核融合原型炉における粒子制御の 課題と展望 竹永秀信 原子力機構 第17回 若手科学者によるプラズマ研究会 主題:核融合原型炉に向けたプラズマ制御・炉工学研究の現状と進展 平成26年3月5~7日開催 場所:日本原子力研究開発機構 那珂核融合研究所 核融合炉における粒子制御の役割 ○ 自律性の高い燃焼プラズマにおいて、密度は外部からの制御が比較的容易な物理量 であり、粒子制御は燃焼プラズマの制御にとって重要な要素である。 燃焼制御のための燃料密度制御 燃料粒子供給 粒子閉じ込め 粒子輸送 供給方法 粒子排気 ダイバータ排気 第一壁での粒子吸蔵 ダイバータ板損耗抑制のための熱負荷低減 高Z不純物入射による放射損失パワーの 増大 ダイバータ部のみならず、主プラズマ・境 界層でも放射損失増大が必要 過度の不純物蓄積によるプラズマ中心部 での放射損失増大は回避が必要 粒子制御は、粒子・熱のバランスに重要であり、 燃焼プラズマの定常維持にとって本質的役割を 担う。 核融合炉における粒子制御の役割 ○ 自律性の高い燃焼プラズマにおいて、密度は外部からの制御が比較的容易な物理量 であり、粒子制御は燃焼プラズマの制御にとって重要な要素である。 燃焼制御のための燃料密度制御 燃料粒子供給 粒子閉じ込め 粒子輸送 供給方法 粒子排気 ダイバータ排気 第一壁での粒子吸蔵 ダイバータ板損耗抑制のための熱負荷低減 高Z不純物入射による放射損失パワーの 増大 ダイバータ部のみならず、主プラズマ・境 界層でも放射損失増大が必要 過度の不純物蓄積によるプラズマ中心部 での放射損失増大は回避が必要 粒子制御は、粒子・熱のバランスに重要であり、 燃焼プラズマの定常維持にとって本質的役割を 担う。 不純物からの放射光 で熱を分散 講演内容 核融合原型炉での粒子バランスの考察 炉心プラズマの密度分布と不純物輸送 ペレット入射装置及びガスジェット装置を用いた場合の閉じ込 めへの影響 燃焼模擬実験 Fuelling scenario in a fusion reactor T is fuelled in the main plasma for minimizing the T fuelling rate. Fuelling to the main plasma for sustaining the high tritium and deuterium densities in the main plasma Fuelling to the edge plasma for enhancing the recycling level Particle balance model NT = pM (STM - STL) + pESTR ND = pM (SDM - SDL) + pE (SDE + SDR) NHe = pMSHeM + pESHeR (recycling source is treated as a fuelling in the edge plasma) the confinement times for the particles fuelled in the main plasma (pM) and for the particles fuelled in the edge plasma (pE) fpumpTdiv = STM – STL and Tdiv = STM – STL + STR fpumpDdiv = SDM – SDL + SDE and Ddiv = SDM – SDL + SDE + SDR fpumpHediv = SHeM and Hediv = SHeM + SHeR SlimCS design parameters Plasma current : Ip=16.7 MA Toroidal magnetic field : BT=6.0 T Major radius : Rp=5.5 m Minor radius : ap=2.1 m Fusion output : Pfus=2.9 GW STL=SDL=SHeM=1.051021 /s Vol. averaged density : <ne>=1.151020 m3 NT=ND=51022 Divertor heat load : Qdiv=150 MW (76% radiation) div~11025 /s for Tdiv=10 eV 3 Niscal=(pM(0)(ne/11019m-3)0.66SM+pE(0)(ne/11019m-3)-0.36SE) (Ip/1MA)0.2(BT/3.5T)0.3(P/10MW)-1.1 pM(0)=0.38 s pE(0)=4.7 ms (including divertor/SOL region) 2 1.5 i N exp [ 1021 ] 2.5 1 H. Takenaga et al., Nucl. Fusion 37 (1997) 1295. 0.5 JT-60U 0 0 0.5 1 1.5 2 N scal [ 10 21 ] i 2.5 3 fpump=1-4% H. Takenaga et al., Nucl. Fusion 41 (2001) 1777. Particle balance indicates that T fuelling is smaller by a factor of >10 than total D fuelling rate. JT-60U pM=2 s, pE=2 ms, fpump=3%, no wall pumping NHe= 2.1% of Ne. T-recycling is one order of magnitude smaller than Drecycling, leading the one order of magnitude smaller amount of T-cycle system than that of D-cycle system. Dependence of fuelling rate on pM&pE and fpump /s) 23 T 0.1 S 0 1 0 0.3 0.8 pE=1ms 2ms 4ms 0.6 0.4 0.2 M 23 (10 /s) D M 23 (10 /s) D 0.2 (10 M /s) 23 (10 M T S 0.2 0 4 0.2 0.1 0 14 12 E 23 (10 /s) D 3 2 1 S SD strongly depends on fpump. E 0.4 S The reduction of fpump does not decrease the amount of T-cycle and it increases T-recycling (disadvantage of T retention). 0.6 E 23 (10 /s) D On the other hand, SDE increases with increasing pM. 0.3 0.8 S SDM decreases with increasing pM and depends on pE. 1 S ST is inversely proportional to pM and weakly depends on pE. pM=2spE=2ms fpump=3% M 10 8 6 4 2 0 0 0 1 2 3 M (s) p 4 5 0 2 4 f pump 6 (%) 8 10 TとD分離しない場合 TとDを燃料サイクル系で分離しないことも考えられ、その場合トリチウムのダイバータ への粒子束は約1桁上昇。 高トリチウム束は、計量管理やトリチウムリンテンションの観点からは好ましくない。 TとDを分離しない場合、燃料サイクル系の設計が容易となり、上記とのトレードオフ。 DTペレット生成技術の確立 燃料サイクルでの同位体分離技術を考慮しつつ、核融合原型炉での粒子供給シ ナリオの策定が重要 ピークした密度分布 Hモードプラズマ ○ トカマクでは、ピークした密度 分布。 ○ 内向き対流速度の存在。 高密度化には有利 周辺密度はグリーンワルド密度 限界で制限 不純物の蓄積が課題 密度勾配が大きいと蓄積 最適な密度分布? Hモードでは軽不純物の蓄積は観測されない C Angioni, E Fable, M Greenwald, M Maslov, A G Peeters, H Takenaga and H Weisen, Plasma Phys. Control. Fusion 51 (2009) 124017 DHe is reduced to a NC level, DC and DAr are higher JT-60U • (-∇n/n) is smaller than (-∇Ti/Ti) for He, similar for electron and C, and larger for Ar. • In the parabolic RS and high bp mode plasmas, both D and ci are at an anomalous level. Core radiation loss from Ar can be compensated with slightly enhanced confinement in a fusion reactor. A-SSTR2 2 0 -3 Ip=12MA, BT=11T, Rp=6.2m, a=1.5m, Fusion output ~4GW, Pradmain~400MW, Aux. heating=60MW -2 -4 4 35 T (keV) n (10 m ) 30 e e 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 r/a r/a 20 5 6 7 8 Zeff 4 3.5 3 2.5 2 1.5 1 0.5 0 nAr(0)/nAr(ITB-foot)~2xne(0)/ne(ITB-foot) 1.6 1.4 1.2 1 0.8 0.6 8 7 6 5 4 3 2 1 2 Neoclassical Ar transport 1.8 HHy2 4 nAr(0)/nAr(ITB-foot)~ne(0)/ne(ITB-foot) neped/nGW • Edge density can be reduced by density peaking. • HHy2=1.4-1.5 with more peaked nAr(r) by a factor of 2 than ne(r). • Zeff=4 for 400MW radiation (0.5% Ar at edge). JT-60U 1.6 1.4 1.2 0.5 1 1.5 2 2.5 3 ne(0)/ne(ITB-foot) 3.5 粒子供給装置 SMBI : density jump was observed and its height decreased with PBK. Confinement tended to degrade with relatively larger perturbation induced by SMBI with higher frequency (~10 Hz) and higher PBK (~6 bar). Supersonic Molecular Beam Injection (SMBI) ne (1019 m-3) collaboration with CEA-Cadarache f≤10 Hz, duration~2 ms/pulse, HFS ~1.2 Pam3/pulse at PBK=6 bar, ~2.2 km/s at Twall=150oC and PBK=5 bar. Gas-puffing HFS Pellet 3 Pellet 2 3.2 HFS SMBI (6 bar) E048771 2.2 3 HFS SMBI LFS Pellet (4 bar) HFS Pellet E039645 LFS SMBI Pellet injector Size : 2.1 mm cube (2 bar) Frequency : <10 Hz Velocity : 100-1000 m/s Number : 30-40 pellets/shot 2 3 2 E048766 E048770 1s HFS pellet : H89PL~2 at ne/nGW~0.7. JT-60U SMBI : High confinement tended to be obtained with relatively smaller perturbation induced by SMBI with lower frequency (~5 Hz) and lower PBK (~2-4 bar). HFS and LFS SMBI has no clear difference in density dependence of confinement. Pped was enhanced in the case with high confinement. Enhanced pedestal pressure is key to sustain high confinement. 3 H89PL Central 2.5 fuelling only 2 SMBI Pellet HFS LFS Pellet Gas-puffing SMBI +Pellet 1.5 1 0.4 Gas-puffing 0.5 0.6 ne/nGW 0.7 0.8 ELMy Central fuelling only H-mode HFS pellet w/o ITB SMBI HFS LFS gas HFS pellet + gas Central Ti decreased even with edge fuelling. Pellet (E041561) SMBI 10Hz (E048767) Ti (keV) Wdia (MJ) 2.4 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 2.3 2.2 2.1 SMBI 5 Hz (E048766) 2.6 2.4 2.2 2 1.8 1.6 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 2.6 2.4 2.5 2.2 2.4 2 2.3 1.8 2.2 1.6 14 14 14 12 12 12 10 10 10 8 8 8 6 6 6 4 4 4 2 2 2 0 4 4.2 4.4 4.6 TIME (s) 4.8 5 0 4 4.2 4.4 4.6 TIME (s) 4.8 5 0 4 4.2 4.4 4.6 TIME (s) 4.8 5 ne 19 (10 m-3) • Pellet injection : the Ti decrease was observed in the ITB region. However, it recovered when pellet was not injected in relatively long period (≥300 ms). • SMBI with f=10 Hz : transiently decreased central Ti was not recovered. • SMBI with f=5 Hz : decreased Ti recovered in the latter phase and relatively good ITB was sustained. Optimization of injection frequency and penetration depth (or level of Ti decrease) is important for sustaining high confinement. Extended regime to high density JT-60U Operation regime has been extended to high density (ne/nGW > ~ 1) with high confinement (HHy2 > ~ 1) and high radiation loss fraction (frad>0.9). HHy2 2 RS 1.5 Key : ITB control • Fueling (NB, HFS pellet and gas-puffing) • Heating • Impurity seeding • (Intrinsic impurity) • Plasma configuration 1 High bp H 0.5 H-mode frad 1 0.8 Closed : 2003-2004, Open : before Double lines : w impurity seeding 0.6 0.4 0.6 0.7 0.8 0.9 ne/nGW 1 1.1 1.2 High ne above nGW in RS plasma JT-60U 5 4 3 2 1 0 20 15 10 5 0 3 nGW ne PNB 2 H Sn Pradmain IDa 1 0.5 0 4 4.5 5 5.5 6 6.5 Tim e (s) t=7.8s 1.5 W 1 IDa (a.u.) Prad (MW) PNBabs PL 2 0 8 6 4 2 0 Ip=1.0 MA, BT=2.5 T, q95=6.1, d=0.45, Vp=78 m3 ne/nGW ne, nGW (1019 m-3) - Large Vp with NB and LH heating, and NB fueling only. • HHy2=1.3, bN=2 and fBS~0.7 at ne/nGW=1.1. • ne(0)/nGW=1.6 with low needge/nGW (~0.4) by tailoring ne ITB. • Increase in Pradmain (Pradmain/Pabs~0.65) due to impurity accumulation. 7 7.5 8 0 0.2 0.4 0.6 r/a 0.8 1 Enhanced divertor radiation by Ne seeding JT-60U Prad/Pradtot 5 4 3 2 1 0 2.5 2 1.5 1 0.5 0 10 8 6 4 2 0 10 8 6 4 2 0 E043964 nGW ne W D2 0.4 0.2 SOL+DIV 6 6.5 Tim e (s) 7 The same nNe(r) as ne(r) is assumed. 0.2 0.15 0.1 PradNe 0.05 main 5.5 0.6 0.25 total 5 main w/o seeding w Ne seeding Sn Ne 0.8 0 Prad (MW/m3) Prad (MW) Gas (Pam3/s) ne, nGW (1019 m-3) - Ne puff with D2 gas. • HHy2=1.1, frad=0.93 at ne/nGW=1.1. • Divertor radiation ratio increases from ~20% w/o seeding to 40% with Ne seeding. 1 • Small contribution of Ne to Pradmain. 7.5 0 0 0.2 Measured 0.4 0.6 r/a 0.8 1 High HHy2 and high frad by Ar seeding and HFS pellets JT-60U - Ar seeding and HFS pellet with small D2 gas-puffing in small Vp. • HHy2=0.96 and frad~1 at ne/nGW~0.92 at t=6.95s. • Peaking of ne(r) and enhanced pedestal pressure. HFS pellet Ip=1.0MA, BT=3.6 T, q95=6.2, d=0.37 Ar ne, nGW (1019 m-3) PNB (MW) 8 4 0 30 20 10 0 5 nGW P-NB N-NB D2 Wdia 25 Total 0 4 4.5 5 Main 5.5 6 Time (s) 6.5 7 7.5 t=6.95s 6 nGW 4 t=5.0s 2 0 ne Wdia (MJ) Gas (Pam3/s) 0 Arx5 Prad (MW) E042843 ne (1019 m-3) 8 0 0.2 0.4 0.6 r/a 0.8 1 Central radiation is ascribed to Ar JT-60U • nAr(r) evaluated from soft x-ray profile is more peaked by a factor of 2 inside the ITB than ne(r). • nAr/ne~1% in the center and 0.5% outside the ITB from Bremsstrahlung. • PradAr~0.4 PradSOL+DIV. UEDGE ce=ci=1 m2/s, D=0.25 m2/s, Dimp=1 m2/s Prad (MW/m 3) 0.5 0.4 0.3 0.2 0.1 00 0.4 0.6 r/a 0.8 1 Inner divertor 2 rad 0.2 2 outer divertor 1 P Carbon : sputtering (Haasz rate) Argon : core-edge density nAr/ne=0.93% (MW/m ) 3 ncore=1.5x1019 m-3 Pcore=14 MW PradAr 0 8 10 12 14 16 18 20 channel number Tungsten is accumulated with peaked density profile or ctr-rotation. JT-60U The Ferritic Steel Tiles (FSTs) have ingredient of 8%Cr, 2%W and 0.2%V and cover ~10% of the surface. Large tungsten radiation from the core plasma (IW+44) was observed with ctrNB injection even at given orbit loss power, which could be correlated with tungsten source. Heavy impurity accumulation is one of the large concerns with peaked density profile in ELMy H-mode plasmas. Large vol. configuration 1 FSTs ctr 0.6 ctr 0.4 I W+44 (a.u.) 0.8 bal bal co co 0.2 0 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 0 n (r/a=0.2)/<n > e e 0.5 1 1.5 PORB (MW) 2 2.5 Burning plasma simulation experiments. JT-60U This linkage is experimentally simulated in JT-60U. n(r)&T(r) PEX Fuelling • Transport • MHD … Pa-simulation P j(r), V(t), … • Burning plasma simulation scheme has been developed using 2 groups of NB, where one simulates a particle heating and the other simulates external heating. • Ti dependence of <v>DT in the range of Ti=10-25 keV is incorporated in the scheme as Pa~ne2Ti2. 密度制御による燃焼模擬制御 JT-60U f~Ti2の場合、閉じ込め劣化と圧力分布平坦化によりQsimが減少 f~Ti0の場合、密度上昇によりQsimが上昇 f~Ti2 f~Ti0 f~Ti2の場合 JT-60U 閉じ込め性能が高くなる場合(圧力分布もピーキング)は密度とともにQsim上昇 閉じ込め性能が劣化する場合(圧力分布は平坦化)は密度とともにQsim減少 4.45s 4.05s f~Ti0の場合 JT-60U 閉じ込め性能に関係なく、密度の上昇に伴いQsim増加 核融合炉の温度領域を10-25keVと考えると、密度だけでなく、閉じ込め性能、 圧力分布等も考慮しつつ燃焼制御する必要がある。 まとめ JT-60U • 粒子供給シナリオの策定が急務 • 高密度(ne/nGW > ~ 1)・高閉じ込め(HHy2 > ~ 1)・高放射損失(frad>0.9)の 運転領域は存在。 • 高Z不純物ほど蓄積する傾向にあるが、先進プラズマでもArまで は許容範囲と考えられる。 • タングステンの蓄積は懸念材料。 • 主プラズマ側での放射割合とダイバータでの放射割合の最適化、 長時間維持のための制御(アタッチ状態への変化を未然に防ぐこ とは可能か等)は今後の課題。 • 燃焼制御を密度だけで行うのは困難。密度だけでなく、閉じ込め 性能、圧力分布等も考慮しつつ燃焼制御する必要がある。そのた めの計測装置の開発も重要。
© Copyright 2024 ExpyDoc