeld. Appendix 6.2 | - 69 - Construct Questions Items TA Q4_6 Ik ben bang om de systemen toe te staan. Q4_7 Vanwege mijn angst voor technologie, zou ik eerder naar andere winkels gaan, waar ze deze systemen niet gebruiken. Q4_8 Ik twijfel om de systemen toe te staan uit schrik voor schade aan mijn eigen lichaam. FC Q4_9 Ik zou de systemen vertrouwen. Q4_10 Ik denk dat de dienstverlening met deze systemen betrouwbaar is. Q4_11 De systemen zijn gemakkelijk omdat ik niets anders nodig heb dan mijn eigen lichaam. Q4_12 Ik zou de systemen eerder gebruiken/toestaan indien er personen beschikbaar zijn voor eventuele vragen/problemen te beantwoorden. Q4_13 Ik zou de systemen eerder toestaan omdat de identificatie van mensen zo gemakkelijk is. Exp Q4_14 Ik heb ervaring met de systemen in andere situaties/omgevingen. (Luchthavens,Casino’s) Innov Q4_15 Ik gebruik de systemen frequent in andere situaties/omgevingen. Q4_16 Ik heb ervaring met de systemen in een warenhuis-omgeving. Q5_1 Ik ben ten opzichte van mijn vrienden/familie één van de eersten om een nieuwe technologie uit te proberen. Q5_2 Wanneer ik hoor dat er een nieuwe technologie op de markt is, zoek ik meteen naar manieren om aan deze technologie te geraken. Q5_3 Ik hou ervan om te experimenteren met nieuwe technologieën. Q5_4 Als mijn vrienden mij iets aanraden, ben ik geneigd om dit te proberen. Q5_5 Ik ben beïnvloedbaar door de mening van mijn familie of vrienden. Q5_6 Ik hecht veel waarde aan de mening van mijn vrienden of familie. ID Q6_1-_10 See survey appendix 2 general question 2 RE Q6_11_19 See survey appendix 1.2 general question 2 Self – Q7_1 Macht Enhancement Q7_2 Prestatie Q7_3 Hedonisme Openness to Q7_4 Stimulatie change Q7_5 Zelfsturing Self- Q7_6 Universalisme Transcendence Q7_7 Welwillendheid Conservatism Q7_8 Traditie Q7_9 Overeenstemming Q7_10 Veiligheid SI Appendix 6.2 | - 70 - Appendix 7: Correlation Diagnostics and table Appendix 7.1 Fingerprint recognition Correlations BI Pearson Correlation BI Pearson Correlation ,853 ,164 Id ,088 Re SE RC ,082 -,048 ,141 -,075 ,270 ,312 ,556 ,084 ,361 175 171 170 171 160 160 160 160 160 160 155 155 152 152 1 ** ** ** ** ** ** * ** ,124 ,130 ,004 ,188 * -,027 ,713 ,713 ,201 ,227 ,000 ,012 ,004 ,124 ,112 ,958 ,023 ,749 167 167 167 156 156 156 156 155 155 150 150 147 147 1 ** ** ** ** ** ** * -,015 ,005 ** -,053 ** ,647 ,647 ,067 ,333 ,168 ,279 ,000 ,400 ,000 ,034 ,858 ,947 ,001 ,521 170 171 160 160 160 160 159 159 154 154 151 151 1 ** ** ** ** * -,012 167 170 170 ** ** ** ** ,638 ,638 ,091 ,241 ,098 ,076 ,055 ,166 ,000 ,256 ,002 ,220 ,348 ,497 ,043 ,883 170 159 159 159 159 158 158 153 153 150 150 ** ** ** ** ** ,104 ,058 -,020 ,171 * ,072 1 -,485 ,000 ,000 N 171 167 171 170 171 ** ** ** ** ** -,485 ,204 ,286 ,000 ,010 ,000 ,190 ,478 ,803 ,036 ,383 160 160 160 160 159 159 154 154 151 151 1 ** ** ** * -,061 ,006 ,077 -,094 ,004 ,000 ,000 ,000 ,000 N 160 156 160 159 160 160 ** ** ** ** ** ** ,000 ,498 ,000 ,000 -,643 -,643 ,000 Sig. (2-tailed) ,000 ,411 ,000 ,000 -,405 -,405 ,000 ,000 -,278 -,278 ** ,000 Sig. (2-tailed) ,000 ,554 ,000 170 -,572 -,572 ,000 ,000 -,435 -,435 ,000 ,000 ,773 ,773 ,000 ,000 ,000 ,535 ,000 171 -,706 -,706 ,000 ** -,582 -,582 ,000 167 ,754 ,754 ,000 ** ,480 ,480 ,000 171 ,000 ,194 SI * ,039 N Sig. (2-tailed) ,489 Innov * ,014 ,000 Pearson Correlation -,757 -,757 Exp ** ,000 ,000 Pearson Correlation -,538 -,538 FC ** ,000 Sig. (2-tailed) ,765 ,765 TA ** ,000 ** Pearson Correlation PC ** ,000 175 ,484 ,484 RA ,000 ** N TA ,703 ** ,000 175 ,703 PEOU ** ,000 N PEOU Sig. (2-tailed) PC ** ,853 ,000 Pearson Correlation RA 187 PU ** Sig. (2-tailed) Pearson Correlation PU 1 Sig. (2-tailed) N BR BR ,545 ,000 ,545 -,329 -,223 -,175 ,000 ,000 ,005 ,027 ,442 ,945 ,343 ,252 ,964 160 160 160 159 159 154 154 151 151 ** ,121 ,006 ,139 ** -,092 ,000 ,248 1 -,443 -,152 -,075 ,055 ,350 -,034 ,674 ,016 -,223 ,844 Appendix 7.1 | - 71 - N 160 BI Pearson Correlation FC Exp Innov SI Id SE ,535 PU ** ,554 159 PEOU ** ,411 ** 160 RA ,498 160 PC ** -,329 160 TA ** -,443 160 FC ** 1 ,000 ,000 ,000 ,000 ,000 ,000 N 160 156 160 159 160 160 160 * * ,067 ,091 ** ** -,092 ,115 ,201 SI Id Re ,137 ,190 ,147 ,016 ,085 ,018 160 159 159 ** ,012 ,400 ,256 ,010 ,005 ,248 ,147 N 160 156 160 159 160 160 160 160 160 * ** ** ** ** * -,152 ,192 * ** -,175 154 ,192 ,014 ,286 154 ,115 Sig. (2-tailed) ,241 159 * ,194 ,333 -,223 160 159 Innov Pearson Correlation ,227 ,204 160 Exp ,000 ,164 ,229 Sig. (2-tailed) ,039 ,004 ,000 ,002 ,000 ,027 ,055 ,016 ,004 N 160 155 159 158 159 159 159 159 159 * ,098 ,104 -,061 -,075 ,137 RC ,002 ,013 ,246 154 154 151 151 -,087 -,022 ,080 ,018 ,038 ,004 ,275 ,783 ,323 ,822 ,641 159 159 154 154 151 151 ** -,030 ,112 ,085 -,122 ,000 ,710 ,164 ,297 ,135 160 160 155 155 152 152 ** 1 -,100 ,106 ,113 -,068 ,217 ,190 ,165 ,408 155 155 152 152 1 * ** Pearson Correlation ,088 ,124 ,168 Sig. (2-tailed) ,270 ,124 ,034 ,220 ,190 ,442 ,350 ,085 ,275 ,000 N 160 155 159 158 159 159 159 159 159 160 * -,087 ,375 -,022 160 Pearson Correlation ,082 ,130 -,015 ,076 ,058 ,006 -,034 ,190 Sig. (2-tailed) ,312 ,112 ,858 ,348 ,478 ,945 ,674 ,018 ,783 ,710 ,217 N 155 150 154 153 154 154 154 154 154 155 155 ** ,080 ,112 ,106 ,191 -,030 -,100 ,242 ,191 ,201 -,324 ,194 * ,017 ,000 ,017 155 155 152 152 * 1 ,092 -,072 ,262 ,380 152 152 -,048 ,004 ,005 ,055 -,020 ,077 ,016 Sig. (2-tailed) ,556 ,958 ,947 ,497 ,803 ,343 ,844 ,002 ,323 ,164 ,190 ,017 N 155 150 154 153 154 154 154 154 154 155 155 155 155 Pearson Correlation ,141 ,188 * ** * * ** * ,018 ,085 ,113 -,324 ** ,092 1 -,206 Sig. (2-tailed) ,084 ,023 ,001 ,043 ,036 ,252 ,006 ,013 ,822 ,297 ,165 ,000 ,262 ,011 N 152 147 151 150 151 151 151 151 151 152 152 152 152 152 152 -,122 -,068 * -,072 -,206 * 1 ,279 ,166 ,171 -,094 -,223 ,242 SE ** 151 -,095 1 ,375 * 151 * 1 ,229 Pearson Correlation Pearson Correlation RC BR ** 160 Sig. (2-tailed) Pearson Correlation Re ,489 156 ,201 -,075 -,027 -,053 -,012 ,072 ,004 ,121 -,095 ,038 ,194 Sig. (2-tailed) ,361 ,749 ,521 ,883 ,383 ,964 ,139 ,246 ,641 ,135 ,408 ,017 ,380 ,011 N 152 147 151 150 151 151 151 151 151 152 152 152 152 152 * 152 **. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). Appendix 7.1 | - 72 - Appendix 7.2 Iris scanning and facial recognition Correlations BI Pearson Correlation BI Pearson Correlation ,846 ,267 ,342 ** SI ,223 Id ** ,041 Re SE RC ,078 ,182 * ,099 ,000 ,007 ,631 ,360 ,034 ,250 148 145 145 145 144 143 143 143 144 144 138 138 136 137 1 ** ** ** ** ** ** ** ** * ,021 ,072 ,179 * ,662 ,662 ,507 ,250 ,292 ,179 ,203 * ,000 ,000 ,003 ,000 ,033 ,810 ,409 ,039 ,019 142 142 142 141 140 140 140 141 141 135 135 133 134 1 ** ** ** ** ** ** ** ** * ** ,148 145 ** ** ,335 ,335 ,470 ,245 ,354 ,236 ,072 ,187 ,226 ,001 ,000 ,003 ,000 ,004 ,398 ,028 ,008 ,084 145 145 144 143 143 143 144 144 138 138 136 137 1 ** ** ** -,025 ,060 ,019 ,026 ,116 ,151 ,025 145 142 145 145 ** ** ** ** ,293 Sig. (2-tailed) ,000 ,000 ,000 ,000 N 145 142 145 145 ** ** ** ,293 -,089 -,308 ,286 ,000 ,000 ,764 ,472 ,824 ,763 ,177 ,080 ,768 145 144 143 143 143 144 144 138 138 136 137 ** ** ** ** ** ,096 ,107 ,033 ,214 * 1 -,380 145 -,089 -,380 ** ,448 ,345 ,312 ,194 * ,000 ,000 ,000 ,000 ,251 ,213 ,701 ,012 ,023 144 143 143 143 144 144 138 138 136 137 1 ** ** ** -,126 -,008 -,040 ,074 -,008 -,133 ,000 ,000 ,286 ,000 N 144 141 144 144 144 144 ** ** ** ** ** ** -,302 -,302 ,000 ,000 -,308 ,335 ,000 Sig. (2-tailed) -,263 -,263 ,000 ,000 -,371 -,371 ,000 ,005 ,818 ,818 ,000 ,004 -,419 -,419 ,000 142 -,449 -,449 ,000 ** ,616 ,616 ,005 145 ,233 ,233 ,000 N Sig. (2-tailed) ,485 Innov ** ,001 ,000 Pearson Correlation -,551 -,551 Exp ** ,000 ,000 Pearson Correlation -,449 -,449 FC ** ,000 Sig. (2-tailed) ,631 ,631 TA ** ,000 ** Pearson Correlation PC ** ,000 148 ,235 ,235 RA ,004 ** N TA ,674 ** ,000 148 ,674 PEOU ** ,000 N PEOU Sig. (2-tailed) PC ** ,846 ,000 Pearson Correlation RA 151 PU ** Sig. (2-tailed) Pearson Correlation PU 1 Sig. (2-tailed) N BR BR ,562 ,000 ,000 ,001 ,000 ,000 ,000 143 140 143 143 143 143 ,562 -,295 -,319 ,000 ,000 ,000 ,132 ,921 ,642 ,390 ,923 ,121 143 143 143 144 144 138 138 136 137 ** ** * -,057 ,009 ,039 ,030 ,038 1 -,351 -,223 -,186 ,000 ,007 ,026 ,498 ,916 ,647 ,729 ,662 143 143 143 143 137 137 135 136 N 143 Appendix 7.2 | - 73 - BI Pearson Correlation FC Id Re SE RC ** ,470 ** RA ** ,448 ,335 PC ** -,295 TA ** -,351 FC ** Exp 1 ,000 ,000 ,000 ,000 ,000 ,000 N 143 140 143 143 143 143 143 143 ** ** ** -,025 ** ** ** * ,267 ,250 ,245 ,345 -,319 -,223 ,198 Innov ,018 ,057 ,108 ,289 143 143 143 137 1 * * ,000 ,000 ,007 ,018 N 143 140 143 143 143 143 143 143 143 ** ** ** ,060 ** -,126 -,186 * ,160 ,170 * ,170 ,108 ,079 ,006 ,211 137 135 136 ,102 -,109 -,083 ,243 ** ,237 ,206 ,339 ,004 143 143 137 137 135 136 * ** 1 ,435 ,000 ,000 ,472 ,000 ,132 ,026 ,057 ,042 N 144 141 144 144 144 144 143 143 143 144 ** * ** ,019 ,096 -,008 -,057 ,135 -,188 * ** ,236 ** ,025 ,000 ,179 -,188 RC ,042 Sig. (2-tailed) ,223 ,236 ,151 ,764 ,312 SE ,091 ,003 ,354 Re ,135 ,003 ,292 Id ,160 ,001 ,342 SI * ,198 Sig. (2-tailed) Pearson Correlation SI ,507 PEOU ,000 Pearson Correlation Innov ** PU Sig. (2-tailed) Pearson Correlation Exp ,485 BR ,435 Sig. (2-tailed) ,007 ,033 ,004 ,824 ,251 ,921 ,498 ,108 ,025 ,000 N 144 141 144 144 144 144 143 143 143 144 ** -,006 ,176 ,288 -,171 * ,000 ,948 ,039 ,001 ,046 144 138 138 136 137 ,095 ,130 ** -,135 ,267 ,127 ,010 ,115 138 138 136 137 ** ,024 ,618 ,000 ,781 1 144 1 ,221 Pearson Correlation ,041 ,021 ,072 ,026 ,107 -,040 ,009 ,091 ,102 -,006 ,095 ,043 -,437 Sig. (2-tailed) ,631 ,810 ,398 ,763 ,213 ,642 ,916 ,289 ,237 ,948 ,267 N 138 135 138 138 138 138 137 137 137 138 138 138 138 136 137 * ,116 ,033 ,074 ,039 ,151 -,109 ,176 * ,130 ,043 1 ,161 -,039 ,062 ,655 Pearson Correlation ,078 ,072 ,187 Sig. (2-tailed) ,360 ,409 ,028 ,177 ,701 ,390 ,647 ,079 ,206 ,039 ,127 ,618 N 138 135 138 138 138 138 137 137 137 138 138 138 138 136 137 * * ** ,151 ,214 * -,008 ,030 ** ** ** ** ,161 1 -,110 Pearson Correlation ,182 ,179 ,226 ,236 -,083 ,288 Sig. (2-tailed) ,034 ,039 ,008 ,080 ,012 ,923 ,729 ,006 ,339 ,001 ,010 ,000 ,062 N 136 133 136 136 136 136 135 135 135 136 136 136 136 136 136 Pearson Correlation ,099 ,203 * ,148 ,025 ,194 * -,133 ,038 ,108 ** * -,135 ,024 -,039 -,110 1 Sig. (2-tailed) ,250 ,019 ,084 ,768 ,023 ,121 ,662 ,211 ,004 ,046 ,115 ,781 ,655 ,202 N 137 134 137 137 137 137 136 136 136 137 137 137 137 136 ,243 -,171 ,221 -,437 ,202 137 **. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). Appendix 7.2 | - 74 - Appendix 8: Mediator and Moderator relations regression analysis Appendix 8.1 Mediation hypothesis 3b Iris scanning and facial recognition Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) Std. Error 1,672 ,351 ,283 ,098 Beta 4,769 ,000 2,887 ,004 1 Perceived Ease Of Use ,235 a. Dependent Variable: Behavioral Intention to Accept Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) Std. Error 1,442 ,296 ,352 ,083 Beta 4,868 ,000 4,247 ,000 1 Perceived Ease Of Use ,335 a. Dependent Variable: Perceived Usefulness Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B 1 Std. Error (Constant) ,562 ,289 Perceived Usefulness ,770 ,075 Perceived Ease Of Use ,012 ,079 Beta 1,948 ,053 ,671 10,197 ,000 ,010 ,155 ,877 a. Dependent Variable: Behavioral Intention to Accept Appendix 8.1 | - 75 - Fingerprint recognition Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error (Constant) ,235 ,427 Perceived Ease Of Use ,766 ,107 Beta ,551 ,582 7,172 ,000 1 ,484 a. Dependent Variable: Behavioral Intention to Accept Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error (Constant) ,684 ,263 Perceived Ease Of Use ,724 ,066 Beta 2,597 ,010 10,998 ,000 1 ,647 a. Dependent Variable: Perceived Usefulness Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error -,405 ,356 Perceived Usefulness ,937 ,102 Perceived Ease Of Use ,087 ,115 Beta -1,137 ,257 ,663 9,151 ,000 ,055 ,760 ,448 a. Dependent Variable: Behavioral Intention to Accept Appendix 8.1 | - 76 - Appendix 8.2 Mediation hypothesis 6 Iris scanning and facial recognition Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error (Constant) 4,804 ,367 Privacy Concerns -,571 ,095 Beta 13,088 ,000 -5,993 ,000 1 -,449 a. Dependent Variable: Behavioral Intention to Accept Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) Std. Error 1,040 ,253 ,530 ,066 Beta 4,112 ,000 8,071 ,000 1 Privacy Concerns ,562 a. Dependent Variable: Technology Anxiety Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B 1 Std. Error (Constant) 5,415 ,358 Technology Anxiety -,587 ,113 Privacy Concerns -,262 ,106 Beta 15,141 ,000 -,435 -5,210 ,000 -,206 -2,465 ,015 a. Dependent Variable: Behavioral Intention to Accept Appendix 8.2 | - 77 - Fingerprint recognition Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error (Constant) 6,049 ,358 Privacy Concerns -,799 ,100 Beta 16,901 ,000 -8,013 ,000 1 -,538 a. Dependent Variable: Behavioral Intention to Accept Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error (Constant) ,955 ,212 Privacy Concerns ,482 ,059 Beta 4,508 ,000 8,167 ,000 1 ,545 a. Dependent Variable: Technology Anxiety Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Technology Anxiety Privacy Concerns Std. Error 7,107 ,288 -1,109 ,102 -,265 ,090 Beta 24,686 ,000 -,660 -10,889 ,000 -,178 -2,941 ,004 a. Dependent Variable: Behavioral Intention to Accept Appendix 8.2 | - 78 - Appendix 8.3 Moderation hypothesis 13b Iris scanning and facial recognition Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,487 a ,238 ,226 ,851 ,238 20,876 2 134 ,000 ,493 b ,244 ,226 ,851 ,006 1,047 1 133 ,308 a. Predictors: (Constant), Age, Facilitating Conditions b. Predictors: (Constant), Age, Facilitating Conditions, H13bmoderator a ANOVA Model 1 Sum of Squares Mean Square F Regression 30,262 2 15,131 Residual 97,126 134 ,725 127,388 136 Regression 31,021 3 10,340 Residual 96,367 133 ,725 127,388 136 Total 2 df Total Sig. b 20,876 ,000 14,271 ,000 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Age, Facilitating Conditions c. Predictors: (Constant), Age, Facilitating Conditions, H13bmoderator Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B 1 Std. Error (Constant) ,658 ,325 Facilitating Conditions ,574 ,093 Age ,065 ,042 -,057 ,770 Facilitating Conditions ,795 ,235 Age ,258 -,059 (Constant) Beta 2,026 ,045 ,467 6,178 ,000 ,118 1,565 ,120 -,074 ,941 ,646 3,380 ,001 ,193 ,468 1,337 ,184 ,058 -,409 -1,023 ,308 2 H13bmoderator a. Dependent Variable: Behavioral Intention to Accept Appendix 8.4 | - 79 - Fingerprint recognition Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,517 a ,267 ,257 1,017 ,267 26,955 2 148 ,000 ,531 b ,282 ,268 1,010 ,015 3,106 1 147 ,080 a. Predictors: (Constant), Age, Facilitating Conditions b. Predictors: (Constant), Age, Facilitating Conditions, H13bmoderator a ANOVA Model Sum of Squares Regression 1 Mean Square F 55,774 2 27,887 Residual 153,115 148 1,035 Total 208,889 150 58,942 3 19,647 Residual 149,947 147 1,020 Total 208,889 150 Regression 2 df Sig. b 26,955 ,000 19,261 ,000 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Age, Facilitating Conditions c. Predictors: (Constant), Age, Facilitating Conditions, H13bmoderator Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error -,215 ,489 Facilitating Conditions ,901 ,126 Age ,118 ,046 -1,854 1,049 1,374 ,296 ,517 -,116 (Constant) Facilitating Conditions Beta -,439 ,662 ,506 7,136 ,000 ,183 2,582 ,011 -1,767 ,079 ,771 4,639 ,000 ,231 ,802 2,239 ,027 ,066 -,655 -1,762 ,080 2 Age H13bmoderator a. Dependent Variable: Behavioral Intention to Accept Appendix 8.4 | - 80 - Appendix 8.4 Moderation hypothesis 14 Iris scanning and facial recognition 14a Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,180 a ,032 ,018 ,951 ,032 2,214 2 133 ,113 ,181 b ,033 ,011 ,954 ,001 ,071 1 132 ,790 a. Predictors: (Constant), Gender, Social Influence b. Predictors: (Constant), Gender, Social Influence, moderator14a 3 a ANOVA Model Sum of Squares Regression 1 Mean Square 4,004 2 2,002 Residual 120,228 133 ,904 Total 124,231 135 4,068 3 1,356 Residual 120,163 132 ,910 Total 124,231 135 Regression 2 df F Sig. b 2,214 ,113 1,490 ,220 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Gender, Social Influence c. Predictors: (Constant), Gender, Social Influence, moderator14a Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error 2,031 ,383 ,207 ,104 Gender -,091 ,174 (Constant) 1,831 ,843 Social Influence ,265 ,243 Gender ,152 -,072 Social Influence Beta 5,308 ,000 ,170 1,985 ,049 -,045 -,521 ,603 2,172 ,032 ,218 1,090 ,278 ,929 ,075 ,164 ,870 ,269 -,127 -,266 ,790 2 moderator14a a. Dependent Variable: Behavioral Intention to Accept 3 Moderator 14a = Social Influence * Gender Appendix 8.4 | - 81 - Iris scanning and facial recognition 14b Model Summary Model R R Square Adjusted R Std. Error of the Square Estimate Change Statistics R Square F Change df1 d Change 1 2 ,267 a ,071 ,058 ,937 ,071 5,181 2 ,273 b ,075 ,054 ,938 ,004 ,509 1 a. Predictors: (Constant), Age, Social Influence b. Predictors: (Constant), Age, Social Influence, moderator14b 4 a ANOVA Model Sum of Squares Regression 1 Mean Square 9,088 2 4,544 Residual 118,413 135 ,877 Total 127,501 137 9,536 3 3,179 Residual 117,965 134 ,880 Total 127,501 137 Regression 2 df F Sig. b 5,181 ,007 3,611 ,015 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Age, Social Influence c. Predictors: (Constant), Age, Social Influence, moderator14b Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error 1,310 ,434 Social Influence ,287 ,105 Age ,112 ,047 (Constant) ,743 ,905 Social Influence ,458 ,262 Age ,256 -,045 Beta 3,018 ,003 ,234 2,727 ,007 ,203 2,365 ,019 ,821 ,413 ,374 1,749 ,083 ,207 ,464 1,235 ,219 ,063 -,268 -,713 ,477 2 moderator14b a. Dependent Variable: Behavioral Intention to Accept 4 Moderator 14b= Social Influence * Age Appendix 8.4 | - 82 - Iris scanning and facial recognition 14c Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,384 a ,148 ,135 ,914 ,148 12,119 2 140 ,000 ,386 b ,149 ,130 ,917 ,001 ,170 1 139 ,681 a. Predictors: (Constant), Experience, Social Influence b. Predictors: (Constant), Experience, Social Influence, moderator14c 5 a ANOVA Model Sum of Squares Regression 1 Mean Square 20,259 2 10,130 Residual 117,021 140 ,836 Total 137,280 142 20,403 3 6,801 Residual 116,878 139 ,841 Total 137,280 142 Regression 2 df F Sig. b 12,119 ,000 8,088 ,000 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Experience, Social Influence c. Predictors: (Constant), Experience, Social Influence, moderator14c Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B 1 Std. Error (Constant) ,809 ,400 Social Influence ,345 ,097 Experience ,366 ,091 (Constant) ,490 ,871 Social Influence ,439 ,249 Experience ,522 -,047 Beta 2,025 ,045 ,281 3,542 ,001 ,320 4,024 ,000 ,563 ,575 ,359 1,762 ,080 ,389 ,456 1,343 ,182 ,114 -,147 -,413 ,681 2 moderator14c a. Dependent Variable: Behavioral Intention to Accept 5 Moderator 14c = Social Influence * Experience Appendix 8.4 | - 83 - Fingerprint recognition 14a Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,045 a ,002 -,012 1,186 ,002 ,151 2 147 ,860 ,046 b ,002 -,018 1,190 ,000 ,009 1 146 ,925 a. Predictors: (Constant), Gender, Social Influence b. Predictors: (Constant), Gender, Social Influence, H14moderator1 6 a ANOVA Model Sum of Squares Regression 1 Mean Square ,425 2 ,213 Residual 206,780 147 1,407 Total 207,206 149 ,438 3 ,146 Residual 206,768 146 1,416 Total 207,206 149 Regression 2 df F Sig. b ,151 ,860 ,103 ,958 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Gender, Social Influence c. Predictors: (Constant), Gender, Social Influence, H14moderator1 Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error 3,078 ,449 ,072 ,131 Gender -,019 ,204 (Constant) 3,019 ,767 Social Influence ,090 ,235 Gender ,067 -,027 Social Influence Beta 6,857 ,000 ,045 ,548 ,584 -,008 -,093 ,926 3,939 ,000 ,057 ,384 ,702 ,940 ,027 ,071 ,943 ,284 -,039 -,094 ,925 2 H14moderator1 a. Dependent Variable: Behavioral Intention to Accept 6 H14moderator1=Social Influence*Gender Appendix 8.4 | - 84 - Fingerprint recognition 14b Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,154 a ,024 ,011 1,174 ,024 1,798 2 148 ,169 ,176 b ,031 ,011 1,173 ,007 1,115 1 147 ,293 a. Predictors: (Constant), Age, Social Influence b. Predictors: (Constant), Age, Social Influence, H14moderator2 7 a ANOVA Model Sum of Squares Regression 1 Mean Square 4,955 2 2,477 Residual 203,934 148 1,378 Total 208,889 150 6,490 3 2,163 Residual 202,399 147 1,377 Total 208,889 150 Regression 2 df F Sig. b 1,798 ,169 1,571 ,199 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Age, Social Influence c. Predictors: (Constant), Age, Social Influence, H14moderator2 Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error 2,381 ,570 Social Influence ,160 ,137 Age ,101 ,056 1,340 1,138 Social Influence ,467 ,322 Age ,353 -,077 (Constant) Beta 4,178 ,000 ,101 1,163 ,247 ,156 1,805 ,073 1,177 ,241 ,294 1,451 ,149 ,246 ,548 1,438 ,153 ,073 -,383 -1,056 ,293 2 H14moderator2 a. Dependent Variable: Behavioral Intention to Accept 7 H14moderator2=Social Influence*Age Appendix 8.4 | - 85 - Fingerprint recognition 14c Model Summary Model 1 2 R R Adjusted R Std. Error of Square Square the Estimate Change Statistics R Square F df1 Change Change df2 Sig. F Change ,208 a ,043 ,031 1,174 ,043 3,542 2 156 ,031 ,241 b ,058 ,040 1,169 ,015 2,390 1 155 ,124 a. Predictors: (Constant), Experience, Social Influence b. Predictors: (Constant), Experience, Social Influence, H14moderator3 8 a ANOVA Model Sum of Squares Regression 1 Mean Square 9,771 2 4,886 Residual 215,176 156 1,379 Total 224,947 158 13,039 3 4,346 Residual 211,908 155 1,367 Total 224,947 158 Regression 2 df F Sig. b 3,542 ,031 3,179 ,026 c a. Dependent Variable: Behavioral Intention to Accept b. Predictors: (Constant), Experience, Social Influence c. Predictors: (Constant), Experience, Social Influence, H14moderator3 Coefficients Model a Unstandardized Coefficients Standardized t Sig. Coefficients B (Constant) 1 Std. Error 2,309 ,485 Social Influence ,122 ,124 Experience ,280 ,110 (Constant) ,858 1,055 Social Influence ,569 ,314 Experience 1,033 H14moderator3 -,234 Beta 4,763 ,000 ,077 ,985 ,326 ,200 2,549 ,012 ,813 ,418 ,360 1,811 ,072 ,499 ,738 2,070 ,040 ,151 -,598 -1,546 ,124 2 a. Dependent Variable: Behavioral Intention to Accept 8 H14moderator3= Social Influence*Experience Appendix 8.4 | - 86 - Appendix 9: T-tests between independent identification technologies Group Statistics Respondent survey iris scanning and facial BI recognition survey fingerprint recognition survey iris scanning and facial BR recognition survey fingerprint recognition survey iris scanning and facial PU recognition survey fingerprint recognition survey iris scanning and facial PEOU recognition survey fingerprint recognition survey iris scanning and facial RA recognition survey fingerprint recognition survey iris scanning and facial PC recognition survey fingerprint recognition survey iris scanning and facial TA recognition survey fingerprint recognition survey iris scanning and facial FC recognition survey fingerprint recognition survey iris scanning and facial Exp recognition survey fingerprint recognition survey N Mean Std. Deviation Std. Error Mean 151 2,79 ,984 ,080 187 3,30 1,234 ,090 148 2,60 1,055 ,087 175 3,07 1,138 ,086 145 2,78 ,893 ,074 171 3,65 ,910 ,070 145 3,59 ,813 ,068 170 4,08 ,762 ,058 145 2,66 ,845 ,070 171 3,58 ,817 ,062 144 3,81 ,871 ,073 160 3,52 ,876 ,069 143 3,05 ,790 ,066 160 2,65 ,746 ,059 143 3,08 ,848 ,071 160 3,43 ,740 ,059 143 1,92 ,873 ,073 160 1,93 ,884 ,070 Appendix 9 | - 87 - Independent Samples Test Levene's Test for Equality of t-test for Equality of Means Variances F Sig. t df Sig. (2-tailed) Mean Std. Error 95% Confidence Interval of the Difference Difference Difference Lower Equal variances assumed BI 20,916 ,000 Equal variances not assumed Equal variances assumed BR ,233 ,630 Equal variances not assumed Equal variances assumed PU ,092 ,762 Equal variances not assumed Equal variances assumed PEOU 7,981 ,005 Equal variances not assumed Equal variances assumed RA ,073 ,787 Equal variances not assumed Equal variances assumed PC Equal variances not assumed 1,454 ,229 Upper -4,139 336 ,000 -,511 ,124 -,754 -,268 -4,239 335,952 ,000 -,511 ,121 -,749 -,274 -3,802 321 ,000 -,467 ,123 -,709 -,225 -3,826 318,280 ,000 -,467 ,122 -,707 -,227 -8,598 314 ,000 -,876 ,102 -1,076 -,675 -8,610 307,291 ,000 -,876 ,102 -1,076 -,676 -5,520 313 ,000 -,490 ,089 -,665 -,316 -5,492 297,983 ,000 -,490 ,089 -,666 -,315 -9,922 314 ,000 -,930 ,094 -1,114 -,745 -9,895 302,082 ,000 -,930 ,094 -1,115 -,745 2,858 302 ,005 ,287 ,100 ,089 ,484 2,859 298,971 ,005 ,287 ,100 ,089 ,484 Appendix 9 | - 88 - Levene's Test for Equality of t-test for Equality of Means Variances F Sig. t df Sig. (2-tailed) Mean Std. Error 95% Confidence Interval of the Difference Difference Difference Lower Equal variances assumed TA 2,010 ,157 Equal variances not assumed Equal variances assumed FC ,058 ,811 Equal variances not assumed Equal variances assumed Exp Equal variances not assumed ,000 1,000 Upper 4,520 301 ,000 ,399 ,088 ,225 ,573 4,505 292,505 ,000 ,399 ,089 ,225 ,573 -3,815 301 ,000 -,348 ,091 -,528 -,169 -3,786 283,699 ,000 -,348 ,092 -,529 -,167 -,081 301 ,936 -,008 ,101 -,207 ,191 -,081 298,022 ,936 -,008 ,101 -,207 ,191 Appendix 9 | - 89 - Appendix 10: General Linear Model: main & interaction effects demographic variables on different identification technologies Appendix 10.1 Demographic variables on BI of IS&FR and FP Gender Tests of Between-Subjects Effects Dependent Variable: BI Source Type III Sum of df Mean Square F Sig. Partial Eta Squares Squared a 3 8,872 7,304 ,000 ,072 2435,901 1 2435,901 2005,424 ,000 ,877 21,784 1 21,784 17,934 ,000 ,060 ,629 1 ,629 ,518 ,472 ,002 ,182 1 ,182 ,150 ,699 ,001 Error 342,533 282 1,215 Total 3083,000 286 369,150 285 Corrected Model 26,617 Intercept Respondent_survey 9 Gender Respondent_survey * Gender Corrected Total a. R Squared = ,072 (Adjusted R Squared = ,062) Estimates Dependent Variable: BI Gender Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound Male 3,131 ,112 2,912 3,351 Female 3,032 ,080 2,874 3,191 9 Respondent survey = regarding the iris scanning and facial recognition survey (1) or regarding the fingerprint survey (2 Appendix 10.1 | - 90 - Age Tests of Between-Subjects Effects Dependent Variable: BI Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 4,539 3,984 ,000 ,158 2063,497 1 2063,497 1811,153 ,000 ,868 Respondent_survey 13,425 1 13,425 11,784 ,001 ,041 Age 26,960 6 4,493 3,944 ,001 ,079 7,978 6 1,330 1,167 ,324 ,025 Error 313,315 275 1,139 Total 3107,000 289 372,325 288 Corrected Model 59,010 Intercept Respondent_survey * Age Corrected Total a. R Squared = ,158 (Adjusted R Squared = ,119) Estimates Dependent Variable: BI Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 3,563 ,267 3,037 4,088 18-24 2,834 ,110 2,618 3,050 25-34 2,506 ,210 2,093 2,919 35-44 3,109 ,162 2,790 3,429 45-54 3,462 ,149 3,167 3,756 55-65 3,049 ,183 2,688 3,410 >65 3,354 ,234 2,894 3,814 Correlations BI Pearson Correlation BI 1 Sig. (2-tailed) N Age Age ,129 * ,028 338 289 * 1 Pearson Correlation ,129 Sig. (2-tailed) ,028 N 289 289 *. Correlation is significant at the 0.05 level (2-tailed). Appendix 10.1 | - 91 - Highest obtained education Tests of Between-Subjects Effects Dependent Variable: BI Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared Corrected Model 35,925 a 11 3,266 2,689 ,003 ,096 Intercept 717,165 1 717,165 590,532 ,000 ,681 Respondent_survey 8,143 1 8,143 6,705 ,010 ,024 Highest Obtained Education 5,766 5 1,153 ,950 ,449 ,017 4,487 5 ,897 ,739 ,595 ,013 Error 336,400 277 1,214 Total 3107,000 289 372,325 288 Respondent_survey * Highest Obtained Education Corrected Total a. R Squared = ,096 (Adjusted R Squared = ,061) Estimates Dependent Variable: BI Highest Obtained Education Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound Primary School 3,500 ,675 2,172 4,828 Secondary School short-type 2,922 ,217 2,494 3,350 Secondary School long-type 3,187 ,117 2,957 3,417 Professional Bachelor 3,050 ,115 2,823 3,276 Academic Bachelor 3,236 ,189 2,863 3,609 Academic Master 2,828 ,168 2,497 3,159 Appendix 10.1 | - 92 - Social status Tests of Between-Subjects Effects Dependent Variable: BI Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared Corrected Model 36,784 a 11 3,344 2,761 ,002 ,099 Intercept 625,235 1 625,235 516,151 ,000 ,651 Respondent_survey 4,891 1 4,891 4,038 ,045 ,014 Social Status 9,042 5 1,808 1,493 ,192 ,026 2,253 5 ,451 ,372 ,868 ,007 Error 335,542 277 1,211 Total 3107,000 289 372,325 288 Respondent_survey * Social Status Corrected Total a. R Squared = ,099 (Adjusted R Squared = ,063) Estimates Dependent Variable: BI Social Status Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound Single 3,029 ,139 2,756 3,302 In a relationship 2,852 ,138 2,580 3,124 Cohabiting 3,006 ,220 2,573 3,440 Married 3,230 ,099 3,036 3,424 Divorced 2,333 ,502 1,344 3,322 Widow/Widower 3,167 ,502 2,178 4,156 Appendix 10.1 | - 93 - Profession Tests of Between-Subjects Effects Dependent Variable: BI Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 15 3,633 3,121 ,000 ,147 1433,854 1 1433,854 1231,646 ,000 ,820 Respondent_survey 28,345 1 28,345 24,348 ,000 ,082 Profession 10,652 7 1,522 1,307 ,247 ,033 15,589 7 2,227 1,913 ,068 ,047 Error 315,492 271 1,164 Total 3099,000 287 369,993 286 Corrected Model 54,501 Intercept Respondent_survey * Profession Corrected Total a. R Squared = ,147 (Adjusted R Squared = ,100) Estimates Dependent Variable: BI Profession Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound student 2,928 ,108 2,716 3,140 unemployed/job seeker 2,571 ,338 1,906 3,237 worker 2,750 ,319 2,122 3,378 employee 3,088 ,131 2,831 3,346 manager 3,414 ,316 2,792 4,036 official 3,420 ,251 2,927 3,914 self-employed 3,208 ,225 2,766 3,651 retired 3,224 ,183 2,864 3,584 Appendix 10.1 | - 94 - Appendix 10.2 Main and interaction effect of age regarding independent variables Perceived Usefulness Tests of Between-Subjects Effects Dependent Variable: PU Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 6,557 9,003 ,000 ,299 2255,752 1 2255,752 3097,142 ,000 ,918 Respondent_survey 36,932 1 36,932 50,708 ,000 ,156 Age 18,196 6 3,033 4,164 ,001 ,083 5,889 6 ,982 1,348 ,236 ,029 Error 200,292 275 ,728 Total 3356,000 289 285,536 288 Corrected Model 85,245 Intercept Respondent_survey * Age Corrected Total a. R Squared = ,299 (Adjusted R Squared = ,265) Estimates Dependent Variable: PU Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 3,813 ,213 3,392 4,233 18-24 3,196 ,088 3,023 3,368 25-34 2,738 ,168 2,408 3,069 35-44 3,049 ,130 2,794 3,305 45-54 3,541 ,120 3,305 3,776 55-65 3,236 ,147 2,947 3,525 >65 3,300 ,187 2,932 3,668 Appendix 10.2 | - 95 - Perceived Ease Of Use Tests of Between-Subjects Effects Dependent Variable: PEOU Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 2,197 3,809 ,000 ,153 3137,497 1 3137,497 5440,314 ,000 ,952 Respondent_survey 8,973 1 8,973 15,559 ,000 ,054 Age 7,395 6 1,233 2,137 ,049 ,045 Respondent_survey * Age 2,838 6 ,473 ,820 ,555 ,018 Error 158,019 274 ,577 Total 4457,000 288 186,580 287 Corrected Model 28,561 Intercept Corrected Total a. R Squared = ,153 (Adjusted R Squared = ,113) Estimates Dependent Variable: PEOU Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 4,063 ,190 3,689 4,436 18-24 3,751 ,078 3,597 3,904 25-34 3,780 ,149 3,486 4,074 35-44 3,664 ,116 3,437 3,892 45-54 4,133 ,106 3,924 4,342 55-65 3,806 ,130 3,549 4,062 >65 3,848 ,168 3,517 4,180 Appendix 10.2 | - 96 - Relative Advantage Tests of Between-Subjects Effects Dependent Variable: RA Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 7,151 11,499 ,000 ,352 2133,176 1 2133,176 3429,986 ,000 ,926 Respondent_survey 40,781 1 40,781 65,573 ,000 ,193 Age 23,655 6 3,943 6,339 ,000 ,122 3,520 6 ,587 ,943 ,464 ,020 Error 171,028 275 ,622 Total 3142,000 289 263,993 288 Corrected Model 92,965 Intercept Respondent_survey * Age Corrected Total a. R Squared = ,352 (Adjusted R Squared = ,322) Estimates Dependent Variable: RA Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 3,500 ,197 3,112 3,888 18-24 2,963 ,081 2,804 3,122 25-34 2,524 ,155 2,218 2,829 35-44 3,117 ,120 2,881 3,353 45-54 3,500 ,110 3,283 3,717 55-65 3,181 ,135 2,914 3,447 >65 3,458 ,173 3,118 3,798 Appendix 10.2 | - 97 - Privacy Concerns Tests of Between-Subjects Effects Dependent Variable: PC Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 1,875 2,580 ,002 ,109 2792,891 1 2792,891 3841,958 ,000 ,933 3,114 1 3,114 4,283 ,039 ,015 14,651 6 2,442 3,359 ,003 ,068 5,254 6 ,876 1,205 ,304 ,026 Error 199,910 275 ,727 Total 4061,000 289 224,291 288 Corrected Model 24,381 Intercept Respondent_survey Age Respondent_survey * Age Corrected Total a. R Squared = ,109 (Adjusted R Squared = ,067) Estimates Dependent Variable: PC Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 3,500 ,213 3,080 3,920 18-24 3,630 ,087 3,458 3,803 25-34 4,155 ,168 3,825 4,485 35-44 3,700 ,130 3,445 3,955 45-54 3,552 ,119 3,317 3,787 55-65 3,809 ,146 3,521 4,097 >65 3,104 ,187 2,737 3,472 Appendix 10.2 | - 98 - Technology Anxiety Tests of Between-Subjects Effects Dependent Variable: TA Source Type III Sum of df Mean Square F Sig. Squares Partial Eta Squared a 13 1,850 3,397 ,000 ,139 1642,492 1 1642,492 3016,418 ,000 ,917 Respondent_survey 8,755 1 8,755 16,079 ,000 ,055 Age 6,715 6 1,119 2,055 ,059 ,043 Respondent_survey * Age 3,450 6 ,575 1,056 ,389 ,023 Error 149,198 274 ,545 Total 2457,000 288 173,247 287 Corrected Model 24,049 Intercept Corrected Total a. R Squared = ,139 (Adjusted R Squared = ,098) Estimates Dependent Variable: TA Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 2,438 ,184 2,074 2,801 18-24 2,904 ,076 2,755 3,053 25-34 3,147 ,148 2,857 3,438 35-44 2,753 ,112 2,532 2,974 45-54 2,692 ,103 2,489 2,896 55-65 2,833 ,127 2,584 3,083 >65 2,808 ,162 2,490 3,126 Appendix 10.2 | - 99 - Facilitating Conditions Tests of Between-Subjects Effects Dependent Variable: FC Source Type III Sum of df Mean Square F Sig. Partial Eta Squares Squared a 13 1,572 2,670 ,002 ,112 2303,018 1 2303,018 3911,152 ,000 ,935 Respondent_survey 2,443 1 2,443 4,148 ,043 ,015 Age 8,582 6 1,430 2,429 ,026 ,051 Respondent_survey * Age 4,266 6 ,711 1,207 ,303 ,026 Error 161,340 274 ,589 Total 3276,000 288 181,778 287 Corrected Model 20,437 Intercept Corrected Total a. R Squared = ,112 (Adjusted R Squared = ,070) Estimates Dependent Variable: FC Age Mean Std. Error 95% Confidence Interval Lower Bound Upper Bound <18 3,812 ,192 3,435 4,190 18-24 3,276 ,079 3,121 3,431 25-34 2,923 ,154 2,621 3,225 35-44 3,200 ,117 2,970 3,430 45-54 3,329 ,107 3,118 3,541 55-65 3,226 ,132 2,966 3,485 >65 3,412 ,168 3,082 3,743 Appendix 10.3 Correlations age – independent variables Correlations Age Pearson Correlation Age PU 1 Sig. (2-tailed) N 289 PEOU RA PC TA FC ** -,068 -,032 -,027 ,248 ,003 ,247 ,589 ,645 288 289 289 288 288 ,048 ,068 ,415 289 ,172 **. Correlation is significant at the 0.01 level (2-tailed). Appendix 10.2 | - 100 -
© Copyright 2024 ExpyDoc