TiPS -june 7993 [Vol. 141 231 same response may be applied to G protein-linked receptors, particularly those without introns. It is postulated that many of the genes encoding the G protein-linked receptor family evolved from a single precursor gene (possibly an opsin gene) that lost its introns approximately 1 billion years agoz3. Since then, gene duplication events have resulted in many related genes. These intronless genes are so small that they are more likely to be functional, when duplicated, than large intron-containing genes and have, therefore, diverged into a large, related family of functional receptors. These events would, therefore, allow an increase in the diversity of receptors available and correspondingly in the level of complexity possible, particularly in the brain, conferring an evolutionary advantage. So, why have G protein-linked 5-HTI-like receptors diversified so extensively? Answer: because they can! MARGARET S. BEER, DEREK N. MIDDLEMISS AND GEORGE MCALLISTER Merck Sharp and Dohme Lnboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harrow, Essex, UK CM20 2QR. References 1 Kobilka, 8. K. et al. (1987) Nafure 329, 75-79 2 Fargin, A. et al. (1988) Nature 335, 358360 3 Julius, D., MacDermott, A. B., Axel, R. and Jesse]], T. M. (1988) Science 241, 558-564 4 Hoyer, D. and Middlemiss, D. N. (1989) Trends Pharmacol. Sci. 10, 130-132 5 Hambl.,., M. W. and Metcalf, M. A. (1991) Mol. Phnrmacol. 40, 143-148 6 Maenhaut, C. et al. (1991) Biochem. Biophys. Res. Commun. 180,1460-1468 7 Voight, M. M., Laurie, D. J., Seeburg, P. H. and Bach, A. (1991) EMBO 1. 10, 4017-4023 8 Weinshank, R. L., Zgombick, J. M., Macchi, M. J., Branchek, T. A. and Hartig, P. R. (1992) Proc. Nat/ Acad. Sci. USA 89, 3630-3634 9 Hartig, P. R., Branchek, T. A. and Weinshank, R. L. (1992) Trends Pharmaco/. SC;. 13, 152-159 10 Oksenberg, D. et nl. (1992) Nature 360, 161-163 11 Heuring, R. E. and Peroutka, S. J. (1987) J. Neurosci. 7, 894-903 12 Waeber, C., Schoeffter, I’., Palacios, J. M. and Hoyer, D. (1988) NaunynSckmied. Arch. Phartnacol. 337, 595-601 13 Beer, M. S., Stanton, J. A., Becan, Y., Chauhan, N. S. and Middlemiss, D. N. (1992) Eur. 1. Pharmacol. 213, 193-197 14 Sumner, M. J. and Humphrey, I’. I’. A. (1989) Br. /. Pharmncol. 98, 29-31 15 Leonhardt, S., Herrick-Davis, K. and 16 17 18 19 Titeler, M. (1989) 1. Newockenr. 53, 465 - 471 McAllister, G. e1 nl. (1992) Proc. Natl Acsd. Sci. USA 89, 5517-5521 Levy, F. O., Gudermann, T., Bimbaumer, M., Kaumann, A. J. and Birnbaumer, L. (1992) FEBS Left. 296, 201-206 Zgombick, J. M. et al. (1992) Mol. Pharmacof. 42, 180-185 Levy, F. 0. et al. (1992) J. Biol. Chem. 267, 7553 -7562 20 Beer, M. S., Stanton, J. A., Hawkins, L. M. and Middlemiss, D. N. (1993) Eur. /. Pkarmacol. (in press) 21 Amlaiky, N., Ramboz, S., Boschert, U., Plassat, J-L. and Hen, R. (1992) /. Brol. Chem. 267, 19761-19764 22 Adham, N. et al. (1993) Proc. Null Acad. SC;. USA 90,408-412 23 Doolittle, R. (1986) in Of Urjs nnd Orfs, University Science Books, pp. 37-47 Is the relaxin system a target for drug development? ardiac effects of relaxin In a recent issue of TiPS, Kakouris and colleagues’ reported that human relaxin gene 2 product causes concentration-dependent positive chronotropic and inotropic effects by acting directly on specific receptors in the rat isolated atria. On the basis of these findings, together with the demonstration of specific highaffinity binding sites for relaxin in the rat heart2 as well as of the increase in serum relaxin concentrations during the first trimester of human pregnancy3, Kakouris and colleagues’ imply that relaxin may be responsible for the elevation of cardiac output during pregnancy. The authors also suggest’ that ‘the relaxin system (receptors, degradation mechanisms, cell signalling, etc.) could be a novel target for the development of potential inotropic agents’. We believe that these assertions are, to say the least, premature, for several reasons. First, the highly preferential venodilator effect of relaxin to decreased leading venous blood velocity* will tend to reduce circulating blood volume, venous return and, consequently, cardiac output. Secondly, the ensuing tachycardia with relaxin might partly offset the potential cardiotonic advantage of its action. Thirdly, it should be noted that while ‘the binding of 32P relaxin . . . was seen clearly in the heart atria, . . . the ventricles did not show detectable binding” (see also Fig. 1 in Ref. 2). Indeed, our recent observations dealing with the cardiac effects of 5-HT have 0 established that the increase in contractility induced by this amine in the atrium of both pigs5,‘j and humans7 is not observed in the ventricular myocardium. We therefore suggest that, although relaxin elevate may czdiac output by increasing heart rate, it is unlikely that relaxin would do so via a positive inotropic effect on the ventricular myocardium. This signifies that the approach of developing potential inotropic agents via the relaxin system will probably not be very rewarding. References 1 Kakouris, H., Eddie, L. W. and Summers, R. J. (1993) Trends Dharmacol. sci. 14, 4-6 2 Osheroff, P. L., Cronin, M. J. and Lofgren, J. A. (1992) Pror. Nat/ Acod. S.i USA 89,2384-2388 3 Bell. R. 1. et nl. (1987) Obstet. Gvnfcol. 69, 58i58< 4 Bigazzi, M., Del Mese, A., Petrussi, F., Casali. R. and Novelli, G. I’. (1986) Actn Endoc;inol. 112, 296-249 5 Saxena, I’. R., Villalirn, C. M., Dhasmana, K. M. and Verdouw, I’. D. (1992) Naunyn-Schnlied. Arch. Pharnmcof. 346, 629-636 6 Schoemaker, R. G., Du, X. Y., Bax, W. A. and Saxena, P. R. (1992) Naunyr~S&tried. Arch. Phnrmacof. 346, 486-489 7 Schoemaker, R. G., Du, X. Y., Bax, W. A. and Saxena, I’. R. (1993) Eur. 1. Phnrmncof. 239, 103-105 PRAMOD R. SAXENA, WILLEM A. BAX, XIAO Y. DU AND REGIEN G. SCHOEMAKER Depnrltneut o/ Phnrmncology and Cardiounscrrlar Resenrch Olstitrrfe ‘COEUR’, Factrlty of Mcdicitle and Hcnlfh Sriences. Ernsnrus University Rottcrdnwl, PB 1738, 3000 DR Rotterdarn, The Nelherlnnds. 1993, Elscvicr Scirnce Puhhshrrs Ltd (UK) 0165 - hl47/93/BOh.O0
© Copyright 2024 ExpyDoc