Polymer/Organic solar cells Martijn Wienk Molecular Materials & Nanosystems (M2N) April 17, 2014 Polymer solar cells Flexible Printable Konarka, Riso, Solar Ivy, Holst Centre Polymer solar cells eLUMO LUMO HOMO h+ HOMO •Mixture of e-donor (polymer) with e-acceptor (fullerene) •Charge carrier generation at interface only •Prospect of large scale reel-to-reel production •Efficiencies increase, but still modest Polymer solar cells e- e- V h+ Pedot:PSS h+ LiF / Al A Selective contacts: Hi h work High k function f ti PEDOT for f holes h l Low work function metal for electrons Typical materials Semiconducting polymers Buckminster fullerenes • electron donating • hole conducting • good absorbers • electron accepting • electron l conducting d i • poor absorbers O O OR O R' N O S n S R S S O N OR S N O X n R Deposited from mixed solution Choosing the right polymer absorber Egap = 1.0 eV 600 400 Trade-off between current and voltage 200 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Photon energy (eV) Energy loss (eV) Egap– eVoc (Th heoretical) Effiiciency [%] -2 -1 Intensity (W W m eV ) Fundamental losses 10 0.6 0.7 0.8 5 EQE = 0.65 FF = 0.65 0 2.0 1.5 1.0 Optical band gap energy [eV] Band gap tuning Donor-Acceptor materials R1 electron rich donor-unit donor unit D-A material electron poor acceptor-unit X R2 O N LUMO X N O R2 LUMO LUMO n R1 X = S, S Se S 12 1.2 HOMO 2.0 eV HOMO 1.1 eV Mathieu Turbiez, Arjan Zoombelt, Johan, Bijleveld, Weiwei Li, Koen Hendriks normalized abs n sorption 1.0 HOMO 0.8 0.6 0.4 0.2 0.0 400 600 800 wavelength (nm) 1000 Recent polymers 0.7 0.6 EQE 0.5 O O 0.4 0.3 0.2 PDPPTPT PDPP3T PDPP3TaltTPT 0.1 00 0.0 400 500 600 700 800 900 1000 Wavelength (nm) Polymer Eg (eV) Jsc (mA/cm2) Voc (V) FF EQEmax PCE (%) PDPP3TaltTPT 1.44 15.9 0.74 0.67 0.59 8.0 PDPPTPT 1 50 1.50 14 0 14.0 0 80 0.80 0 67 0.67 0 58 0.58 74 7.4 PDPP3T 1.33 15.4 0.67 0.69 0.49 7.1 Koen Hendriks, Angew. Chem. Int. Ed. 2013, 52, 8341–8344. Pushing the limits S O 2 HD N S S S N n O N EH HD O O PDPPTDTPT Se HD N O S S Se N O Currrent density J (mA/cm ) 5 n -5 "Sulfur" "Selene" -10 -15 20 -20 -25 N EH HD 0 0.0 0.5 Voltage (V) PDPPSDTPS 08 0.8 50% @ 1000 nm 0.7 Sulfur Selene Voc (V) Jsc,sr (mA/cm2) FF 0.43 20.5 0.54 0.34 17.6 0.6 PCE 0.5 0.50 4.8 3.0 EQE Polymer 0.4 0.3 "sulfur" "selene" 0.2 01 0.1 0.0 Koen Hendriks, Weiwei Li. 400 600 800 Wavelength (nm) 1000 1200 Pushing the limits S O 2 HD N Currrent density J (mA/cm ) 5 S N n N EH HD O S S PDPPTDTPT Se HD N O S N O S Se n "Sulfur" "Sulfur" Sulfur + Foil "Selene" "Selene" + Foil -5 -10 -15 20 -20 -25 N EH HD 0 0.0 0.5 Voltage (V) PDPPSDTPS 08 0.8 0.7 Voc (V) Jsc,sr (mA/cm2) FF Sulfur 0.43 20.5 0.54 4.8 Sulfur + Foil 0.44 23.0 0.53 5.3 Selene 0.34 17.6 0.6 PCE Solar Excel/DSM 0.5 0.50 3.0 EQE Polymer 0.4 0.3 "sulfur" "sulfur" + Foil "selene" "selene" + Foil 0.2 01 0.1 Selene + Foil 0.34 19.8 0.49 Serkan Esiner, Adv. Ener. Mater. 3, 2013 1013 3.3 0.0 400 600 800 Wavelength (nm) 1000 1200 Egap = 1.0 eV Egap = 1.5 eV -1 -2 -2 Egap = 0.75 eV 600 Intensitty (W m eV V ) 600 -1 Intensity (W m eV V ) Multi-junctions 400 200 0 0.5 1.0 1.5 2.0 2.5 3.0 Photon energy (eV) 3.5 4.0 400 200 0 0.5 1.0 1.5 2.0 [70]PCBM 3.0 Photon energy (eV) Narrow gap Intermediate g gap p 2.5 [70]PCBM Wide gap ITO ITO Glass Glass 3.5 4.0 Challenge: solution processing Hole transporting layer LiF/Al PMDPP3T:[60]PCBM Conversion contact Eg = 1.3 eV; PCE = 5.8% pH neutral PEDOT ZnO [70]PCBM PCDTBT:[70]PCBM PEDOT:PSS ITO Electron transporting layer 20 nm. Jan Gilot, Appl. Phys. Lett., 2007, 90, 143512. Glass Eg = 1.9 eV; PCE = 5.8% TEM cross section Al Narrow gap absorber PEDOT Z O ZnO Wide gap absorber PEDOT ITO Glass Joachim Loos Tandem cell performance 8.9% Jsc (mA/cm2) Voc (V) 9.56 1.46 FF ((-)) PCE (%) 0.62 8.90 0.8 5 PCDTBT front cell PMDPP3T back cell Tandem SJ front cell SJ back cell Tandem constructed 0.6 0 EQE 2 Curren nt density (mA A/cm ) 10 -5 0.4 02 0.2 -10 -15 -1.0 0.0 -0.5 0.0 0.5 V lt Voltage (V) 1.0 1.5 2.0 400 600 800 1000 Wavelength (nm) Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529 1+2 Triple junctions LiF/Al pH neutral PEDOT ZnO PCDTBT:[70]PCBM PEDOT:PSS ITO Glass 2 LiF/Al PMDPP3T:[60]PCBM Current dens sity (mA/cm ) 10 PMDPP3T:[60]PCBM pH neutral PEDOT Tandem T d Triple Junction 5 ZnO PMDPP3T:[60]PCBM pH neutral PEDOT 0 ZnO PCDTBT:[70]PCBM PEDOT:PSS -5 ITO Glass -10 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 Voltage (V) Jsc (mA/cm2) Voc (V) FF (-) PCE (%) Tandem 9.56 1.46 0.62 8.9 3-Junction 7.34 2.09 0.63 9.6 Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529 Solar energy storage: H20 splitting H2O → H2+ ½ O2 E0H2O = 1.23 1 23 V + overpotential (ςO2 – ςH2) H2 1.0 1.5 0. 6 V 1. 33 V 1. 70 V e- 0. 83 ½O2 Cu urrent densityy J [mA/cm2] VMPP = V VH2O > 1.4 V 4 2 0 -2 -4 -6 -8 -10 -0.5 0.0 0.5 2.0 2.5 Serkan Esiner, Adv. Mater 2013, 25, 2932–2936. In practice Current density [mA//cm2] LiF/Al PMDPP3T:[60]PCB BM ZnO pH neutral PEDO OT PMDPP3T:[60]PCB BM ZnO pH neutral PEDO OT PCDTBT:[70]PCB BM ITO PEDOT:PSS Glass ςO2 = 0.23 V 4 measured with SMU during water splitting 2 0 JMPP = 4.63 mA/cm2 VMPP = 1.44 V -2 4 -4 Jop. = 4.40 mA/cm2 Vop. = 1.49 V -6 -8 -0.5 05 00 0.0 ςH2 = 0.03 V 05 0.5 10 1.0 15 1.5 20 2.0 Voltage [V] Solar To Hydrogen (STH) efficiency = ( J op. Vop. ) 1.23 V J op. 1.23 V 5.41% Vop. Serkan Esiner, photograph Bart Overbeke Summary 10 1.2 2.0 eV 2 Current density ((mA/cm ) 1.1 eV normalized absorp ption 1.0 0.8 0.6 0.4 0.2 0.0 400 600 800 5 0 -5 -10 -15 15 -1.0 1000 Tandem SJ front cell SJ back cell Tandem constructed -0.5 0.0 0.5 1.0 Voltage (V) wavelength (nm) 8.9% efficient tandem Band gap control 2 Current density (m mA/cm ) 10 Tandem Triple Junction 5 0 -5 -10 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 1.5 2.0 2.5 Voltage (V) 9.6% efficient triple junction Chemical storage 2.0 Acknowledgement M2N René Janssen Koen Hendriks Weiwei Li Serkan Esiner Alice Furlan Gaël Heintges Robin Willems Harm van Eersel M2N alumni Johan Bijleveld Veronique Gevaerts J Gilot Jan Gil t Dirk Veldman TU/e Joachim Loos Tom Bus Solar Excel /DSM Ko Hermans TNO Jörgen Sweelssen BASF Mathieu Turbiez AGFA Frank Louwet Konarka D Dave W Waller ll Funding FOM Joint Solar Programme FOM BioSolarCells Dutch Polymer Institute Interreg Organext DFG Agentschap NL NanoNextNL European Commission
© Copyright 2025 ExpyDoc