Chebyshev Inequality with estimated Mean and Variance John G. Saw, Mark C.K. Yang, Tse Chin Mo The American Statistician, 1984 Coffeetalk, 29 Jan 2014 woensdag 29 januari 2014 Chebyshev Inequality • The inequality 1 P [|X − µ| > λσ] ≤ 2 λ • Holds for finite variances • Useful to check that values far away from the mean are very unlikely: pX µ 1 λ2 λσ 2 woensdag 29 januari 2014 Chebyshev Ineq. on estimated vars • For Chebychev 1 P [|X − µ| > λσ] ≤ 2 λ you need the true µ and σ . ¯ and Q (estimated on n points), • If you have estimates X the paper shows: 2 2 g (nλ /(n − 1 + λ )) n+1 ¯ > λQ] ≤ P [|X − X| n+1 • Uhm, what is gn+1 (.) ? 3 woensdag 29 januari 2014 The function g_m • Define integer n ≥ 2 , real value x ≥ 1 • Define integer m = n + 1 • Define integer ν = �m/x� if ν is even ν 2 gm (x) = ν if ν is odd and x < a 2 ν − 1 if ν is odd and x ≥ a • where: m(m − ν) a = 1 + ν(m − ν) 2 • Huh?!?!?! 4 woensdag 29 januari 2014 The function g_m • Ok, just show it, for n=10, m=11: g 11 10 9 8 g11 (x) 7 gm 6 5 4 3 2 1 0 0 5 10 x x 15 5 woensdag 29 januari 2014 And the inequality... • And we used it in: 2 2 g (nλ /(n − 1 + λ )) n+1 ¯ > λQ] ≤ P [|X − X| n+1 bound on P(|.|>h Q) for n=10 1 0.9 • Gives (n=10): 0.8 bound on P(|.|>h Q) 0.7 0.6 0.5 0.4 P [|...| > λQ] 0.3 0.2 0.1 0 1 1.5 2 2.5 3 h 3.5 4 4.5 5 λ 6 woensdag 29 januari 2014 And the inequality... • And we used it in: 2 2 g (nλ /(n − 1 + λ )) n+1 ¯ > λQ] ≤ P [|X − X| n+1 bound on P(|.|>h Q) for n=10 1 0.9 • Gives (n=10): 0.8 bound on P(|.|>h Q) 0.7 0.6 the prob. does not go to 0... 0.5 0.4 P [|...| > λQ] 0.3 0.2 0.1 0 1 1.5 2 2.5 3 h 3.5 4 4.5 5 λ 6 woensdag 29 januari 2014 But for larger and larger n... • For larger n it becomes standard Chebyshev: bound on P(|.|>h Q) for n=100 bound on P(|.|>h Q) for n=1000 1 1 0.9 0.9 n = 100 0.8 0.7 bound on P(|.|>h Q) bound on P(|.|>h Q) 0.7 0.6 0.5 0.4 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 n = 1000 0.8 1 1.5 2 2.5 3 h 3.5 4 4.5 5 0 1 1.5 2 2.5 3 h 3.5 4 4.5 5 7 woensdag 29 januari 2014 Limit for large n... • If you ignore some details (like rounding, and even/odd distinction) we sort-of have: n+1 gn+1 (x) ≈ x gn+1 (nλ2 /(n − 1 + λ2 )) 1 n+1 ≈ • So: n+1 n + 1 nλ2 /(n − 1 + λ2 ) n − 1 + λ2 n−1 1 1 = = + 2 2 nλ n λ n • Hurray: 1 n−1 1 1 + lim ( ) = n→∞ n λ2 n λ2 8 woensdag 29 januari 2014 Chebyshev on training sample • It is possible! 2 2 gn+1 (nλ /(n − 1 + λ )) ¯ P [|X − X| > λQ] ≤ n+1 • The proof is quite hard (but only one page long...) • The probability for λ → ∞ does not go to zero! • I wanted to use to find out: how many samples n do I need to estimate an average {error, 1-NN distance, ...}? (But apparently 9 woensdag 29 januari 2014
© Copyright 2024 ExpyDoc