The renormalizability of 3-dimensional non-linear sigma models 1.Introduction 2.Bosonic O(N) model 3.Supersymmetric models 4.Q(N-2) model 5.Summary With K. Higashijima, K.Hitotsumatsu, M.Tsuzuki 1Introduction The three dimensional non-linear sigma models are nonrenormalizable within the perturbative method. Nonperturbative method: WRG approach Progress of Theoretical Physics 110 (2003) 563 K.Higashijima and E.I large-N expansion 2.Bosonic O(N) model Lagrangian: Phys. Rev. D43 (1991) 3428 V.G.Koures and K.T.Mahanthappa The constraint may be implemented by introducing a Lagrange multiplier field . The Euclidean path integral: Integrating over the dynamical fields From the Legendre transformation, we see the effective action. Because of the O(N) symmetry, the v.e.v of the dynamical fields may be written as The effective potential: The stationary conditions of this potential: The critical point: There are two phases. 1. The O(N)-symmetry is broken. There are (N-1) massless NG bosons 2. The O(N)-symmetry is unbroken. There are N massive ( ) bosons. Gap eq. In leading order : The βfunction (leading order) Renormalizablity The effective action: Feynman rules in O(N)-symmetric phase ( ) Counterterm Lagrangian: Gap eq. We consider leading order. propagator in the next-to- The problems in higher order ~order (linear divergence) These diagrams need the additional counterterms. ~order (log divergence) 3.Supersymmetric models The 3-dimensional O(N) model: supersymmetric is a Lagrange multiplier superfield. Infinite parts from these diagrams cancel. The fermionic parts are O(N) Gross-Neveu model. Using , We see the auxiliary field fermion bound states. corresponds to The next-to –leading order β function Gap eq. We consider leading order. propagator in the next-to- The wave function renormalization: SUSY The cases of N-1 CP model Inami, Saito and Yamamoto Prog. Theor. Phys. 103 (2000)1283 U(1) gauge auxiliary field: This model also has two phases: :SU(N)-symmetric, massive phase :SU(N) broken, massless phase We can assign U(1) charge for chiral and antichiral superfields as follow. U(1) symmetric phase U(1) broken phase Next-to-leading order corrections to the propagator. The β function of this model has no next-toleading corrections. The wave function renormalizations: ←gauge fixing Is supersymmetry responsible for the vanishing of the next-to-leading order corrections to βfunction of the model? The results of WRG approach The βfunction of target space metric : When the target space is an Einstein-Kaehler manifold, the βfunction of the coupling constant are obtained. Einstein-Kaehler condition: The value of h for hermitian symmetric spaces. G/H Dimensions(complex) h SU(N)/[SU(N-1)×U(1)] N-1 N SU(N)/SU(N-M)×U(M) M(N-M) N SO(N)/SO(N-2)×U(1) N-2 N-2 Sp(N)/U(N) SO(2N)/U(N) E6/[SO(10) ×U(1)] E7/[E6×U(1)] N(N+1)/2 N(N+1)/2 16 27 N+1 N-1 12 18 The examples of the Einstein-Kaehler cases model ´t Hooft coupling: model 1/N next-to-leading? 4.Q(N-2) model model O(N) condition: There are two multiplier superfields. There are three phases. ① SO(N)-symmetric ,massive theory ② New phase SO(N) broken, massless theory The differences between ① and ② phases: ① In effective action, the gauge fields have Chern-Simons interaction. The Parity is broken. ② The gauged U(1) symmetry is broken. We calculate the βfunction to next-to-leading order and obtain the next-to-leading order correction. Next-to-leading order corrections to the propagator. Some 3-dimesional supersymmetric sigma models have next-to-leading order correction of the βfunction. Wilson的繰り込み群による利点と問題点 SUSYは、カットオフ無限大の極限をとると回復す る方程式。 CP^NやQ^Nなどを系統的に考えることができる。 cosetの理論を考えた時、globalな対称性が破れ た相しか見ていないことになる。臨界点が存在す ることはわかったが、どのような相転移がおこって いるかわからない。 繰り込み可能性に対する、近似の正当性の判断 がつきにくい。 1/N展開による利点と問題点 相構造、相転移、質量の様子などの理解が できた。(フェルミオンに注目して考え直すと 束縛状態についての理解も得られる。) 繰り込み可能性。 個々の模型に対して、それぞれ考えなくては いけない。 CP^Nでは、ゲージ場の補助場が入るため、 繰り込みをすると、ゲージ固定からSUSYは 破れる。(ボゾンとフェルミオンの異常次元が 一致しない) 図の待機場所
© Copyright 2024 ExpyDoc