OFDM(2) Matrix Based Simlation Fire Tom Wada Professor, Information Engineering, Univ. of the Ryukyus Chief Scientist at Magna Design Net, Inc [email protected] http://www.ie.u-ryukyu.ac.jp/~wada/ 10/1/2015 1 OFDM Modulator Copy to make Guard Interval Bit stream M A P S / P IFFT P / S Tg OFDM symbol (1/f0) generated0~dN-1 10/1/2015 2 Multi-path channel Tg OFDM symbol (1/f0) Pat h 2 Building Direct Pat h Mobile Recept ion Pat h 3 Base St at ion Tg 10/1/2015 OFDM symbol (1/f0) 3 OFDM Demodulator Remove Guard Interval Tg OFDM symbol (1/f0) Noise Bit Stream 10/1/2015 S / P DFT D E M A P P / S Equalize 4 FFT matrix Y (0) x(0) Y (1) x(1) FFT Y ( M 1) x( M 1) 0 0 Y (0) 0 1 1 Y (1) M 0 ( M 1) Y ( M 1) 1 M x(0) x(1) ( k 1)*( l 1) ; k row, l colum n x( M 1) x(0) 0 ( M 1) x ( 1 ) ( M 1)*( M 1) x( M 1) Here, e 10/1/2015 j 2 M 5 IFFT matrix x(0) Y (0) Y (0) 1 x(1) Y (1) Y (1) ( k 1)*( l 1) IFFT ; k row , l colum n M x( M 1) Y ( M 1) Y ( M 1) 0 Y (0) 0 0 x(0) 0 1 ( M 1) x ( 1 ) Y ( 1 ) 1 M 0 ( M 1) ( M 1)*( M 1) x( M 1) Y ( M 1) Here, e 10/1/2015 j 2 M 6 Multi-path channel in Matrix GI of n-1 Symbol n-1 GI of n Symbol n 10/1/2015 7 If Multi-path delay is small than GI length Channel Matrix is Cyclic Matrix! 10/1/2015 8 Two path Multi path Channel Example Base Station Receiver Channel Impulse Response = [1, 0.5 , 0, 0] Two path Multi path Channel Example Y (0) X (0) Y (1) X (1) FFT * Channel * IFFT * Y ( 2) X ( 2) Y (3) X (3) 1 1 1 0 0 0.5 1 1 X (0) Y (0) 1 1 1 1 1 2 3 1 2 3 Y ( 1 ) 1 0 . 5 1 0 0 1 X ( 1 ) 1 1 2 4 6 2 4 6 Y ( 2) 0 0.5 1 0 4 1 X ( 2) 4 1 3 6 9 3 6 9 Y ( 3 ) 1 0 0 0 . 5 1 1 X ( 3 ) 0 0 0 X (0) Y (0) H (0) Y ( 1 ) 0 H ( 1 ) 0 0 X ( 1 ) Y ( 2) 0 0 H ( 2) 0 X ( 2) 0 0 H (3) X (3) Y (3) 0 If time domain channel matrix is cyclic, Frequency Domain Channel Matrix is diagonal! Additive Noise Y (0) X (0) noise(0) Y (1) X (1) noise(1) Y ( 2) FFT * Channel* IFFT * X ( 2) noise( 2) X ( 3 ) noise ( 3 ) Y (3) 1 1 1 0 0 0.5 1 1 X (0) 1 1 noise(0) Y (0) 1 1 1 1 1 1 1 2 3 0.5 1 0 0 1 1 1 2 3 X (1) 1 1 1 2 3 noise(1) Y (1) 1 1 2 Y ( 2) 4 1 2 4 6 0 0.5 1 0 4 1 2 4 6 X ( 2) 4 6 noise( 2) 4 1 3 6 9 3 6 9 3 6 9 Y ( 3 ) 1 0 0 0 . 5 1 1 X ( 3 ) 1 noise ( 3 ) 0 0 0 X (0) N (0) Y (0) H (0) Y ( 1 ) 0 H ( 1 ) 0 0 X ( 1 ) N ( 1 ) Y ( 2) 0 0 H ( 2) 0 X ( 2) N ( 2) 0 0 H (3) X (3) N (3) Y (3) 0 10/1/2015 11 How to recover sending signal from receiver signal. - EQUALIZE Ignore Noise 0 0 0 X (0) Y (0) X (0) H (0) Y ( 1 ) X ( 1 ) 0 H ( 1 ) 0 0 X ( 1 ) FFT * Channel * IFFT * Y ( 2) X ( 2) 0 0 H ( 2) 0 X ( 2) Y ( 3 ) X ( 3 ) 0 0 0 H ( 3 ) X ( 3 ) Then 1 H (0) X (0) 0 X ( 1 ) X ( 2) 0 X (3) 0 10/1/2015 0 0 1 H (1) 0 0 1 H ( 2) 0 0 0 Y (0) 0 Y ( 1 ) 0 Y ( 2) Y (3) 1 H (3) 12 HW5 Modify SCILAB program “71-MatrixOFDMSimulation1.sce” to measure Symbol Error Rate vs S/N ratio in M=16 OFDM with QPSK modulation You can create Matlab program if you like. Make Symbol Error Rate vs SN ratio Vertical: SER in log scale Horizontal: SN ratio 0dB, 1dB … to 15dB Your report should contain your program and measured data in Graph. Dead Line : December End 2010 Please submit to TA: kano-san [email protected] 10/1/2015 13
© Copyright 2024 ExpyDoc