Organic Photovoltaics

Organic Photovoltaics
02/28/2014
Philip Schulz
Department of Electrical Engineering
Princeton University, NJ-08544
Talking Points
Introduction
Organic Semiconductors | Plastic Electronics
Organic Solar Cells
Challenges
Interface Energetics | Charge Selective Interlayers
The Next Big Thing
Metal-Organic Halide Perovskites
2
Organic Photovoltaics | Philip Schulz
Talking Points
Introduction
Organic Semicondutors
Plastic Electronics
Organic Solar Cells
3
Organic Photovoltaics | Philip Schulz
Talking Points
from organic semiconductors…
Organic
=
(Hydrocarbon)
molecular-models.com
Bio
X (Life)
materialviews.com
…to plastic electronics
Philips
pubs.acs.org
Sony
Samsung
polyIC
Organic Photovoltaics | Philip Schulz
LG
Grossiord 2013
Solarmer
4
Organic Semiconductors
Brief History – towards OPV:
1906 – Photoconductivity in organic solid
1953 – Dark conductivity in organic single
crystals
1977 – Conductivity in polymers
1986 – First heterojunction OPV
1987 – First organic light emitting diode
(OLED)
1993 – First OPV from solution processing
2001 – First certified organic solar cell
with 2.5% PCE
nobelprize.org
wikipedia.com:OLED
Unique properties of organic materials:
Soft. Flexible. Light-weight. Inexpensive. Earth abundant.
Organic Photovoltaics | Philip Schulz
Pochettino 1906, Mette 1953, Chiang 1977, Tang 1986, Tang 1987, Sariciftci 1993, Shaheen 2001
5
Organic Semiconductors
Molecular properties
sigmaaldrich.com
INTRAmolecular structure tailors
optoelectronic properties
INTERmolecular bonds convey
„soft matter“ properties
Organic Photovoltaics | Philip Schulz
Gavezotti 1988
6
Organic Semiconductors
Frontier molecular orbitals
Energy E / eV
EVAC
F
ELUMO
EF
EHOMO
LUMO: lowest unoccupied
molecular orbital
(corresponds to conduction band)
HOMO: highest occupied
molecular orbital
(corresponds to valence band)
F: work function surface
(defines difference between Fermi
level EF and Vacuum level Evac at
surface)
7
Organic Photovoltaics | Philip Schulz
Plastic Electronics
Organic Electronics
Organic Field
Effect Transistors
.OFET, OTFT
.RF-ID tag, sensor
e-paper
Hybrid Solar Cells
.solid state DyeSensitized Solar Cells
(ss-DSSC)
.perovskite solar cells
Organic Light
Emitting Diodes
.OLED, AMOLED
.flexible display, large
area lighting
Organic Solar Cells
.OSC, OPV
Polymer Solar
Cells
Small Molecule
Solar Cells
.PSC
.long chained molecules
.good solubility
.large area processing
.„classic“ OSC
.well defined molecule
.vacuum evaporated
.high purity and control
8
Organic Photovoltaics | Philip Schulz
Organic Solar Cells
Organic Photovoltaics | Philip Schulz
NREL chart 2013
9
Organic Solar Cells
Working Principle
„excitonic“ cell
i) Light absorption – exciton generation
ii) Exciton diffusion to D/A interface
iii) Exciton dissociation – charge carrier transport
iv) Charge carrier extraction at electrode interface
10
Organic Photovoltaics | Philip Schulz
Organic Solar Cells
The Bulk Heterojunction (BHJ)
e-
h+
h+
e-
.One layer containing donor and acceptor
.Maximize D/A interface area
.Blend materials forming continous domains
.Co-evaporation, precursor mixing
.Control over morphology and carrier extraction required
Organic Photovoltaics | Philip Schulz
Li 2012
11
Talking Points
Challenges
Structure and morphology on the nanoscale
Encapsulation and integration
Interface energetics
12
Organic Photovoltaics | Philip Schulz
Interface Energetics
Energy Diagram
Energy E / eV
EVAC
high
work
function
- -
ELUMOA
low
work
function
D/A interface:
.Optimize HOMO-LUMO gap
EHOMOD
+ +
TCO
donor
metal
anode
acceptor cathode
high F
low F
Organic/electrode interface:
.Detrimental electron and hole
reverse current
.Charge selectivity required
z / nm
13
Organic Photovoltaics | Philip Schulz
Interface Energetics
HOMO-LUMO interface
≈
2.0
Donor; Hole
Transport Layer
LUMOD
Energy (eV)
3.0
LUMOA -
EFn
ELUMOA – EHOMOD
correlates to Voc
4.0
5.0
ELUMOD – ELUMOA
impacts Jsc
EFp
+ HOMOD
6.0
HOMOA
Acceptor
Electron Transport
Layer
14
Organic Photovoltaics | Philip Schulz
Interface Energetics
Electron and hole collection
≈
Donor; Hole
Transport Layer
2.0
LUMOD
LUMOA -
Energy (eV)
3.0
EFn
ELUMOD – ELUMOA
impacts Jsc
ELUMOA – EHOMOD
correlates to Voc
4.0
5.0
EFp
VB
6.0
CB
+ HOMOD
HOMOA
Acceptor
Electron Transport
Layer
15
Organic Photovoltaics | Philip Schulz
Interface Energetics
Charge selective contacts
≈
Donor; Hole
Transport Layer
2.0
Electron
selective
interlayer
CB
Transparent contact
CB
LUMOA -
EF
Top contact
EFn
EFp
EF
VB
6.0
ELUMOA – EHOMOD
correlates to Voc
+ HOMOD
HOMOA
Hole
selective
interlayer
ELUMOD – ELUMOA
impacts Jsc
X
Energy (eV)
4.0
5.0
X
3.0
LUMOD
Acceptor
Electron Transport
Layer
VB
16
Organic Photovoltaics | Philip Schulz
Interface Energetics
Charge selective contacts – Material choices
0
≈
Evac
C60PCBM
ICBA
ClInPc
CuPc
PEIE
+
…….
2.1
-2
Ag, Al
< 3.6
Energy (eV)
-3
-4
4.1
4.4
TiO2
ZnO
4.2
5.3
-5
-6
4.2
5.5
NiO
6.6
-7
-8
6.8
ITO
P3HT
-9
PEIE
PCDTBT
MoO3
DONORS
ACCEPTORS
Organic Photovoltaics | Philip Schulz
Ratcliff 2011
17
Interface Energetics
Band offset measurements
.Direct determination of energy diagram by electron spectroscopy
.Ultraviolet photoemission spectroscopy (UPS) yields work function (WF), valence
band information, position of the HOMO and ionization energy (IE)
.Inverse photoemission spectroscopy (IPES) yields conduction band information,
position of the LUMO and electron affinity (EA)
18
Organic Photovoltaics | Philip Schulz
Talking Points
The Next Big Thing
Metal-Organic Halide Peroskite Solar Cells
19
Organic Photovoltaics | Philip Schulz
Metal-Organic Halide Perovskites
A new player in the field
Organic Photovoltaics | Philip Schulz
Hodes 2013
20
Metal-Organic Halide Perovskites
Composition and structure
.Stacked between organic hole transport layer and oxide
electron transport layer
.Most promising candidate:
Methylammonium (MA) Lead (Pb) Halide (I3-xClx)
Organic Photovoltaics | Philip Schulz
Rhee 2013, Lee 2012
21
Metal-Organic Halide Perovskites
Working principle & advantages
.Good optical absorption
.Ambipolar charge transport
.Large charge carrier diffusion length
.Low recombination rates
.Small „loss-in-potential“
.High efficiencies (>16%)
.All earth-abundant materials
.Low temperature processing (max 150°C)
.Low production costs
.Long device lifetime …but still needs enhancement
Organic Photovoltaics | Philip Schulz
Snaith 2013
22
Metal-Organic Halide Perovskites
Track interface energetics
.next step:
Identification of optimal electron & hole transporters
Organic Photovoltaics | Philip Schulz
Schulz 2014
23
Talking Points
Summary
.Organic photovoltaics…
…exhibit different underlying physics
(„excitonic“ cell)
…require careful interface engineering
…have potential for inexpensive
production and specialized applications
Outlook
.OPV efficiencies are constantly rising
.Perovskite solar cells already on the verge to
utility-scale application
Thank you for your attention!
Organic Photovoltaics | Philip Schulz
24
W
References
References
Grossiord 2013 – N. Grossiord et al., Org. Electronics 13, 3 (2012)
Pochettino 1906 – A. Pochettino, Acad. Lincei Redoconti 15, 1 (1906)
Mette 1953 – H. Mette, H. Pick, Z. f. Physik 134, 5 (1953)
Chiang 1977 – C. K. Chiang et al., Phys. Rev. Lett. 39, 17 (1977)
Tang 1986 – C. W. Tang, Appl. Phys. Lett. 86, 183 (1986)
Tang 1987 – C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
Sariciftci 1993 – Sariciftci et al., Science 258 (5087)
Shaheen 2001 – S. Shaheen et al., Appl. Phys. Lett. 78, 841 (2001)
Gavezotti 1988, A. Gavezotti, R. Desirajou, Acta Cryst., 427 – 434 (1988)
Li 2012 – G. Li et al., Nature Photonics 6, 153 (2012)
Ratcliff 2011 – E. Ratcliff et al., J. Phys. Chem. Lett. Perspective 2, 1337 (2011)
Schulz 2013 – P. Schulz et al., Adv. Funct. Mater. 24, 5 (2014)
Schulz & Kelly 2014 – P. Schulz, L. Kelly et al., in preparation (2014)
Hodes 2013 – G. Hodes, Science 342, 317 (2013)
Rhee 2013 – L. Rhee et al., NPG Asia Materials 5, (2013)
Lee 2012 – M. Lee et al., Science 338, 643 (2012)
Snaith 2013 – H. Snaith, J. Phys. Chem. Lett. 4, 3623−3630 (2013)
Schulz 2014 – P. Schulz et al., Energy Env. Sci. (2014)
25
Organic Photovoltaics | Philip Schulz
Organic Semiconductors
Charge carrier transport
Band transport in highly crystalline and pristine compounds
Hopping transport in disordered systems (OLED, OPV)
Organic Photovoltaics | Philip Schulz
26
http://www.engineersgarage.com/articles/oled-working-application-future?page=4
Organic Solar Cells
Inorganic
Organic
.direct generation of free
charge carriers
.„excitonic“ solar cells with
complex charge carrier dynamics
.high efficiencies
.approaching competitive efficiencies
.long life time
.sensitive to ambient conditions
.heavy weight, non-flexible,
non-transparent
.light-weight, flexible, semi-transparent
.high energy consumption in
fabrication, small wafer size
.facile and fast large area printing
techniques
.rare materials
.potentially inexpensive materials
27
Organic Photovoltaics | Philip Schulz
Interface Energetics
HOMO-LUMO interface – Material choices
Organic Photovoltaics | Philip Schulz
refs
28
Photoemission vs. Inverse
Interface Energetics
Photoemission
Band offset measurementsInverse
– spectrometer
Photoemission setup
e-
e-
DOS
Channeltron
EVAC
h
h
KCl film
800A
(IE 8.6 eV)
Shield
IPES
SrF2 window
(cut off 9.7 eV)
EF
Energy Gap
Discharging
mesh
photons
electron gun
esample
PES
5 - 20 eV
Transmission
Electron
emission
SrF2
KCl
SrF 2 = low pass
filter with cutoff
at 9.7 eV
KCl = high pass
filter with cutoff
at 8.6 eV
7
8
9
10
Energy (eV)
11
29
Organic Photovoltaics | Philip Schulz
Charge Selective Interlayers
Hole collection – sNiOx/MoO3 bi-layers
.Hole extraction due to MoO3
.Electron blocking due to sNiOx
.Increase in PCE and FF
.Reduced dark currents
Organic Photovoltaics | Philip Schulz
Schulz 2013
30
Charge Selective Interlayers
Electron collection – ZnO from peALD
.plasma enhanced Atomic Layer
Deposition
.Zinc oxide with shallow donors
.Tuned ZnO surface with varied
defect composition
.Identification of Contact barrier
Organic Photovoltaics | Philip Schulz
Schulz & Kelly 2014
31
Interface Energetics
Charge selective contacts
Evac
≈
Donor; Hole
Transport Layer
2.0
Electron
selective
interlayer
EA
Evac
5.0
CB
LUMOA -
EF
EFn
Top contact
4.0
IE
LUMOD
EFp
EF
VB
HOMOA
Organic Photovoltaics | Philip Schulz
ELUMOA – EHOMOD
Voc
+ HOMOD
6.0
Hole
selective
interlayer
ELUMOD – ELUMOA
controls Jsc
X
Energy (eV)
3.0
X
Transparent contact
CB
Acceptor
Electron Transport
Layer
refs
VB
32