Polymer/Organic solar cells
Martijn Wienk
Molecular Materials & Nanosystems (M2N)
April 17, 2014
Polymer solar cells
Flexible
Printable
Konarka, Riso, Solar Ivy, Holst Centre
Polymer solar cells
eLUMO
LUMO
HOMO
h+
HOMO
•Mixture of e-donor (polymer) with e-acceptor (fullerene)
•Charge carrier generation at interface only
•Prospect of large scale reel-to-reel production
•Efficiencies increase, but still modest
Polymer solar cells
e-
e-
V
h+
Pedot:PSS
h+
LiF / Al
A
Selective contacts:
Hi h work
High
k function
f
ti PEDOT for
f holes
h l
Low work function metal for electrons
Typical materials
Semiconducting polymers
Buckminster fullerenes
• electron donating
• hole conducting
• good absorbers
• electron accepting
• electron
l
conducting
d i
• poor absorbers
O
O
OR
O
R'
N
O
S
n
S
R
S
S
O
N
OR
S
N
O
X
n
R
Deposited from mixed solution
Choosing the right polymer absorber
Egap = 1.0 eV
600
400
Trade-off between
current and voltage
200
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Photon energy (eV)
Energy loss (eV)
Egap– eVoc
(Th
heoretical) Effiiciency [%]
-2
-1
Intensity (W
W m eV )
Fundamental losses
10
0.6
0.7
0.8
5
EQE = 0.65
FF = 0.65
0
2.0
1.5
1.0
Optical band gap energy [eV]
Band gap tuning
Donor-Acceptor materials
R1
electron rich
donor-unit
donor
unit
D-A
material
electron poor
acceptor-unit
X
R2
O
N
LUMO
X
N
O
R2
LUMO
LUMO
n
R1
X = S,
S Se
S
12
1.2
HOMO
2.0 eV
HOMO
1.1 eV
Mathieu Turbiez, Arjan Zoombelt,
Johan, Bijleveld, Weiwei Li, Koen Hendriks
normalized abs
n
sorption
1.0
HOMO
0.8
0.6
0.4
0.2
0.0
400
600
800
wavelength (nm)
1000
Recent polymers
0.7
0.6
EQE
0.5
O
O
0.4
0.3
0.2
PDPPTPT
PDPP3T
PDPP3TaltTPT
0.1
00
0.0
400
500
600
700
800
900
1000
Wavelength (nm)
Polymer
Eg (eV)
Jsc (mA/cm2)
Voc (V)
FF
EQEmax
PCE (%)
PDPP3TaltTPT
1.44
15.9
0.74
0.67
0.59
8.0
PDPPTPT
1 50
1.50
14 0
14.0
0 80
0.80
0 67
0.67
0 58
0.58
74
7.4
PDPP3T
1.33
15.4
0.67
0.69
0.49
7.1
Koen Hendriks, Angew. Chem. Int. Ed. 2013, 52, 8341–8344.
Pushing the limits
S
O
2
HD
N
S
S
S
N
n
O
N
EH
HD
O
O
PDPPTDTPT
Se
HD
N
O
S
S
Se
N
O
Currrent density J (mA/cm )
5
n
-5
"Sulfur"
"Selene"
-10
-15
20
-20
-25
N
EH
HD
0
0.0
0.5
Voltage (V)
PDPPSDTPS
08
0.8
50% @ 1000 nm
0.7
Sulfur
Selene
Voc
(V)
Jsc,sr
(mA/cm2)
FF
0.43
20.5
0.54
0.34
17.6
0.6
PCE
0.5
0.50
4.8
3.0
EQE
Polymer
0.4
0.3
"sulfur"
"selene"
0.2
01
0.1
0.0
Koen Hendriks, Weiwei Li.
400
600
800
Wavelength (nm)
1000
1200
Pushing the limits
S
O
2
HD
N
Currrent density J (mA/cm )
5
S
N
n
N
EH
HD
O
S
S
PDPPTDTPT
Se
HD
N
O
S
N
O
S
Se
n
"Sulfur"
"Sulfur"
Sulfur + Foil
"Selene"
"Selene" + Foil
-5
-10
-15
20
-20
-25
N
EH
HD
0
0.0
0.5
Voltage (V)
PDPPSDTPS
08
0.8
0.7
Voc
(V)
Jsc,sr
(mA/cm2)
FF
Sulfur
0.43
20.5
0.54
4.8
Sulfur + Foil
0.44
23.0
0.53
5.3
Selene
0.34
17.6
0.6
PCE
Solar Excel/DSM
0.5
0.50
3.0
EQE
Polymer
0.4
0.3
"sulfur"
"sulfur" + Foil
"selene"
"selene" + Foil
0.2
01
0.1
Selene + Foil
0.34
19.8
0.49
Serkan Esiner, Adv. Ener. Mater. 3, 2013 1013
3.3
0.0
400
600
800
Wavelength (nm)
1000
1200
Egap = 1.0 eV
Egap = 1.5 eV
-1
-2
-2
Egap = 0.75 eV
600
Intensitty (W m eV
V )
600
-1
Intensity (W m eV
V )
Multi-junctions
400
200
0
0.5
1.0
1.5
2.0
2.5
3.0
Photon energy (eV)
3.5
4.0
400
200
0
0.5
1.0
1.5
2.0
[70]PCBM
3.0
Photon energy (eV)
Narrow gap
Intermediate g
gap
p
2.5
[70]PCBM
Wide gap
ITO
ITO
Glass
Glass
3.5
4.0
Challenge: solution processing
Hole transporting layer
LiF/Al
PMDPP3T:[60]PCBM
Conversion contact
Eg = 1.3 eV; PCE = 5.8%
pH neutral PEDOT
ZnO
[70]PCBM
PCDTBT:[70]PCBM
PEDOT:PSS
ITO
Electron transporting layer
20 nm.
Jan Gilot, Appl. Phys. Lett., 2007, 90, 143512.
Glass
Eg = 1.9 eV; PCE = 5.8%
TEM cross section
Al
Narrow gap absorber
PEDOT
Z O
ZnO
Wide gap
absorber
PEDOT
ITO
Glass
Joachim Loos
Tandem cell performance 8.9%
Jsc
(mA/cm2)
Voc
(V)
9.56
1.46
FF
((-))
PCE
(%)
0.62 8.90
0.8
5
PCDTBT front cell
PMDPP3T back cell
Tandem
SJ front cell
SJ back cell
Tandem constructed
0.6
0
EQE
2
Curren
nt density (mA
A/cm )
10
-5
0.4
02
0.2
-10
-15
-1.0
0.0
-0.5
0.0
0.5
V lt
Voltage
(V)
1.0
1.5
2.0
400
600
800
1000
Wavelength (nm)
Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529
1+2 Triple junctions
LiF/Al
pH neutral PEDOT
ZnO
PCDTBT:[70]PCBM
PEDOT:PSS
ITO
Glass
2
LiF/Al
PMDPP3T:[60]PCBM
Current dens
sity (mA/cm )
10
PMDPP3T:[60]PCBM
pH neutral PEDOT
Tandem
T
d
Triple Junction
5
ZnO
PMDPP3T:[60]PCBM
pH neutral PEDOT
0
ZnO
PCDTBT:[70]PCBM
PEDOT:PSS
-5
ITO
Glass
-10
-15
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
Voltage (V)
Jsc
(mA/cm2)
Voc
(V)
FF
(-)
PCE
(%)
Tandem
9.56
1.46
0.62
8.9
3-Junction
7.34
2.09
0.63
9.6
Weiwei Li & Alice Furlan. J. Am. Chem. Soc. 2013, 135, 5529
Solar energy storage: H20 splitting
H2O → H2+ ½ O2
E0H2O = 1.23
1 23 V + overpotential (ςO2 – ςH2)
H2
1.0
1.5
0.
6
V
1.
33
V
1.
70
V
e-
0.
83
½O2
Cu
urrent densityy J [mA/cm2]
VMPP =
V
VH2O > 1.4 V
4
2
0
-2
-4
-6
-8
-10
-0.5
0.0
0.5
2.0
2.5
Serkan Esiner, Adv. Mater 2013, 25, 2932–2936.
In practice
Current density [mA//cm2]
LiF/Al
PMDPP3T:[60]PCB
BM
ZnO
pH neutral PEDO
OT
PMDPP3T:[60]PCB
BM
ZnO
pH neutral PEDO
OT
PCDTBT:[70]PCB
BM
ITO
PEDOT:PSS
Glass
ςO2 = 0.23 V
4
measured with SMU
during water splitting
2
0
JMPP = 4.63 mA/cm2
VMPP = 1.44 V
-2
4
-4
Jop. = 4.40 mA/cm2
Vop. = 1.49 V
-6
-8
-0.5
05
00
0.0
ςH2 = 0.03 V
05
0.5
10
1.0
15
1.5
20
2.0
Voltage [V]
Solar To Hydrogen (STH) efficiency =
( J op.  Vop. ) 
1.23 V
 J op.  1.23 V  5.41%
Vop.
Serkan Esiner, photograph Bart Overbeke
Summary
10
1.2
2.0 eV
2
Current density ((mA/cm )
1.1 eV
normalized absorp
ption
1.0
0.8
0.6
0.4
0.2
0.0
400
600
800
5
0
-5
-10
-15
15
-1.0
1000
Tandem
SJ front cell
SJ back cell
Tandem constructed
-0.5
0.0
0.5
1.0
Voltage (V)
wavelength (nm)
8.9% efficient tandem
Band gap control
2
Current density (m
mA/cm )
10
Tandem
Triple Junction
5
0
-5
-10
-15
-1.0
-0.5
0.0
0.5
1.0
1.5
1.5
2.0
2.5
Voltage (V)
9.6% efficient triple junction
Chemical storage
2.0
Acknowledgement
M2N
René Janssen
Koen Hendriks
Weiwei Li
Serkan Esiner
Alice Furlan
Gaël Heintges
Robin Willems
Harm van Eersel
M2N alumni
Johan Bijleveld
Veronique Gevaerts
J Gilot
Jan
Gil t
Dirk Veldman
TU/e
Joachim Loos
Tom Bus
Solar Excel /DSM
Ko Hermans
TNO
Jörgen Sweelssen
BASF
Mathieu Turbiez
AGFA
Frank Louwet
Konarka
D
Dave
W
Waller
ll
Funding
FOM Joint Solar Programme
FOM BioSolarCells
Dutch Polymer Institute
Interreg Organext
DFG
Agentschap NL
NanoNextNL
European Commission