PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/22990 Please be advised that this information was generated on 2015-01-24 and may be subject to change. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS ARTICLE NO. 225, 808-816 (1996) 1255 Simultaneous Suppression of Progression Marker Genes in the Highly Malignant Human Melanoma Cell Line BLM after Transfection with the Adenovirus-5 E1A Gene Jan J. M. van Groningen,* Ine M. A. H. Cornelissen,f Goos N. P. van Muijen,t ,i Henri P. J. Bloemers,* and Guido W. M. Swart* *Department o f Biochemistry and f Department o f Pathology, University o f Nijmegen, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands Received July 22, 1996 The highly metastatic human melanoma cell line BLM was transfected with the ElA or EIA+E1B regions of adenovirus 5 (Ad5). A series of progression markers, correlated with the malignant phenotype of parental BLM (including calcyclin, thymosin 0 10, plasminogen activator inhibitors types 1 and 2 urokinase type and tissue type plasminogen activators, vimentin, tissue type transglutaminase, and interleu kin-6), was collectively repressed in the transfeetants, whereas several control genes were not affected or even induced. The apparently coordinate repression of a set of markers by the same regulator gene, Ad5 ElA in this case, suggests the existence of one pathway under the control of a main switch and predicts that one or more as yet unidentified cellular master genes normally exert this function. A reduced oncogenic ity was observed after subcutaneous inoculation of the ElA transfeetants into nude mice and provides additional evidence in support of a tumor suppressor function of Ad5 E lA . © 1996 Academic Press, inc. Melanocytic tumor progression is thought to evolve through several distinct stages, from normal melanocytes to highly invasive melanoma cells capable of metastasis (1,2). A vast collection of molecular markers associated with subsequent stages of melanocytic tumors and expressed in a number of melanoma derived cell lines (for review, see ref. 3) has been described. In the past years we have characterized several reverse progression markers, present in non metastatic human melanoma cell lines, as well as positive progression markers, characteristic for highly metastatic melanoma cell lines (4-10). While changes in gene regulation drive tumor progression, it should be feasible to identify one or a few regulatory genes (e.g. encoding transcription factors or coactivators) that control expression of a set of either reverse or positive progression markers by characterizing the regulatory elements of available marker genes. Alternatively, it may be possible to test a regulatory gene as a candidate to control the expression of a set of related marker genes. The experiments described in this report follow the latter approach, using the human Ad5 ElA gene as a candidate suppressor gene. While the human Ad5 ElA gene is best known for its transforming properties and related broad influences on gene regulation (for review, see ref. 11), the introduction of Ad5 ElA into highly malignant rodent or human cells induced a reduction of the metastatic potential (re viewed in ref. 12). The reduced metastatic activity in ElA transfected cells correlated with reduced levels e. / ■* and collagenase type I and type I Correspondence. Fax: +31-24 3540525. E-mail: [email protected]. Abbreviations used are: Ad5, adenovirus type 5; IL-6, interleukin-6; PAI-1, plasminogen activator inhibitor type 1; PAI-2, plasminogen activator inhibitor type 2; SDS-PAGE, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate; tPA, tissue type plasminogen activator; Tgase2, tissue type transglutaminase; uPA, urokinase type plasminogen activator. 808 0006-291X/96 $18.00 1996 by Academic Press, Inc. All rights of reproduction in any form reserved. i mmà lim é , No. 3, BIOCHEMICAL IV (14), or down-regulation of the proto-oncogene neu (15,16) of the normal human c-erbB-2/neu proto-oncogene is a cancers. Renewed ectopic overexpression of neu in re-induced the related, EIA activity also stimulated nm23 tumor cells (18). in MATERIAL AND METHODS i * m cell line was on 12 cals Inc., Aurora were incubated with the M73 anti-El A monoclonal antibody (24). Slides incubated for 60 min patts, Glostrup, Denmark). For actin staining, cells were washing with PBS (3 X 10 min), slides were mounted in RNA isolation and northern blot analysis. Total RNA was is were •y, UK). m 4 AL im m 1 ml of hybridization mixture. To confirm that hybridized to an i c -mv< and BLM expression in 1F6 and 530 (J. J. M. Dr. R. , mouse /3-actin, rat fetal calf serum * i IIA) assa\ d c o r l o i u li l i o a 4 (BLM.mock) 018 1 J3 0 [O JJU O D a q i ■ s a u a q d u a d a q i s i a q g s s a j j s u a a /w ja q .r e a u s a jB i ¿ f u r e a i s n o j a i u n u q jM O iS u i p a z ijB o o i p a A u jd s ip u s a s s a a q y AMV I 3 'W s b a \ a o u a j a j j i p j a j j o q s 1 9 ju B o y tu S is p a ix r e o p u B S [ja o o u p u B IA T I 9 [O -H u o o s a n a n o [ - T s n o u B A 3 W a q x n 3 0 I 9 U I a n q /A '( 9 1 ^ ï d ) u ip iO T req d -a u io rep o q j qjiM p a u rejs s j s / a s y a o [[B ‘sa S ir e q o [Bjaia>|soiÁ o Áq p arired u iooou ajaAv s n a o 0 1 p a & ' M JV i j s a w I 3 ' m - v r a a s n s ia A 01 SB s a u i j p a j j a j a j s i [ ja o a o u a a a j a j lU B y a A S J ■ S y ) a q j a q x } s a i S o i o q d j o u i 0 j u a r a j j i p a q i .la q ja q M j s a j ' s a S B s s B d 11 ? U 9 s p u re S u i z q q j j j q j j b t4 p 9 d B q s - 9 i p i n d s , , o * pajJSA&i Xisnosirejuods jnq fcjsjy tb ^^Hi^qaqjidQ,, sbm V13*W18 J° ASc{0qdJ0ui aqx ‘(VI •gy) ttp9di?qs-9ipuids,, SBM souq \po oou*j/\ng puts >pourj/\nH ‘ÍM19 J° /í3o[oqdioui aqi ssaiaqM ‘¿§ 0[0qcLi0ui ^ q -im p q iid o ,, pire juy XpApB|ai pwnoqs pire jajsnp oj Äauapuaj b •u irf OS ju s s s u d s u ( | - a pu n 1 -v ) s w u jo a y a i « d d n a q i in s jc q a q x b \,„ V I H W 1 8 ‘9 : ó - ! 3 'I A T i a o^u-jAiia ‘£ tyoourj^rig ‘3 îjAHH lwared ‘ 1 'uopçziutôjo uipe jo sqd&iSojaiui wims&iony (g) j s ’i i J i u o o - i ) S T ? q d X q p a q d & z S o j o q d pm ? o jn jin o jo ‘S > ddoamioiui jq% 10 V I ' J J O / C S o i o q d i o w ui M - I H W 1 0 ( v ) I ‘9 1 ^ mm îv ■m . - 'M .¿>, MfSH ' / À mwm z : ir jîr ■ -M'>. wmm m m . t *i ■i mm*™-- w.faw. •••.,i?®V, j ()' f f ; •’fif :)Âfàv'A Vìi:• ■'V?!Ä.SÄ ^ \ S’’ . vf^ui ’S 5• '$tt' ' ' :l^ll<'•'•!»•; ;>v y . f ò i È w è i ] . ': Í & J = ' : • • ' : '•r-íí:: •': iíl;j;'jl^- •. W \ ,! ^  W ^ * V. ^ 2 , ^ v j»-’ À W Iw ^ É ïfï Tti'*'vi^ M® ’ lí YJiUÎ&Wiï lllfe;-:,/W ílÍéÍI'f ß mm pfc ï m m é ï - ï 'â m M ? M < é  ™ W k> M k tiSre* I p M R K m Hi uiÈ 11 gr/. PI mmëïÊMmÊmÊêM&ïÊM:-:rnfeH SSSv^d ;% m . H » &i&yA;ir&ÀÎ mm liais m m . Ü M ïM i'. m ¡ wmmmm sjïUVt ■M ÊmmwM lyVfWW y. w & Ï Ï À Î i// m Ä?VÍ îVj.'W ¡SkP^ÄIj fjv?^1 j 4^! • )À ; •> ' •ij ì ni? ^ ,'1 f VtfX&Slf/'r/; • J' IL ï^ iü /fr m m m mrn Â( ' - “ ‘- ‘îiîî- I w mm mrnmm fí'r! if/¿/f*Ji m m %P '■ M V ■ " S N O U V O lN IlIA lIA iO D H 3 > IV H S H > l IV D IS A H d O ia Q N V lV O M 3 H O O ia 9 6 6 1 '£ '° N 'S Z Z 'I ° A Vol. 225, No. 3, 1996 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS B V 'ï& y y m t' -U\\S' in& 'Sv . ••••> .•U 'A'.- ?&v: P $ m w . ;js : :>y : ifl^ ' :: , '■■?■ i: .I '- : ^ 'V ■■:■ > : S ® S |i f f!! |I S ;.:;:■ ■pÇ.'i: ; u : ■%§■# i ’ ìé0M-.s: my/ 'm..y ■yyim’ . y^ . ^ v . - , r .>;••. . '■!■'&•;••••, ’V-": , , . ■vO :■ ■.■,:'■■.. ■' l ï !ïl é ti i l ^ w:. f e . :. •• ■ ■ ■■. ■'' .:■ A ::f [yy-m^wy .'■ ' ' f-' ■; ^ ■■■;:■■::■■.■.: ■■.■■••:;':■ : I P 'i S f t » * # .;&. . : : v . v , > V 'iîcè</ : i^::- 1■:■'■■:§ V!■!/ is :':i : !;;® • j.' ", •/, .*. ■1 ' N / V i ^ v ^ y . ! 6:^ j5*.-' I* : • : «' i'I '••'•'(fi,' i>j : ■.,f -i ' 11 ‘■-tf V É É & i kM ÊÊ «V :-y.xso:/ m m - ^P À '& s. ■0Î ' :t .• ■' :■ ■ r# i<.: ' r’ ■ 'Ì P :^ -Ant'/ l ê i f e A - .v y ; w m y m ' • ■: ^ ,/ } ■: 1 t1é4 Si;1 'V:'' ' '■.'V: i X ? !' ■ m m v / ; ;iS Î: .. . .«. / .,<»'4 > W m m ' ' ;-;0 Mf -n î7r.•■«■«: .*.«■■■ ■ ■ y1/. % ■'« «'vvrwv>«^wv :-V«V.<'«.«vv/•• */(• />• .•-< ■.«ïf«' • -jJeri': • ' ''i '■?& ' / ' ;fV:.. #.'V -11, . .« m m m y ■' .'.:'/:!î' ^MS':'. W p ; ; • • ilüPr-k ifi't PI !■ 'Jd yj:\fó ty.t ¡tx< yW i$£yyw -TV.' .•-- • lines and the EM immunoprécipitation (not shown) £ V F * . ••' <\'U| r. '.>/',/>• W ". ' ' • • • . ■ ■ J •« •\.;V <i< •r'S. / v• ■:■ ".-It : m ^ ’mmc ' --mm Ï 0 Ê ■■■;i;^.i.-,,Vi,. vr"r. « .-î ^ :,;;; v; ^ .. ' ■ v ■.: :=■:«■■■ ‘■ ■4*’.: ■ •••■■.-.o'U ■•■ ■ . V% viîv.J ifc1: - • ■’ '• •'•"^■' ,. '•7'.::;:î^' iiv =:W ^ % % ■ "% . ■!■ •'•'•*• , -r é ■■:■ , & wmmm ^-■'K i , . :-■ ;■■ r :? : ' ■■■ ■■■ ■ ■■'■ ■■ '■.■..ìiip-;, %, '■,'• ' i ' '.f ■■'■' ":!■ : ■' :.;i.-' '. : : :' : ¡i*iV' '• ' : «.r:■s «■• :■ ■rr .f ‘ W & i .••¡.if/-/ S 4 4 ', " m m . 4 / i'iv.'-;/ ■ ■1 . .’•. V/ m V/F? in the transfected cells were marker genes in the non- it.f *• further characterization, RNA was cell lines, BLM.mock, BLM.neo metastatic cell lines MV3 and BLM, and BLM.E1-1, BLM.E1-2 and BLM.E1A (after transfection of El A, of were grown in sufficient amounts to allow RNA isolation cells). As expected, El A mRNA expression was only detectable in the three positive transfee tants, BLM.E1-1 visible (Fig. 2A). In addition, we examined the expression of a panel of positive progression marker genes, including calcyclin (4), thymosin /31Q (5), TGase2 (28), PAI-1 (30), PAI-2 (31), Vol. 225, No. 3, 1996 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS A 1 2 3 4 5 6 7 8 ETA (U kb) 1 WjM ;TV : 4 3 5 8 7 6 PAI-1 (2.3/3.4 kb) i , ■■ 2 ,. ' i ' : * memA (2.9/3.6 kb) • • i. • • . PAt-2 (2.1 kb) : =f ' ■ : y;iy ¡■, ■ J,:. '• v ; ■ifi. > :-,.i v • i.T i > > / . memB (2.8 kb) uPA (2.6 kb) thymosin >310 (0.6 kb) mmmimimm w >' •i: .y j i ”, . i . .... ... N j: .. ,»11. vi ■ ■ ■ . ■ ..•• . . ’ ..' , : :. '-.* 1..' / • : ;v :ii:V’ i ■ : 1. . . ■•I< : •' ::■■■ : .-v. , 1'. r .V M W '..■ . m ■■'■:'■I’1' ■ 1:•.■*. . f¡-I-'; : , •i- 'Ss'Aw;.'-<. ! ;;5 ; i k : ; ! • ••• vKy.'.y.:^ •yl: V/;.j'*-*i'i j;.- ? : > ^ - . V '. ' ^ J r ■. ■' : ij: II i ' I .' ■ Jl.V \ \ 1 1 w '> ‘. / J ¡V/;.'i' .. J . - r . i . o . l / ¡I': '' ' V ' I■ • •• l :. |' :/ I. •! . • ¡V., :• ..; ■I ■: ■' •' . *’■'s 1■'1’ m jv ^ v !.: . - tPA (2.8 kb) y -m t-m . ■ '•■ ■’,v . ■1i :' ': ■M V ' i : - ... .,' .*■,i Ii . i . . . 1. / ^ .; ' " ■ ■ .:.■ :■ :■ ■ ■ u ;r. . .. ■' 1 ■ l> •.■:• i . ' K •? ' >:*.v * * •U ■<I.: S:ii’V: 1'. 't '. -••V-VTlii '•-1 .! V - J?! QBfc-'rtJi s s m m m .• 'i i : ' . i .s.. ;V.'f. f: .-i ■ :'.' : v-- : ■ • •••.•..' .-..V .:i '.■■■■^,i ' >y- :-\h\ v»v; '¡J',- ' S M ■’-r ' ’ I-1V'-v.' ;V• ! !';• •. \\! |i ' s • 1\ v !1.' ■j.': ,■ 1 • : : i;:: 1i i' •' j’i j '!■ :•••; I*' i ' v.* .. : . ■K^!: • •fV! • ' ' '*¡1 >•..; :!i:. v •X’ : •' !::v .! > .■■v :.V'■'. i... s i.• i .■■■•. i'i;' ■ . 1 f.’’ ' ■ > ■ : ■< :■■ : 1 m m .,,,.....-...s, w ' •' i I.]■■'■■■ '.:! •;■ iv.- calcyclin (0.6 kb) :! - .v ’ ''’v 1?$':.: • ■. ■ ■■■ V- ' ' • !• •• •f•• ' ■’■■■:: ■ !i •' • :v : Vi- V i. . i*. i ■ '.^'i ••• • ■ I’-f.'. : : TGase2 (3.5 kb) c-myc (4.1 kb) 18$ rRNA 18S r RNA m C 1 2 4 3 5 6 8 7 53 (2.6 kb) |Si§tte!; 2 1 3 6 S 4 liiliiiiiillilijlip l .:.:•• ./if: ■.'..■I: 8 7 :. I •: nma (1.8 kb) hsp70 (2.8 kb) ■ T . •'¡■V V./: ■IH.I vV. - ^ - : - - V- - H i: ■■ W. ' : ■■■•/' : : :: -■Vni: :. .if--. ^ • =::'VX - i:.; ' I: :}'■ :• W^:-- . I';'j J .\i>• m y. mnb (2.6 kb) yPlWMi- '-‘IWift ;,S*::«! J iP lilill! I ' j )- i ■. . ■■ -■■■.■ r1:! 1r ■ f ■ ■ •• '...:• t : .• :ii.!¿:i¿so•!•;■.ami& ¡ : y liH: ?£&&: &<i vi mentin (2.1 kb) •••. J.viy.''**: - ■i ■■ ■'.-v' ■': '*1 ’1 '4 /y&( -<-W A - ^ lv ’.v/V: ' Vf ME 491 (1.5 kb) j8 actin (2.1 kb) iillH .. .. : . : .• '■ i; V r .l1'1-. ' 8SrRNA • in W it mfiV. ^■ 0 •■ ■ ■W; wmmm ^iVSfri/i:'* a-. V :- \ . ¡1. •; : ' 5 ' r . -1-■ V-':H v : . ^ i t . ' .V-'• - | •! -r.v :0 I ‘- ■(H i '¥r ■.:■,■■■■■l a x IBS rRNA v ::'tiflV .lU i FIG. 2. Northern blot analysis of human melanoma cell lines, and E l A or E1A+E1B transfectants. Ten yug of total RNA was loaded in each lane. Lane 1, 1F6; lane 2, MV3; lane 3, BLM; lane 4, BLM.mock; lane 5, BLM.neo; lane 6, BLMJE1-1; lane 7; BLM.E1-2; lane 8, BLM.E1A. (A) Expression of E1A, PA M , PAI-2, uPA, tPA, TGa-se2. (B) Expression of memA, memB, thymosin /?10, calcyclin and c-myc. (C) Expression of p53, nma, nmb and ME49\. (D) Expression of hsp70, ft actin and vimentin. Lambda Hindlll was used as a molecular marker; a 18S ribosomal probe was used for control hybridization. 812 Vol. 225, No. 3, AND BIOPHYSICAL RESEARCH COMMUNICATIONS TABLE I Human Melanoma and E l A or E l A + E1B Ml Cell line IL-6 530 1F6 MV3 BLM BLM.mock BLM.neo BLM.EI-1 BLM.EI-2 BLM.ElArev <0.005 <0.004 13 9.0 14 10 <0.003 <0.006 8.4 mm Cell lines were cultured for 48 was de. IL-6 values are given as pg active protein per ml per 106 cells. tPA uPA (two novel genes, associated with highly metastatic M. van Groningen, unpublished results), vimentin and c-myc (29) (note that c-myc showed no differential mRNA expression in our panel of human melanoma The expression profile of BLM.E1-1, BLM.E1-2 and BLM.E1A showed a specific switch off for most of these genes, while thymosin £10 and vimentin were downregulated to non-metastatic cell line 1F6. The expression of some other genes was hardly or not actin, p53, nma and nmb (two novel genes, not expressed in our and the reverse progression marker ME491 (33). In accor % * was greatly increased in El A expressing cells In the expression of positive progression marker genes is . Gene activity in the non-metastatic cell The secretion of IL-6 into the growth medium by the reference cell lines transfectants was assayed by hybridoma growth stimulation (Table 1). The nonnot produce IL-6, whereas the highly metastatic cell amounts of IL-6 into the growth medium. IL-6 C md BLM.E l-2 was down-regulated to the level of the non-metastatic to parental BLM, BLM.neo and BLM.mock. IL-6 530 was at the level of the parental BLM cell line. two neo transfectants BLM.neo7 BLM.ElArev, and the El A expressing BLM.E1 and 9 formed large tumors within 6 weeks. -1 and BLM.E1observations indicate that tumor growth of the DISCUSSION The presented set of experiments was designed to study molecular mechanisms controlling BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Vol. 225, No. 3, 1996 30 25 20 00 £ o 15 + BLM A neo 7 O nao 12 + BLM.E1 Arev 0 fEz BLM.E1 -1 3 O > 10 O BLM.E1 -2 5 0 0 10 30 20 40 50 days FIG. 3. Growth curves of the tumors from parental BLM, BLM.neo 7, BLM.neo 12, BLM.ElArcv, BLM.E1-1 and BLM.E1-2 cell lines in nude mice. Approximately 3 X 106 cells were inoculated s.c. into nude mice. Tumor volumes were measured weekly and mice were allowed to sit for three months unless the tumor size interfered with the animal’ health. Values are given as a mean of all animals (5 animals per cell line) tested. the highly metastatic human melanoma cell line BLM by stable transfection, we have observed the apparently collective and coordinate suppression of a panel of genes whose expression is normally positively related with the malignant BLM phenotype. While some of these positive progression markers have a proven functional relation with metastasis, the functions of some others, including two novel genes, are unknown in regard to neoplastic progression. The apparently coordinate type of intervention is remarkable and novel, and provides evidence for the existence of a common pathway of neoplastic progression in melanoma cells. Significant differences existed in the levels of ElA expression in the three transfectants, BLM.E1-1 displaying the highest levels of both mRNA and protein. Despite these variations all three El A expressing transfectants were equally capable of suppressing positive progression marker gene expression and changing cell morphology. As additional confirmation for the presence of ElA activity we observed the well described stimulation of hsplO expression (35) in all three transfectants, BLM .EM , BLM.E1-2 and BLM.E1A. The complete suppression of several genes (e.g. u-PA, PAI-1) in all transfected cell clones is a strong argument in favor of homogeneity of the cultures analyzed. The presence of the ElA gene had no effect on p53 transcript levels, but it is known that ElA stabilizes the p53 tumor suppressor protein and promotes apoptosis (36). Continuous culturing may, therefore, select for cells that have lost ElA expression. Accompanying the loss of ElA expression, BLM.ElArev had reverted to the parental phenotype, further confirming that ElA activity is responsible for the observed pheno typic changes. The Ad5 E1B gene products inhibit ElA associated apoptosis (37). Therefore, transfectants and, indeed, ElA expression is apparently stable in BLM.E1-1 and BLM.E1-2 cell lines. In addition to the differences in the gene expression profiles, the ElA transfectants display changes in cell morphology and cytoskeletal organization. This phenomenon is not normally related with melanoma progression (compare ref. 38). Apparently, ElA proteins do not only cause suppression of late progression marker genes but have broader effects. This is not surprising in view of the number and nature of the cellular factors that are known to associate 814 Vol. 225, No. 3, BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS with El A (11,39). El A induced phenotypic alterations were more often associated with a cytoskeletal reorganization, the resultant patterns being cell-type-dependent (38,40). Our data provide new evidence in support of a tumor suppressor function for E lA , as suggested recently by several other groups (12,40-43). Reduced oncogenicity would be a likely and logical consequence of the observed suppression of positive progression marker genes. Subcutaneous inoculation of the transfected melanoma cells into nude mice indeed showed that the presence of ElA significantly reduced tumor growth. The properties of the reverted cell line BLM.E1 Arev corresponded also in this test with those of parental BLM. to this subject no unifying concept has emerged yet. The ample data are listed in recent reviews (11,39). In general, it is concluded that the mechanism does not seem to be mediated by one specific factor or interaction. Furthermore, it is pointed out that the qualitative effect (suppression or promotion) is factors (RB, p i07, pl30, p300). It is known that E lA inhibits cAMP-dependent activation of the IL-6 promoter due to interac tions with and inhibition of CBP (44). The mechanisms of the effects described in this report have to be elucidated in further studies. In summary, our results add new evidence to the earlier observed suppression/reversion of neoplastic progression by ElA (15,17,40,42,43,45). More importantly, while the apparent inhibition of the oncogenic potential of several human tumor cell lines was ascribed to the mere suppression of individual genes essential for advanced progression, our data show that ElA interference is more comprehensive and concerns the specific suppression of all tested panel of genes whose expression is positively correlated with neoplastic progression human melanoma cell lines of increasing metastatic potential. We therefore conclude that EIA fulfills the role of a “ master gene” , i.e. a gene responsible for the transition of one phenotype to another. The coordinate intervention realized by a viral gene suggests that neoplastic progres sion proceeds along a common pathway(s), which may be equally well controlled by (an) as yet unidentified cellular factor(s). ACKNOWLEDGMENTS The authors thank Dr. A. Zantema (Leiden, The Netherlands) for discussions and for providing the pAd5Xho and pAdSPst and the M73 monoclonal antibody. REFERENCES 1. Clark, W. H„ Jr., Elder, D. E„ Guerry, D., Epstein, M. N., Greene, M. H., and Van Horn, M. (1984) Hum. Pathol. 15, 1147-1165. 2. Herlyn, M., Clark, W. H., Rodeck, U., Maneianti, M. L., Jambrosic, J., and Koprowski, H. 56, 461 -474. . Invest. 70, 593 3. Waterman, M. A. J., van Muijen, G. N. P., Bloemers, H. P. J., and Ruiter, J 4. Weterman, M. A. J., Stoopen, G. M., van Muijen, G. N. P., Kuznicki, J., Ruiter, D. J. (1992) Cancer Res. 52, 1291 1296. 5. Weterman, M. A. J., van Muijen, G. N. P., Ruiter, D. J., and Bloemers, H. P. J. ;rs, H. P. J. , J. C m m 284. 6. Weterman, M. A. J., van Muijen, G. N. P., Bloemers, H. P. J., and Ruiter, D. J. (1993) Cancer Res. 53, 6066. 7. Weterman, M. A. J., Ajubi, N., van Dinter, I. M. R., Degen, W. G. J.f van Muijen, G. N. P., Ruiter, D. J., and Bloemers, H. P. J. (1995) Int. J . Cancer 60, 73-81. 383-387 8. van Groningen, J. J., Klink, S. L., Bloemers, H. P. J., and Swart, G. W. M. (1995) Int. J 9. Degen, W. G. J„ Weterman, M. A. J., van Groningen, J. J. M., Comelissen, I. M. A. H., Lemmers, J. P. V/. M. and Bloemers, H. P. J. (1996) Int. J. Cancer 65, 460 Agterbos, M. A., Geurts van Kessel, A., Swart, G. W 465. 10. van Groningen, J. J. M., Bloemers, H. P. J., and Swart, G. W. M. (1995) Cancer Res. 55, 6237-6243. 815 Vol. 225. No 1996 BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 11. Bayley, S. T., and Mymryk, J. S. (1994) Int. J. Oncol. 5, 425-444. 12. Chinnadurai, G. (1992) Oncogene 7, 1255-1258. •/. Acids Res. 16, 10973 13. Offringa, R., Smits, A. M., Houweling, A., Bos, J. L., and van der Eb, A. J. 10984. 14. Frisch, S. M., and Morisaki, J. H. (1990) Mol Cell Biol 10, 6524-6532. 15. Yu, D. H., Scorsone, K., and Hung, M. C. (1991) Mol. Cell. Biol. 11, 1745-1750. 16. Yu, D., Wolf, J. K., Scanlon, M., Price, J. E., and Hung, M. C. (1993) Cancer Res. 53, 891-898. 17. Yu, D., Shi, D., Scanlon, M., and Hung, M. C. (1993) Cancer Res. 53, 5784-5790. 18. Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeisson, U. P., Talmadge, J. E., Liotta, L. A., and Sobel, M. E. (1988) J. Natl. Cancer Inst. 80, 200-205. 19. van Muijen, G. N., Cornelissen, L. M., Jansen, C. F., Figdor, C. G., Johnson, J. P., Brocker, E. B., and Ruiter, D. J. (1991) Clin. Exp. Metastasis 9, 259-272. 20. van Muijen, G. N. P., Jansen, C. P. J., Cornelissen, L. M. A. H., Smeets, D. F. C. M., Beck, J. L. M., and Ruiter, D. J. (1991) Int. J. Cancer 48, 85-91. 21. Bernards, R., Houweling, A., Schrier, P. I , Bos, J. L., and van der Eb, A. J. (1982) Virology 120, 422-432. 22. Cepko, C. L., Roberts, B. E., and Mulligan, R. C. (1984) Cell 37, 1053-1062. 23. Humbel, R. L. (1994) in Manual of Biological Markers of Disease (van Venrooij, W. J., and Maini, R. N., Eds.), Kluwer, Dordrecht. 24. Harlow, E., Franza, B. R. J., and Schley, C. (1985) J. Virol 55, 533-546. 25. Auffray, C., and Rougeon, F. (1980) Eur. J. Biochem. 107, 303-314. 26. McMaster, G. K., and Carmichael, G. G. (1977) Proc. Natl. Acad. Sci. USA 74, 4835-4838. 27. Church, G. M„ and Gilbert, W. (1984) Proc. Natl Acad. Sci. USA 81, 1991-1995. 28. Gentile, V., Saydak, M., Chiocca, E. A., Akande, O., Birckbickler, P. J., Lee, K. N., Stein, J. R., and Davies, P. J. A. (1991) J. Biol Chem. 266, 478-483. 29. Timmers, H. T., De Wit, D., Bos, J. L., and van der Eb, A. J. (1988) Oncogene Res. 3, 67-76. 30. Quax, P. H. A., van Muijen, G. N. P., Weening-Verhoef, E. J. D., Lund, L. R. D., Dano, K., Ruiter, D. J., and Verheijen, J. H. (1991) J. Cell Biol 115, 191-199. 31. de Vries, T. J., Quax, P. H. A., Denijn, M., Verrijp, K. N., Verheijen, J. H., Verspaget, H. W., Weidle, U. H., Ruiter, D. J., and van Muijen, G. N. P. (1994) Am. J. Pathol 144, 70-81. 32. Frebourg, T., Kassel, J., Lam, K. T., Gryka, M. A., Barbier, N., Andersen, T. I., Borresen, A. L., and Friend, S. H. (1992) Proc. Natl Acad. Sci. USA 89, 6413-6417. 33. Hotta, H., Ross, A. H., Huebner, K., Isobe, M., Wendebom, S., Chao, M. V., Ricciardi, R. P., Tsujimoto, Y., Croce, C. M., and Koprowski, H. (1988) Cancer Res. 48, 2955-2962. 34. Kern, P., Hemmer, C. J., van Damme, J., Gruss, H. J., and Dietrich, M. (1989) Am. J. Med. 87, 139-143. 35. Kraus, V. B., Moran, E., and Nevins, J. R. (1992) Mol. Cell Biol 12, 4391-4399. 36. Lowe, S. W., and Ruley, H. E. (1993) Genes Dev. 7, 535-545. 37. Rao, L., Debbas, M., Sabbatini, P., Hockenbery, D., Korsmeyer, S., and White, E. (1992) Proc. Natl Acad. Sci. USA 89, 7742-7746. 38. Frisch, S. M. (1994) J. Celt Biol. 127, 1085-1096. 39. Hagmeyer, B. M., Angel, P., and van Dam, H. (1996) Bioessays 17, 621-629. 40. Frisch, S. M. (1991) Proc. Natl Acad. Sci. USA 88, 9077-9081. 41. Pozzatti, R., McCormick, M., Thompson, M. A., and Khoury, G. (1988) Mol Cell Biol 8, 2984-2988. 42. Zhang, Y. J., Yu, D. H., Xia, W. Y., and Hung, M. C. (1995) Oncogene 10, 1947-1954. 43. Frisch, S. M., and Dolter, K. E. (1995) Cancer Res. 55, 5551-5555. 44. Arany, Z., Newsome, D., Oldread, E„ Livingston, D. M., and Eckner, R. (1995) Nature 374, 81-84. 45. Yu, D., Hamada, J., Zhang, H„ Nicolson, G. L., and Hung, M. C. (1992) Oncogene 7, 2263-2270. 816
© Copyright 2024 ExpyDoc