第18回若手科学者によるプラズマ研究会 2015/03/04-06 SOL-Divertor Plasma Simulations by Introducing Anisotropic Ion Temperatures and Virtual Divertor Model 非等方イオン温度と仮想ダイバータモデルを導入 したSOL-ダイバータプラズマシミュレーション Satoshi Togo, Tomonori Takizukaa, Makoto Nakamurab, Kazuo Hoshinob, Kenzo Ibanoa, Tee Long Lang, Yuichi Ogawa Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8568, Japan aGraduate school of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan bJapan Atomic Energy Agency, 2-166 Omotedate, Obuchi-aza, O-aza, Rokkasho 039-3212, Japan 2 Motivation The SOL-divertor plasma code packages (SOLPS, SONIC, etc.) ・used to estimate the performance of the divertors of future devices ・some physics models are used in the plasma fluid model (e. g. viscosity) ・physics models are valid in the collisional regime Result from PARASOL code parallel momentum transport equation (1D) mi nV V mi nV 2 nTi nTe i , // Mm t s s s The parallel ion viscous flux -ηi,//(∂V/∂s) ・the approximated form of the stress tensor p (π = 2n(Ti,// - Ti,⊥)/3) ・derived under the assumption that π << nTi. The kinetic simulations showed a remarkable anisotropy in the ion temperature even for the medium collisionality. collisional collisionless A. Froese et al., Plasma Fusion Res. 5 (2010) 026. The boundary condition Mt = 1 has been used in the conventional codes. However, the Bohm condition only imposes the lower limit as Mt ≥ 1. Momentum Eq. & Virtual Divertor Model 3 Introduction of the anisotropic ion temperatures, Ti,// and Ti,⊥, to the fluid model ・changes the momentum transport equation into the first-order ・makes the explicit boundary condition at the divertor plate unnecessary Parallel-to-B component of the Boltzmann equation f f eE f f v// t s m v// t mi nV mi nV 2 nTi , // nTe M m t s (isotropic Te is assumed) p 2 mi nV mi nV nTi nTe Mm t s s nTi nTi , // 2Ti , 3 p 2nTi , // Ti , 3 mi nV V mi nV 2 nTi nTe i , // Mm t s s s coll nTi, // nTi p nTi, nTi p 2 conventional codes (effective isotropic Ti) Instead of the boundary condition Mt = 1, we modeled the effects of the divertor plate and the accompanying sheath by using a virtual divertor (VD) model. Flow velocity is not determined by downstream ‘waterfall’ but by upstream condition. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices. 4 Plasma Fluid Eqs. & Artificial Sinks in VD Artificial sinks in the virtual divertor (VD) region Eq. of continuity n nV S t s S VD Eq. of momentum transport mi nV mi nV 2 nTi , // nTe M m t s n M mVD VD QiVD , // mi nV VD 1 1 1 2 m nV g nTi , // i i , // VD 2 2 nTi , Ti , // rlx me nTe Ti , // nTe V mi e s t nTi ,V s 1 c qieff , s Qi , nTi , Ti , // rlx 2me nTe Ti , mi e Eq. of electron energy transport qeeff 3m nTi Te nTe 3 5 Qe e V nTe nTe V t 2 s mi e s s 2 S. Togo et al., J. Nucl. Mater. (2015) in Press. 1 3 g nT e e VD 2 Periodic boundary condition Eq. of perpendicular (⊥) ion energy transport nTi , QeVD ※according to the image of a waterfall Eq. of parallel (//) ion energy transport qieff 1 1 3 1 , // 2 2 mi nV nTi , // mi nV nTi , // V c t 2 2 2 s s 2 Qi , // g i , nTi , VD V mi nDm QiVD , s s VD Plasma Fluid Eqs. & Artificial Sinks in VD Eq. of continuity n nV S t s Eq. of momentum transport mi nV mi nV 2 nTi , // nTe M m t s Because the parallel internal energy convection is 3 times as large as the parallel internal energy, Ti,// becomes lower than Ti,⊥. Ion pressure relaxation time rlx = 2.5i. (E. Zawaideh et al., Phys. Fluids 29 (1986) 463.) Eq. of parallel (//) ion energy transport qieff 1 1 3 1 , // 2 2 mi nV nTi , // mi nV nTi , // V c t 2 2 2 s s 2 Qi , // nTi , Ti , // rlx me nTe Ti , // nTe V mi e s c = 0.5 is used. Eq. of perpendicular (⊥) ion energy transport nTi , t nTi ,V s 1 c qieff , s Qi , Heat flux limiting factors; ai,// = ai,⊥ = 0.5, ae = 0.2 are used. qseff = (1/qsSH + 1/asqsFS)-1 nTi , Ti , // rlx 2me nTe Ti , mi e Eq. of electron energy transport qeeff 3m nTi Te nTe 3 5 Qe e V nTe nTe V t 2 s mi e s s 2 Neutral is not considered at first. 5 Results (Anisotropy of Ti and the Profiles) Anisotropy of Ti vs normalized MFP of i-i collision VD n (1019 /m3) collisional case M weakly collisional case Ti,// (eV) Ti,⊥ (eV) Te (eV) Gsep and Psep are changed. 6 Results (Bohm condition M V cs cs Te a Ti , // M* = 1) Time evolutions of M* for various VD mi a = 3 for adiabatic, collisionless sound speed PARASOL T. Takizuka and M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 3-4, 471. M* saturates at ~ 1 independently of the value of VD. Characteristic time Bohm depends on VD and 2 orders shorter than the quasi-stationary time ~ 10-3 s. For the simulations of transient phenomena, such as ELMs, Bohm has to be smaller than their characteristic times. 7 Results (Sheath heat transmission factors) Boundary conditions for the heat flux at the divertor plate in the conventional codes; 5 T 1 qi mi nV 2 nTi V i , // i i nTiV 2 x 2 From the sheath theory, i 3 me Ti 1 e 2.5 0.5 ln 2p mi Te qe T 5 nTeV e, // e e nTeV 2 x For Ti = Te, e ≈ 5 for H+ plasma e ≈ 5.3 for D+ plasma Relation between sheath heat transmission factors and gs i scarcely depends on gs because convective heat flux dominates conductive one. e can be adjusted to the values based on the sheath theory by VD model. 8 Results (Dependence of the profiles on Decay length in VD region: Ld ~ VtVD. As long as Ds < Ld < LVD, the profiles in the plasma region do not change. If Ld > LVD (when VD = 5×10-5 s in figure), the profiles become invalid. If Ld < Ds, numerical calculation diverges. The profiles just in front of the divertor plates are affected by the artificial sinks in VD region due to numerical viscosity. This problem will be solved by introducing a high-accuracy difference scheme and an inhomogeneous grid. VD) 9 Results (Supersonic flow due to cooling) C = (RG/Rp)(Tt/TX)1/2, T = Ti,// + Te(,//) M = V/cs cs Te (, //) Ti , // mi Isothermal sound speed PARASOL (at the plate) (at the X-point) Cooling term Qe = -nTe/rad is set in the divertor region. RG = Rp = 1 Mt well agrees with the theory. The reason for MX > 1 is under investigation. T. Takizuka et al., J. Nucl. Mater. 290-293 (2001) 753. 10 Results (Ion Viscous Flux vs Stress Tensor) Two kinds of ion viscous flux, p BR i , // i , // V x 0.96nTi i p lim 1 1 BR nTi p 1 = 0.7 :viscosity limiting factor are compared to the stress tensor, pdef = 2n(Ti,//-Ti,⊥)/3, in the particle-sourceless-region (s = 20.005 m) and particlesource-region (s = 17.005 m). pBR becomes 2~3 orders larger than pdef as lmfp/L becomes large. In the particle-source-region, the correlation between plim and pdef becomes worse especially in the collisional region. In the particle-source-less region, plim with = 0.7 comparably agrees with pdef. However, depends on the anisotropy of ion pressure which might change with the neutral effects. Therefore, it is necessary to distinguish between Ti,// and Ti,⊥. 11 12 Self-Consistent Neutral Model (in VD) present conventional Recycling neutral Diffusion neutral The coordinate x : poloidal direction x = (Bp/B)s. boundary condition Recycling neutral (inner plate) nn,inrecy t nn,inrecyVn,inrecy x n nV S t s Diffusion neutral S VD nn,diff t Recycling neutral (outer plate) n 0 periodic boundary condition VD n VD 2 nn,diff nn,outrecy n,VDdiff t nn,outrecyVn,out recy x n 0 VD (Eq. of continuity for plasma) nn ,diff Dn x x n n,VDdiff n,diff n,diffVD : input 2 nn,diff n,VDdiff 13 Self-Consistent Neutral Model (in Plasma) Recycling neutral (inner plate) nn,inrecy t nn,inrecyVnin,recy x n in n, recy n,recy in in S iz, recy S cx, recy where VFC = (2εFC/mi)1/2 with Franck-Condon energy εFC = 3.5 eV. Recycling neutral (outer plate) nn,outrecy t nn,outrecyVn,out recy x n Diffusion neutral nn,diff n Dn n ,diff t x x Dn out n, recy n,recy in Vn,out recy Vn, recy VFC 2 out out S iz, S recy cx, recy n n,diff S iz,diff S rc S cx,recy n,diff n,recy 1 n,recy n,diff 1 n,diff m a L FC i d T m aL i i d aL : input Ti mi cx iz n,diff T. Takizuka et al., 12th BPSI Meeting, Kasuga, Fukuoka 2014 (2015). The coordinate x: poloidal direction x = (Bp/B)s. 14 Atomic Processes Recycling neutral (outer plate) Recycling neutral (inner plate) nn,inrecy t nn,inrecyVnin,recy x n in n, recy n,recy nn,outrecy in in S iz, recy S cx, recy t nn,outrecyVn,out recy n out n, recy n,recy x out out S iz, recy S cx, recy Diffusion neutral nn,diff t n Dn n ,diff x x n n,diff S iz,diff S rc S cx,recy n,diff Source terms for plasma: S S core S iz S rc out in out in M m mi 2 VFC sin S iz, recy S iz, recy S cx, recy S cx, recy miV S cx S rc T S T S (θ = Bp/B) 2 2 Qi , // Qi,core // Ti 2 S iz,2 S cx,2 mi 6 VFC S iz, recy S cx, recy mi 2 V Ti, // 2 S cx S rc 2 Qi, Qi,core mi 3VFC S iz, recy S cx, recy Qe Qecore iz S iz 3 2Te S rc i iz,diff (εiz = 30 eV) S cx,diff i, cx S rc (Ti = (Ti,// + 2Ti,⊥)/3) 15 Result (Low recycling condition) X-point Near the plate aL = 1 Recycling rate ~ 0.17 Ti,///Ti,⊥ ~ 0.6 Recycling neutral dominant Ti,⊥ Ti,// Te nn,recy nn,diff 16 Result (High recycling condition) X-point Near the plate aL = 0.1 Recycling rate ~ 0.92 Ti,///Ti,⊥ ~ 1 Diffusion neutral dominant Ti,// Ti,⊥ Te nn,diff nn,recy Conclusions 17 1D SOL-divertor plasma model with anisotropic ion temperatures has been developed. In order to express the effects of the divertor plate and the accompanying sheath, we use a virtual divertor (VD) model which sets artificial sinks for particle, momentum and energy in the additional region beyond the divertor plate. In addition, VD makes the periodic boundary condition available and reduces the numerical difficulty. For simplicity, the symmetric inner/outer SOL-divertor plasmas with the homogeneous magnetic fields are assumed. In order to simulate more general asymmetric plasmas with the inhomogeneous magnetic fields, the effects of the plasma current and the mirror force have to be considered. In addition, it is necessary to introduce a high-accuracy difference scheme and an inhomogeneous grid in order to avoid the numerical errors at the divertor plate. These are our future works. DmVD & gi,// in VD region DmVD and gi,// in VD region have Gaussian shapes. The length of V-connection-region L0 = 1.6 m. DmVD cD g i , // g i,c// L20 VD 4s 2 exp 2 L0 4s 2 exp 2 g i,e// L0 7 Results (Bohm condition) cs Te , // a Ti , // Mach profiles for various Ds mi a = 3 for adiabatic, collisionless sound speed M* ≈ 1 with no cooling effects. Plasma T. Takizuka and M. Hosokawa, Contrib. Plasma Phys. 40 (2000) 3-4, 471. VD The effect of artificial sinks in VD region numerically diffuses in the plasma region. Appendix ~ Collisionless Adiabatic Flow ~ 1D equations in the collisionless limit; d nV 0 ds d mi nV 2 nTi , // nTe 0 ds dnTe d 1 3 3 mi nV nTi , //V V ds 2 2 ds 2 3Ti , // Te dn 3n dTe V m ds mi ds i Refer to Sec 10.8 of Stangeby’s text 20 The effect of gs on t (heat transmission factor) The boundary condition for the heat flux at the divertor plate in the usual codes; 5 T 1 qi mi nV 2 nTi V i , // i i nTiV 2 x 2 qe T 5 nTeV e, // e e nTeV 2 x The heat transmission factors, i and e, are input parameters. The VD model, however, does not use this boundary condition but the periodic boundary condition with the cooling index gs (s ∈ i//, i⊥, e). Therefore i and e are back calculated using these relations. The conduction heat fluxes are limited by the free-streaming heat fluxes with limiting coefficients as as qseff = (1/qsSH + 1/asqsFS)-1. qsSH sSH Ts x qiFS , // nTi, // Ti , // mi qiFS , nTi, Ti , // mi qeFS nTe Te me Thus the effective conduction heat fluxes are smaller than the free-streaming heat fluxes times limiting coefficients asqsFS so that t has the maximum. 9f 6 1 M 2 3 f ani i f eq ani 2 f ani 2 2 f 4 M ani 5 a e e 2 M mi me f ani 2 f eq 3 f ani f ani 2 f eq 3 f ani 3 f ani 3 ca i , // 1 c a i , f ani 2 f ani 2 3 f ani f ani 2 f eq f ani Ti , // Ti , f eq Te Ti Calculation condition Calculation condition H plasma and ni = ne = n Symmetric inner/outer SOL Length of the plasma L 44 m SOL width d 2 cm Separatrix area 40 m2 Particle flux from core Γsep 1~5×1022 /s Heat flux from the core Psep 1~4 MW Cooling index for i,// 1 Cooling index for i,⊥ 1.2 Cooling index for e 2.5 VD 5×10-6 s Heat flux limiter for ion 0.5 Heat flux limiter for electron 0.2 Discrepancy Edge transport code packages, such as SOLPS and SONIC, are widely used to predict performance of the scrape-off layer (SOL) and divertor of ITER and DEMO. Simulation results, however, have not satisfactorily agreed with experimental ones. Comparison of results (EXP vs SIM) M. Wischmeier et al., J. Nucl. Mater. 390-391, 250 (2009). Why does Ti,// become lower than Ti,⊥? Integration over x from the stagnation to x yields, Reduced eq. of parallel (//) ion energy transport d 3 1 nTi , //V Qi , // Qi dx 2 3 Ti , // 2Qi x 9nV Ti , // 1 3 Reduced eq. of perpendicular (⊥) ion energy transport dnTi ,V dx 2 Qi , Qi 3 Ti , By considering the kinetic energy term and force term, Ti,///Ti.⊥ ~ 0.2. Eq. of parallel (//) ion energy transport qi , // 1 1 3 1 2 2 mi nV nTi , // mi nV nTi , // V c t 2 2 2 x x 2 nTi , Ti , // me nTe Ti , // nTe Qi , // V rlx mi e x eff ~ Ti , 2Qi x 3nV Qualitative derivation of the viscous flux Assumption of p << nTi Simplified system equations d nV 0 ds d mi nV nTi p 0 ds (A) (E)’ (B) d 3p mi nV 3 3nTi , //V ds rlx (C) d nTi,V 3p ds 2 rlx (D) d mi nV nTi 0 ds Then (E) (B)’ By (A) and (B)’, LHS of (E)’ becomes d dV mi nV 3 2nTiV 2nTi ds ds From (C) – (D) d 7 9p mi nV 3 2nTi p V ds 2 2 rlx d 9p mi nV 3 2nTiV ds 2 rlx 4 9 p nTi rlx dV dV i , // ds ds Necessity of artificial viscosity term M VD mi nV VD V VD x x artificial viscosity term conservation of ion particles conservation of parallel plasma momentum d V dx V d 2 V 2nT dx V 2 c s2 2 dcs2 dV c s V dx dx When V is positive, RHS becomes positive. If V becomes supersonic, dV/dx becomes positive and V cannot connects. Discretization discretization scheme general conservation equation V G S t x x x full implicit upwind staggered mesh (uniform dx) central Calculation method matrix equation Gx s (ex. N = 5) ae2 0 0 a p1 ae2 0 a w2 a p 2 0 a w3 a p3 a e3 0 0 a w4 a p 4 0 0 a w5 a e5 a w1 0 u 0 0 a w5 1 0 v 0 0 1 a w1 1 s1 0 2 s 2 0 3 s 3 a e 4 4 s 4 a p5 5 s 5 a p1 a w1 a w2 0 A 0 0 Matrix G becomes cyclic tridiagonal due to the periodic boundary condition. This matrix can be decomposed by defining two vectors u and v so that G A uv where A is tridiagonal. a e2 0 0 a p2 a e2 0 a w3 a p3 a e3 0 a w4 a p4 0 0 a w5 0 0 ae4 a p5 a e5 0 Calculation method Sherman-Morrison formula A uv 1 1 1 1 A A u 1 v A u zv x G s I y 1 v z 1 1 vA1 where Ay s and Az u. y and z can be solved by using tridiagonal matrix algorithm (TDMA). calculation flow No Ion // energy Ion ⊥ energy Elec. energy Momentum Particle Yes The number of equations can be changed easily. Continuity of Mach number conservation of ion particles conservation of parallel plasma momentum d nV S dx ncs 1 M 2 d mi nV 2 2nT 0 dx 2 nc M 1 M dM dT 1 M 2 S s dx 2T dx O. Marchuk and M. Z. Tokar, J. Comput. Phys. 227, 1597 (2007). Due to the continuity of Mach number, RHS has to be zero at the sonic transition point (M = 1). RHS > 0 RHS ≦ 0 Sonic transition has to occur at the X-point when T = const. Result (particle flux & Mach vs nsep) Γt ∝ nsep → accords with conventional simulations Supersonic flow (Mt > 1) → observed when nsep is low Subsonic flow (Mt < 1) → observed when nsep is high → numerical problem? Larger nsep (like detached plasmas) is future work. Result (Mach number near the plate) Near the plate Plasma Δs = 5cm Δs = 2cm M > 1 is satisfied in the near-plate VD region. Smaller Δs results in a better result. → Numerical problem? VD Result (Mt vs nsep) The recycling neutrals are not ionized or do not experience the charge exchange near the plate (red line).
© Copyright 2024 ExpyDoc