Probing the Nature of Dark Matter with the First Galaxies (Reionization, 21-cm signal) Anastasia Fialkov Ecole Normale Superieure Debates on the Nature of Dark Matter 20 May 2014 Outline • The early Universe (brief overview) • Effect of various DM models on: 1. 2. 3. 4. Number Counts Thermal history and Reionization 21-cm signal Properties of first stars Anastasia Fialkov 20 May, 2014 Cosmic History • CMB • Dark Ages • First Stars and Galaxies • Reionization Anastasia Fialkov 20 May, 2014 First Stars and Galaxies Form in metal free environment • H2 cooling ~105 Msun halos • H cooling in ~107 Msun halos (e.g., Tegmark et al. 1997, Machacek, Bryan & Abel 2001) (Stacy et al. 2013) Fragmentation (rotation, radiative feedback) (e.g., Stacy, Greif, Klessen, Bromm, Loeb 2013; Stacy, Greif, Bromm 2010) Start forming at z ~ 65 (Naoz et al. 2006, Fialkov et al. 2012) Rare at high redshifts (biased by δ and vbc) (e.g., Barkana & Loeb 2004; Tselikhovich & Hirata 2010) Anastasia Fialkov 20 May, 2014 Formation of First Stars is Biased 1. Relative supersonic motion between gas and dark mater affects 104-108 Msun halos • • • • Suppresses halo abundance Suppresses gas fraction Delays star formation First star is delayed by Δz ~ 5 Tselikhovich & Hirata 2010; Naoz, Yoshida, Barkana 2011; Dalal, Pen & Seljak 2010; Tselikhovich, Barkana & Hirata 2011; Naoz, Yoshida, Gnedin 2012, 2013; Fialkov, Barkana, Tselikhovich & Hirata 2012; Maio, Koopmans & Ciardi 2011; Stacy, Bromm & Loeb 2011; Greif, White, Klessen & Springel 2011; Naoz, Yoshida & Gnedin 2011; O’Leary & McQuinn 2012; Bromm 2013; Yoo, Dalal, Seljak 2011 … Anastasia Fialkov O’Leary & McQuinn (2012) Fialkov, Barkana, Tseliakhovich, Hirata (2012) 20 May, 2014 Anastasia Fialkov Visbal, Barkana, Fialkov, Tseliakhovich, Hirata 2012 20 May, 2014 Formation of First Stars is Biased 2. Radiative feedbacks • LW photons destroy H2, suppress star formation in ~106 Msun halos H 2 + γ → H 2* → H + H • Electrons catalyze H2 formation H + e- → H - + γ H + H - → H 2 + e- • X-rays catalyze H2 formation (additional ionization) • Delay build-up of radiative backgrounds up to Δz ~ 5 Machacek et al. 2001; Wise & Abel 2007; O’Shea & Norman 2008, Fialkov et al. 2013; Visbal et al. 2014; Machacek, Bryan, Abel 2003…. Anastasia Fialkov 20 May, 2014 Thermal History of Cosmic Gas in ΛCDM z > ~200: thermal coupling to CMB (Compton scattering), cooling as (1+z) ~20 < z < ~200: adiabatic cooling as (1+z)2 z < ~20: heating of gas (very model dependent) Heating mechanisms: • X-ray binaries • Thermal emission • Quasars, mini quasars • Dark matter annihilation • Etc. Log(TK) TK z ~ 200 TCMB Anastasia Fialkov Log(1+z) 20 May, 2014 21-cm Signal 𝑛=1 𝑛1 𝑛0 • 3-D map of HI • Tool to Probes: Dark Ages, Cosmic Dawn and Reionization Anastasia Fialkov 20 May, 2014 Global 21-cm Signal in ΛCDM Sensitive to: • Initial conditions δ, vbc (cosmology) • Gas Temperature (heating mechanisms) • Ly-a, LW, Ionization fraction (properties of sources) Expected Signal Anastasia Fialkov Pritchard and Loeb 2012 20 May, 2014 Primordial Landscape with Various DM Models Anastasia Fialkov 20 May, 2014 Dark Matter mX ~ keV, thermal relics mX ~ GeV – TeV Structure formation at small scales is suppressed by Heating and ionization at high z – Particle free streaming (Bode P., Ostriker J. P., Turok N., 2001) – Residual velocity dispersion of the particles (Barkana R., Haiman Z., Ostriker J. P., 2001) Anastasia Fialkov 20 May, 2014 1. Effect on Abundance of Dark Matter Halos • Suppression scale 3 2 MJ ~ × 1010 𝑚 −4 𝑋 Atomic cooling halos mX = 2, 3, 4 keV, CDM Sitwell, Mesinger, Ma, Sigurdson 2014 Anastasia Fialkov • Cutoff at O(10-10) – O(10) Msun (+Sommerfeld enhancement) van den Aarssen, Bringmann, Goedecke (2012) Sensitive to mX ~2-3 keV Pacucci, Mesinger, Haiman 2013 20 May, 2014 Collapsed Fraction at z = 10 Anastasia Fialkov Fialkov, Preliminary results 20 May, 2014 1. Effect on Abundance of Dark Matter Halos. Astrophysical Uncertainties Star formation in 105-107 Msun halos: Interplay between WDM (~ 10 keV) and vbc. Fialkov et al. 2012 Mh ~ M0,vbc(1+aJLW0.47) Fialkov et al. 2013 Anastasia Fialkov 3 2 MJ ~ × 1010 𝑚𝑋 −4 Sitwell, Mesinger, Ma, Sigurdson 2014 20 May, 2014 2. Thermal History and Reionization • • • • • • High-z effect on IGM Low-z effect Suppressed structure formation • Heating and ionization at high redshifts. Stars form later Delay in heating and reionization • Cannot reionize the Universe alone No sinks for ionized gas • Additional free electrons could (e.g., Haiman et al. 2001, Benson et al. catalyze the formation of H2, thus 2001; Barkana & Loeb 2002; Shapiro et al. form the first stars and begin 2004; Iliev et al. 2004, 2005; Ciardi et al. 2006; Yue et al. 2009; Alvarez & Abel 2010; reionization early Yue, Chen 2012…) Log(TK) (Araya, Padilla 2013, Biermann & Kusenko 2006; Kusenko 2007; Stasielak et al. 2007, Valdes et al. 2013, Galli et al. 2009, 2011…) Anastasia Fialkov Log(1+z) 20 May, 2014 2. Thermal History WDM vs CDM Later Heating: Delay of Δz ~ 2 (3 keV) Astrophysical uncertainties (in the redshift of heating transition): Heating efficiencies Δz ~ few Star formation scenario Δz ~ 0.8 Sitwell, Mesinger, Ma, Sigurdson (2014) vbc : Δz < 1 Radiative feedbacks: Δz ~ 2.5 No fbk, no vbc No fbk, vbc Weak fbk Strong fbk Saturated fbk WDM: 3 keV, f* = 10% CDM, f* = 10% CDM, f = 1% CMB Fialkov et al. (2013) Anastasia Fialkov 20 May, 2014 2. Reionization WDM vs CDM Fraction of volume in ionized regions Redshift of reionization Yue, Chen (2012) • Delayed: fewer stars at high redshifts (Mesinger, Ewall-Wice, Hewitt 2014; Yue, Chen 2012). • Enhanced: less sinks (minihalos), lower recombination rate (e.g., Haiman et al. 2001, Benson et al. 2001; Barkana & Loeb 2002; Shapiro et al. 2004; Iliev et al. 2004, 2005; Ciardi et al. 2006; Yue et al. 2009; Alvarez & Abel 2010; Yue, Chen 2012). • Astrophysics: star formation efficiency; escape fraction. Anastasia Fialkov 20 May, 2014 2. Thermal History and Reionization DMA vs no-DMA DMA: heat and ionize gas (high z). Gas has less adiabatic cooling No heating at z ≳ 30 is expected within standard assumptions! Stars interfere at z ≲ 30 Bino (10 GeV) Heavy DM (1 TeV) to leptons Wino (200 GeV) No DM annihilation Valdes, Evoli, Mesinger, Ferrara, Yoshida (2013) Anastasia Fialkov 20 May, 2014 3. DM Fingerprints in the 21-cm Signal • Delayed stellar evolution • Deeper absorption trough • “Accelerated” heating • Suppressed signal from Dark Ages • Suppressed absorption trough LEDA SKA Anastasia Fialkov 20 May, 2014 3. DM Fingerprints in the 21- cm Signal WDM vs CDM • • • • Absorption trough is deeper by ~25 % (3 keV versus CDM) Shift of the trough Δz ~ 5 (3 keV versus CDM) Larger derivatives at higher freq. Easier to observe (e.g., LEDA) Astro: feedback, X-ray heating, vbc … 2 keV, 3 keV, 4 keV, CDM f*= 0.3%, 1%, 5%, 10% Anastasia Fialkov Sitwell, Mesinger, Ma, Sigurdson (2014) 20 May, 2014 3. DM Fingerprints in the 21-cm Signal DMA vs no-DMA • • • • • For some models - no signature Suppressed power during dark ages. (Observations from space!) 10 GeV WIMP: factor ~2 weaker signal from dark ages. Suppressed absorption feature (Tgas →TCMB in average) Uncertainties: astrophysics at z < 30 (Star formation), magnetic fields at high redshifts Bino (10 GeV) Heavy DM (1 TeV) Wino (200 GeV) No DM annihilation Anastasia Fialkov Valdes, Evoli, Mesinger, Ferrara, Yoshida (2013) 20 May, 2014 4. Effect on First Stars WDM • Collapsed structures form later, less concentrated. Barkana et al. 2001; Smith & Markovic 2011 • First stars could form in filaments (1.5 keV → SF in filaments z > 6). • Detectable: Lyman-limit (LLS) or Damped Lyman - systems (DLAs); “chain” galaxies at z ~ 10. • However: “No theory” for star formation in filaments yet. Gao & Theuns (2007); Gao, Theuns, Springel (2014) Anastasia Fialkov 20 May, 2014 4. Effect on First Stars WDM Example: Star Formation in Filaments for 1.5 keV WDM, atomic cooling GADGET 3, SPH, 100 Mpc/h Anastasia Fialkov Gao, Theuns, Springel (2014) 20 May, 2014 4. Effect on First Stars Annihilating DM • Enhanced H2 abundance and more rapid cooling • DMA is not very effective in suppressing gas collapse and subsequent fragmentation • However: Heating from DMA is important in modifying the thermodynamics of primordial gas Smith et al. (2012); Ripamonti et al. (2010); Iocco et al. (2008); Chuzhoy (2008) Anastasia Fialkov Stacy, Pawlik, Bromm, Loeb (2014) 20 May, 2014 Summary • Mainly manifests itself at low z • Suppresses fluctuations at small scales • Delays stellar evolution • Delays build-up of radiative feedbacks • Affects reionization • 21-cm signal from z ≲ 20 • Stars could form in filaments ‘Noises’ (e.g. in 21-cm signal): • vbc, feedbacks, X-ray heating, SF efficiency, escape fraction,… • Mainly manifests itself at high z • Modified thermal history and ionization at high redshifts z ≳ 30 • Stars could start forming earlier • Smoking gun (in some models): Suppressed signal from Dark Ages ‘Noises’: • Star formation at z ≲ 30 • Primordial magnetic fields Primordial Magnetic Fields Primordial magnetic fields can heat the gas early - Ambipolar diffusion - Decay of turbulences 0.5 nG Schleicher, Banerjee, Klessen (2009) Global 21-cm Signal in ΛCDM Sensitive to: • Initial conditions • Heating • Ly-a, LW • Ionization fraction Anastasia Fialkov 20 May, 2014 Observational constraints WDM • Strongly lensed high redshift galaxies number counts Pacucci et al 2013 (independent of astrophysics) mx > 1 keV • stellar mass function + TF relation mx > 0.75 keV Kang et al. 2013 • Reionization by z~6, supermassive black holes -> mx > 0.75 keV (Barkana et al 2001) • Ly-a forest (m_x>3.3 keV @ 2σ, thermal relic) Viel et al 2013 • 21-cm signal (Interplay between WDM, vbc and astrophysical feedbacks (e.g. LW negative feedback) probes perturbations up to Jeans scale. • High redshift gamma-ray bursts (mx > 1.6-1.8 keV) de Souza et al 2013 A set of noiseless Ly-a forest spectra for a quasar at z = 4.6z Anastasia Fialkov Viel et al. (2013) 20 May, 2014
© Copyright 2024 ExpyDoc