Renewables - Springtij Forum 2014

Some remarks on
climate change
and our future
energy system
Wim Turkenburg
[email protected]
Copernicus Institute,
Utrecht University
&
Wim Turkenburg Energy and
Environmental Consultancy, Amsterdam
Springtij Forum - Terschelling
25 September 2014
Source drawing: NRC-HB, 19 August 2013
1
Climate Change
2
Monthly average CO2 concentration in the atmosphere
at Mauna Loa Observatory, in the period 1958 – August 2014
Note:
- In 2010 manmade emission of CO2 was ~37 GtCO2;
the emission of all GHG’s together ~49 GtCO2-eq.
- In 2010 the concentration of CO2 was ~388 ppm
and of all GHG’s together ~444 ppm CO2-eq.
- In 2010 the concentration of all GHG’s including
cooling aerosols was ~403 ppm CO2-eq.
(Source: IPCC, 2013 & EEA, 2013).
400 ppm
Source curve: http://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.pdf (visited: 24 Sept. 2014)
3
Indicatoren van een veranderend klimaat (IPCC, 2013)
(a) gemiddelde sneeuwoppervlak op het noordelijk halfrond in maart-april, (b) gemiddelde
zeeijsoppervlak in het Noordpoolgebied in juli-augustus-september, (c) verandering in de mondiaal
gemiddelde hoeveelheid warmte in de bovenste laag van de oceaan (0-700m), ten opzichte van het
gemiddelde van alle datasets voor 1971, (d) mondiaal gemiddelde zeespiegel, afwijking ten opzichte van
het 1900-1905 gemiddelde van de langstlopende dataset.
Alle tijdseries (gekleurde lijnen corresponderen met verschillende datasets) tonen jaarlijkse waarden.
Waar beschikbaar zijn de onzekerheden aangegeven met gekleurde banden.
Bron: Rob van Dorland, in: ‘De Staat van het Klimaat 2014’, HIER Klimaatbureau, Utrecht, 2014, pp.10-14.
4
Average global temperature change
(relative to average value of 1961-1990)
Question:
Quite some people
are saying:
“We are noticing a
stagnation in the
warming-up of
the earth”.
True or False?
Source: KNMI, De Bilt, 2012
5
Elsevier – 02-10-2013
Which heating?
Welke opwarming?
Klimaatpanel IPCC wordt met elk rapport
ongeloofwaardiger. Zeker nu de
temperatuur sinds 1998 niet meer stijgt.
Door Simon Rozendaal
Er is weer een nieuw rapport van het VNklimaatpanel IPCC. En opnieuw luidt de boodschap
dat het zeer waarschijnlijk is dat de opwarming door
de mens wordt veroorzaakt. Je moet maar durven.
NRC-HB – 21 -09-2013
The disaster that
didn’t come
De ramp die niet kwam
Door Karel Knip
De modellen die het broeikaseffect
voorspellen, hadden niet voorzien dat het
op aarde al twaalf jaar niet meer warmer
wordt.
Alle waarschuwingen voor de rampen die
klimaatverandering zal veroorzaken, zijn nog veel
dubieuzer.
(…) Klimaatverandering bestaat. Maar al die CO2
veroorzaakt tot nu toe geen overstromingen. Geen
cyclonen. Geen woestijnvorming. Geen malaria.
Geen voedseltekorten. Geen waterschaarste. En
geen oorlog.
Trouw – 21 sept. 2013
Aarde warmt minder snel
Heating of the
op dan gedacht
earth less than
Door Joep Engels
expected
De klimaatsceptici krijgen een beetje gelijk: de aarde
warmt mogelijk iets minder snel op dan eerder voorspeld.
Deze ontwikkeling is nieuwe brandstof voor de verhitte
controverses over de noodzaak van urgente maatregelen
om het klimaat te redden.
De Volkskrant – 28 sept. 2013
Heating is inevitable
Opwarming is onontkoombaar
Het is nu vrijwel zeker: het komt door de mens. Die
stoot zoveel broeikasgassen uit dat de aarde aan het
opwarmen is. En die opwarming zet door, zelfs als
vandaag alle uitstoot van CO2 stopt.
Door Martijn van Calmthout en Maarten Keulemans
De mens is de belangrijkste oorzaak van de opwarming van de
aarde, zeker in de periode na 1950. Dit concludeert het VN panel
IPCC met aan zekerheid grenzende waarschijnlijkheid in zijn 5de
rapportage over klimaatverandering. Het rapport legt een vrijwel
eenduidig verband tussen veranderingen in de atmosfeer, de
oceanen en de ijsmassa’s enerzijds en de toenemende
concentratie van CO2 en andere broeikasgassen in de lucht.
6
The greenhouse effect and Global Warming
- two remarks 1. ‘Global Warming’ is not equivalent to
‘average temperature on earth (troposhere)’ !
because of mechanisms like:
- storage of heat into the (deep) ocean;
- heat used to warm land, to melt ice, etcetera
2. The greenhouse effect of gases like CO2, caused by
molecular absorption of heat radiation, is a scientific
fact – nevertheless quite some (sceptical) people are
denying it. For a demonstration of the absorption of
heat radiation bij CO2, see a 1-min. movie on YouTube:
http://www.youtube.com/watch?v=Ot5n9m4whaw
7
Where is global warming going?
Source: John Cook, ‘Where is global warming going?’, Skeptical Science, 20 April 2010.
(Calculated from IPCC-AR4; data from the period 1993-2003)
8
Carbon budget,
‘stranded assets’
and CCS
9
Development of global CO2 emissions from
energy and industrial sources to limit temp.
change to below 2°C (prob. > 50%)
- GEA energy pathways toward a sustainable future -
Source: Global Energy Assessment, 2012
10
Global Carbon budget compatible with limiting
global warming to +2°C versus fossil fuel reserves
Conventional and unconventional fossil fuel reserves of coal, oil, and gas and the
global carbon budget compatible with scenarios limiting global mean warming to
2°C above pre-industrial temperatures (with a 66% probability).
Source of Fossil Fuel reserves: IPCC, 2011 (figure 1.7).
Source of Carbon budget: IPCC, 2013 and IPCC erratum, November 2013.
Source figure: ECF, “Statement by leading climate and energy scientists”, 2013
11
Unburnable Carbon and Stranded Assets
Carbon Tracker (2013):
-
-
The Carbon budget for a 2°C scenario would be around 565-886
GtCO2 to 2050.
A precautionary approach would mean that only 20% of the total
fossil fuel reserves of 2,860 GtCO2 can be burnt to 2050.
As a result the global economy faces fossil fuel assets becoming
stranded.
Source: Carbon Tracker, ‘Unburnable Carbon 2013: Wasted capital and stranded assets’, 2013
Comments WCT:
-
Not the use of fossil fuels but the emission of CO2 is the problem!
-
Carbon Tracker, and groups like Urgenda in NL, don’t give enough
attention to the potential of CCS, although CCS can have a large
impact (~2000 GtCO2) on ‘unburnable carbon’ and ‘stranded assets’!
-
However, within about 20 years we can’t allow any new investments
in unabated use of any fossil fuel (given ‘max +2°C), having huge
consequences for Shell, Exxon, BP, Gasunie, EBN, RWE, E.ON, etc.
12
Energy scenarios
&
Renewables
13
World Primary Energy Supply in 2009
(using GEA substitution method to calculate contribution from renewables)
Fossil fuels:
- oil
- gas
- coal
412 EJ
( 78 % )
167 EJ
106 EJ
139 EJ
____________________________________________________________________________________________________________
Renewables:
- large hydro
30 EJ *)
- traditional biomass 39 EJ
- ‘new’ renewables 20 EJ *)
89 EJ
Nuclear:
27 EJ
( 17 % )
Figure NL:
____________________________________________________________________________________________________________ also ~ 4%
(~ 4%)
( 5%)
____________________________________________________________________________________________________________
Total:
528 EJ
( 100 % )
*) Assuming for hydro, wind, solar and geothermal electricity: 1 EJ(el) = 2.85 EJ savings on
fossil fuels, and for solar and geothermal heat: 1 EJ(th) = 1.17 EJ savings on fossil fuels.
Source: W.C. Turkenburg et al., ‘Renewable Energy’. In: Global Energy Assessment, 2012, chapter 11
14
Contribution renewables to gross electricity consumption
in NL (1990-2013) and in EU-28 (2012)
Contribution in NL (2012):
about 10.5 percent
mostly from biomass and wind
Bron: CBS, July 2014
Renew. Electr.: ranking NL nr. 24
Contribution in EU-28 (2012):
about 23.5 percent
- 54.1% from hydro
- 30.4% from wind
- 10.5% from solar
4.1% from biomass
0.8% from geothermal
0.1% from tide, wave,
and ocean power
- NL has limited resources (~no hydro)
- Ranking NL on bioenergy: nr. 6
- Ranking NL on wind electr.: nr. 13
- Ranking NL on solar PV: nr. 13
Source: Eurostat, 2013
15
World renewables-based power sector investments by type
(2001-2012) and total generation by type (2012)
Increase of investments in new renewables by a factor 100 within about 20 years)!
Source: IEA, 2013 (based on: BNEF, 2013)
16
Global Market Overview – Power Markets
- Renewable energy comprises more than 26% of
global power generation capacity in 2012.
- Almost 22% of global electricity was produced from
renewable energy (with 16.5% from hydro).
- Renewables accounted globally for just over half
(51%) of the estimated 280 GW of new installed
electric capacity in 2012 (and in Europe even 70%).
- We are witnessing a revolution in the energy field!
Source: REN21, ‘Renewables 2013 Global Status Report’, June 2013
17
IEA on Renewables:
Market Analysis 2014 & Forecasts to 2020
- In 2013, renewable power capacity expanded at its fastest
pace to date.
- Renewable power generation continued to grow strongly,
reaching almost 22% of the global mix, compared with 21%
in 2012 and 18% in 2007.
- Globally, renewable electricity generation is now on par with
that of natural gas, which remained relatively stable in 2013.
- Investment in new renewable power capacity topped USD 250
billion globally in 2013 and is likely to remain at high levels.
- Nevertheless, policy and market risks are increasingly
clouding the development picture.
- As a result, renewable power capacity additions and
investment are expected to level off through 2020.
Source: IEA, “Medium-Term Renewable Energy Market Report 2014”, August 2014
18
Some recent energy scenario studies
- Can we achieve a sustainable future? -
• Shell, 2013: ‘New LENS scenarios’ (Mountains and Oceans)
- Global warming will continue up to at least +4°C.
- Increase energy efficiency: 1.4% per year.
- Contribution from renewables in 2050: 22%-31%.
• GEA, 2012: ‘Toward a Sustainable Future’
- Many combinations of energy resources, end-use, and
supply technologies that can simultaneously address the
multiple sustainability challenges.
- Increase energy efficiency: 1.5% up to 2.2% per year.
- Contribution from renewables in 2050: 30%-75%.
- Cumulative storage of CO2 in 2050: up to 250 GtCO2.
• Ecofys and WWF, 2011: ‘The Energy Report’
- A fully sustainable system is possible by 2050.
- Increase energy efficiency: 3%-4% per year.
- Almost 100% of all energy carriers, all regions and all sectors
of the global energy system can be renewable, by 2050.
NO !
YES !
YES !
19
How to deal with
intermittent renewables
(wind / solar-PV)?
… and misunderstandings about P2G
and re-utilization of CO2
20
Integrating renewables:
Electricity production by solar PV, wind and
conventional capacity in Germany, 21-17 May 2012
Source: Fraunhofer ISI, 2013
21
Integrating renewables:
Spain’s (possible) load curve and supply in 2050, Week 27
(on an hourly basis; weather data from 2008)
Calculation based on the PowerAce model
Source: W. Eichhammer, June 2013 / Fraunhofer ISI, 2012
22
Integrating renewables:
Effect on peak electricity prices
Solar power reduces average trading prices on liquid
wholesale markets (Merit Order Effect)
Source: Wim Sinke, ECN, 2013 (based on EU PVTP GA 2012 and IZES, Germany, 2012)
23
“EU utilities to be negatively affected
by low energy prices until 2020”
“Low wholesale power prices will make Europe's utilities suffer, corroding their
revenues until the end of the decade since increasing renewable production and
low demand integrate” (Source: rating agency Moody, on 3 July 2014).
- Europe's electricity generators have
been pressurized by the development
of renewable energy, which is causing
overcapacity and eroding prices, while
productive coal-fired power stations are
obliged to shut down under European
climate protection regulations.
- Benchmark German wholesale
electricity prices have decreased by
more than 40 percent since spring
2011, when Japan's Fukushima nuclear
reactor meltdown rose global energy
prices.
- Meanwhile, electricity demand has
been reducing due to the euro zone
crisis and enhancing energy efficiency.
Source: Energy Market Price, 3 July 2014
Electricity - Germany - spot price baseload (EUR/MWh)
Electricity - France - spot price baseload (EUR/MWh)
Negative!
Blue: Germany / Red: France
NB: At the end of 2013, the total installed
renewable capacity - mostly solar and onshore
wind, in Germany, Spain, Britain, France, Italy
and the Nordic region - augmented to 290,000
MW, an increase from 205,000 MW in 2009.
24
Interaction between renewable energy supply,
conventional energy supply, and the demand side
Figure shows:
- Many options
available to deal
with flexible
components
(solar-PV & wind).
- Power-to-Heat
at present far
more attractive
than Power-toGas (P2G).
- Large scale P2G
probably not
attractive below
80% contribution
from flexibility
components!
Source: Steering Committee of the Renewable Energy Platforms, Germany, 15 Oct. 2012
25
Surplus Electricity in 8 scenarios until 2050
Power sector will demand storage > 80% share of RE
Source: Michael Sterner, ‘The impact of the next big thing: (Solar) energy storage’, OTH Regensburg, 2014
26
’Utility in a box’
When and where distributed solar generation plus storage
competes with traditional utility service
Vision of Rocky Mountain Institute (Amory Lovins), CohnReznick Think
Energy, and HOMER Energy (2014):
- Distributed electricity generation, especially solar PV, is rapidly spreading
and getting much cheaper.
- Distributed electricity storage is doing the same, thanks largely to mass
production of batteries for electric vehicles.
- Together they can make the electric grid optional for many customers —
without compromising reliability and increasingly at prices cheaper than
utility retail electricity.
- Equipped with a solar-plus-battery system, customers can take or leave
traditional utility service with what amounts to a “utility in a box”.
- The point at which solar-plus-battery systems reach grid parity is well within
the 30-year planned economic life of central power plants and transmission
infrastructure.
Source: Rocky Mountain Institute a.o., ‘The Economics of Grid Defection’, RMI, USA, 2014, 72 pp.
27
Historic Battery Price
Y-axis: 2012$/kWh
Battery Price Projection
Y-axis: 2012$/kWh
Data from: US Energy Information Administration, Bloomberg New Energy Finance & Navigant Research
Source: Rocky Mountain Institute a.o., ‘The Economics of Grid Defection’, RMI, USA, 2014, 72 pp
28
Power-to-Gas (H2 and/or CH4)
Energy storage by coupling electricity and gas networks
Source: Michael Sterner, ‘The impact of the next big thing: (Solar) energy storage’, OTH Regensburg, 2014
29
Power-to-Gas (H2 / CH4)
- From the perspective of climate change, the production of
CH4 using H2 from solar/wind and captured CO2 from fossil
fuel power plants can only be an option if it doesn’t result
into an increase of CO2 concentration in the atmosphere.
- Electrochemical production of H2 is very expensive: About 510€/kgH2. Also ~25% of the kWh-energy will be lost (but in
practise at present ~50%).
- Note: Captured CO2 from a coal plant would cost at present
about 80$/tCO2.
- There is a need to develop a H2 production technology with
(much) lower energy losses and production costs.
- An interesting approach might be: plasmolytic H2 production:
step 1: CO from CO2 (CO2 → CO + ½ O2)
step 2: water-gas shift reaction (CO + H2O → CO2 + H2)
step 3: Separating H2 from CO2 and re-use CO2 in step 1
Source: Partly based on a discussion with Richard van de Sanden, DIFFER, NL, 7 January 2014.
30
Misunderstandings about re-utilization of CO2
- Re-utilization of captured CO2 from fossil fuel power plants is
more and more promoted [see e.g.: Chemical Magazine; TV
program ‘Labyrint’; Report Cie Meijer (Noord-Groningen); NWO and
FOM research progr.; EDGaR progr., URGENDA, etc.].
- But: From the perspective of climate change it can only be
an option if the emission of CO2 to the air is reduced, and
about 25-30 years from now completely avoided.
(Thereafter CO2 emissions should be negative!)
Consequently:
- Re-utilization of fossil CO2 in horticultures: not a permanent
solution when striving for zero GHG emissions.
- Re-utilization of CO2: no problem when CO2 from biomass.
- Re-utilization of fossil CO2: only in a circular approach!
- Massive application of methanation of H2 only with air capture
of CO2. Cost CO2: ~$600/tonne (Source: Am. Phys. Soc., 2011).
31
Thanks!
Wim Turkenburg
[email protected]
32