A Multicanonical Monte Carlo Study of the 3D ±J Spin Glass *,** Naomichi Hatano ** James E. Gubernatis * Aoyama Gakuin University ** Los Alamos National Laboratory The ±J Model (a ) ( a ) Jij s i s j a 1,2 i, j Jij 1 (quenched) H Overlap Order Parameter N 1 (1) ( 2 ) q s i s i N i 1 replica 1 replica 2 Low-Temperature Phase Mean-field picture Droplet picture (Parisi et al.) (Fisher & Huse) L T Order-Parameter Distribution 5 T = 0.3 L=6 -1 4 L=8 3 P(q) 10 L=4 10 2 1 -2 0 0.2 0.4 q 0.6 0.8 1 0 At higher temperatures 0.5 P(q) 0.4 2 T = 0.7 1.5 0.3 1 0.2 0.1 0 0 0.5 L=8 L=6 L=4 0.2 0.4 q 0.6 0.8 1 0 Flattening the histogram Microcanonical: Few low-energy states Canonical: Few high-energy states Trapped by local minima Multicanonical: Samples uniformly Auto-Correlation Time Making the bivariate histogram h(E,q) flat 10 104 3 10 102 E q 1 10 2 10 N=L 3 (*) 3 10 (*) Monovariate multicanonical Berg & Janke, PRL80, 4771 (‘98) 5 Monovariate Multicanonical L=6 Histogram 30000 20000 -1.8 -1.6 -1.4 E / L3 -1.2 -1 Density of States D(E,q) N D(E,q) Summary • Bivariate Multicanonical Monte Carlo Method Correlation Time: N • Low-Temperature Phase The result of P(q; T=0.3) suggests the droplet picture Aoyama+ Project Parallel Computer ARK Dual Pentium II 350MHz 69 Fast Ethernet 100Mbps Switched Hub 24Gbps RAID Disk 110GB Maximum Performance ~10Gflops http://www.phys.aoyama.ac.jp/~aoyama+
© Copyright 2024 ExpyDoc