1 / 16 Numerical Simulations for Reionization of the Universe Nakamoto, T. (Univ. of Tsukuba) Hiroi, K. Umemura, M. 1. Why Reionization by 3-D RT ? 2. TsuCube Project 3. Tsukuba's New Code 1. Why Reionization ? 2 / 16 -Radiation Feedback ---- Effects for Following Generation - Photoionization - Photodissociation - Photo Heating -Observation ---- Probe for First Generation - Emissions - Absorptions 3 / 16 3D Reionization Calculations ・Photon Conservation Method (+ Tree Method) Abel et al. 1999, Abel & Wandelt 2001, Razoumov et al. 2002 ・Optically Thin Variable Eddington Tensor Formalism Gnedin & Abel 2001 w/ HD ・Direct Incident Radiation Susa & Umemura ・Monte Carlo 3D RT Ciardi et al. 2001, Maselli, Ferrara, & Ciardi 2003 w/o HD ・Grid Base 3D RT with Short Characteristics Nakamoto, Umemura, & Susa 2001 An Example: Evolution of Ionization State N3=1283 in (8Mpc) 3, Nangle = 1282 background Isotropic UV: I21z=0.1 Zel’dovich approximation: = 15 Radiative Transfer Ionization Equilibrium Neutral Fraction: X HI nHI nH Nakamoto, Umemura, & Susa 2001 4 / 16 5 / 16 Shadowing Effect Inhomogeneous Homogeneous N3=1283 in (8Mpc) 3, Nangle = 1282 background UV: I21 =0.1 Isotropic Radiative Transfer Ionization Equilibrium But... * Steady Solution (No Time Evolution) * Only Background Radiation (No Point Source) * Isothermal (No Temperature Evolution) Neutral Fraction: * Only One Incident UV Spectrum (Iν∝ν-1) X HI nHI nH Nakamoto, Umemura, & Susa 2001 6 / 16 7 / 16 We want to update our code! 1. Point Sources in Computational Domain 2. Time Evolution 3. Various Types Incident UV Spectrum 4. Temperature Evolution We can apply our new code to more problems! 2. TsuCube Project 8 / 16 Comparison of 3D RT codes (A. Ferrara, B. Ciardi ...) Common Test Problems: Test #1, #2, #3 Groups/Codes: * CRASH (Ferrara, Ciardi, Maselli) * CORAL (Iliev) * OTVET (Gnedin, Abel) * Cen * Razoumov * Tsukuba (Nakamoto, Umemura, Hiroi) Deadline: January 31, 2004 9 / 16 Test Problem 1: Input nH 103 cm3 T 10 4 K e 1.2 103 (collisional) no dynamics NÝ 1048 s1 at 13.6 eV L 6.6 kpc Output N c 128 nH 103 cm3 NÝ 1048 s1 at 13.6 eV L 6.6 kpc N c 128 T 10 4 K e 1.2 103 (collisional) • Xe-R relation • I-front propagation (Time Evolution) • UV intensity @ each grid point • computation speed Test Problem 2: 10 / 16 (128,128,128) Input nH 9.3104 cm3 nHe 7 105 cm3 (1,1,1) Nú 5 1048 s1 @13.6 eV and 60 eV L 6.6 kpc N c 128 T 102 K (initial) H He He 0 (initial) no dynamics non-isothermal (Temperature Change should be followed.) 11 / 16 Test Problem 3: nH 9.3104 cm3 Input nHe 7 105 cm3 nH 9.3101cm3 nHe 7 102 cm3 L 6.6 kpc N c 128 T 102 K (initial) H He He 0 (initial) no dynamics non-isothermal (Temperature Change should be followed.) 3. New Code 12 / 16 Tsukuba's New Code Radiative Transfer Solver 1. Short Characteristics with point source(s) Time Evolution * 2nd order implicit scheme 2. ART (Accurate RT) Ionization State Incident UV Spectrum * H, He * 3 (6)-frequency method * arbitrary spectrum Temperature Evolution 13 / 16 Radiation Energy Density Point Source(s) in Computational Domain Distance RT: Short Characteristics 14 / 16 Time Evolution dn HI I nHI dd ne n p dt h 1 I n I nHII c t 2nd order implicit scheme (Crank-Nicholson) nHI n 1 nHI t n 1 nHI 2 n n 1 I dd nen p nHI h n I nHI I n n n n I dd nen p h -6 15 / 16 J (Mean Intensity) Time Evolution log J -7 TsuCube Test #1 -8 -9 -10 0 Spherically Sym. Solution by 1-D code log XHI -1 -2 -3 -4 100 XHI (Neutral Frac.) [pc] R 1000 16 / 16 4. Summary * Reionization Simulations * TsuCube Project: Comparison of 3D RT Codes * Developement of a New Code Point Sources Time Evolution of Ionization State Various Incident UV Spectra Temperature Evolution
© Copyright 2024 ExpyDoc