初期宇宙における 大質量星形成領域のプローブとしての 遠赤外線電離酸素輝線 Hiroshi Matsuo (NAOJ) Akio Inoue (Osaka Sangyo Univ.) Atmospheric Windows from Atacama(alt. 4800m) 1mm 500um 300um 200um 2 Matsushita, Matsuo et al. PASJ (1999) THz Cosmic Window 3 High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters. FIR SED of Starburst galaxies OI, OIII NII, NIII CII Fischer et al. (1999) FIR atomic fine structure lines OI – 63.185mm – 145.54mm OIII 35.1eV – 51.815mm – 88.356mm NII 14.5eV – 121.80mm – 205.30mm NIII 29.6eV – 57.330mm CII 11.3eV – 157.68mm 4.745THz 2.060THz 5.0×105 cm-3 1.5×105 cm-3 5.786THz 3.393THz 3.4×103 cm-3 5.0×102 cm-3 2.461THz 1.460THz 2.8×102 cm-3 4.5×101 cm-3 5.229THz 3×103 cm-3 1.901THz 2.7×103 cm-3 Carina Nebula by ISO LWS [CII] Mizutani, Onaka, Shibai. (2002) The Carina Nebula [CII] 158 mm A very massive star-forming region at 2.3 kpc [NII] 122 mm [OIII] 88 mm from N. Smith 24’x12’ Hubble Image Matsuo et al. (2009) 30Dor region and R136 300 Mo stars [OIII] 88mm is observed widely distributed around R136 Contour: MIPS 24mm Kawada et al. (2011) Observation with ALMA Primordial Massive Star-Forming Region [OIII] 52um, 88um (ion potential 35 eV) – Probe of electron density and UV radiation Z > 8 observation of SFGs and GRBs Site of Cosmic Re-ionization Example of [OIII] observations in submillimeter-wave ~ 10 -18 W/m2 Ferkinhoff (2010) High-z Star-Forming Galaxies M82 Line Intensity W/m2 10-17 [NeII] [SiIII] z=0.1 [OI] [OIII] [CII] [OIII] ALMA Bands 10 9 8 7 6 Herschel z=0.2 10-18 z=0.5 10-19 SPICA z=1 10-20 z=2 z=3 10-21 z=5 z=8 z=10 10 um 100 um Wavelength 1 mm [OIII] 88 mm line intensities Single massive cluster – 1 ×10-5 W/m2/sr from Carina – 10 arcmin in diameter @ 50 kpc from 30 Dor 7 × 10-11 W/m2 at z=10-5 2 × 10-22 W/m2 at z=8 1.7 mJy for 10 km/s @ 350 GHz angular diameter 10 milli-arcsec » Band 7: 339-364 GHz → [OIII]88 @ z=8.3—9.0! » 感度は十分か? ˃ [OIII]88/Hα相関 (Kawada+11) ˃ Cloudy計算 で予想フラックスを推定 linear 2013/1/26 Kawada et al. 2011 14 ALMA時代の宇宙の構造形成理論研究会 » Kawada et al. 2011 ˃ I_[OIII]88 / I_Hα ~ 2/3 ˃ Hα / Hβ ~ 3 (Case B近似) » Cloudy (Ferland et al. 1998) ˃ Z = 0.2 Zsun, log10(U) = -1.0, log10(n_H) = 0.0 𝐿[OIII]88 ≈2 𝐿Hβ » NOTE: nebula parameter dependence 2013/1/26 ˃ Especially, metallicity 15 ALMA時代の宇宙の構造形成理論研究会 » z>8 candidates are detected only in rest-UV. » [OIII] – UV relation is required. » Let us relate Hβ with UV: ˃ SFR conversion laws (~100Myr constant SF): 𝐿Hβ = 1.6 × 1041 erg s−1 𝑆𝐹𝑅 𝑀sun yr −1 𝜈UV 𝐿𝜈 = 1.4 × 1043 erg s−1 UV 2013/1/26 𝐿Hβ ≈ 0.01 𝜈UV 𝐿ν UV 𝑆𝐹𝑅 𝑀sun yr −1 For Z=1/5Zsun (Inoue 2011) For Z=Zsun (Kennicutt 1998) Lower Z: larger UV—SFR factor Dust obscuration: smaller UV—SFR factor 16 ALMA時代の宇宙の構造形成理論研究会 » Kawada+11 obs. » Cloudy calculations » Hβ, UV – SFR relation 𝐿[OIII]88 𝐿Hβ 𝐿Hβ 𝜈UV 𝐿ν UV ≈2 ≈ 0.01 » Finally, we obtain 2013/1/26 𝐹[OIII]88 ≈ 0.02 𝜈obs 𝐹ν obs 𝜈obs = 𝜈UV /(1 + 𝑧) 17 ALMA時代の宇宙の構造形成理論研究会 2013/1/26 27.5—28.0 ABで ~1 mJy (100 km/s) 18 ALMA時代の宇宙の構造形成理論研究会 Expected Brightness Gravitational lensed sources – 25-26 mag at H160 – 10 mJy Dv=100km/s – Limited redshift information HUDF sources (Dec. -28deg) – 27-28 mag at H160 – 2 mJy Dv=100km/s – Many candidates at z~8 Redshift probability distributions Z=8.11 for [OIII] 88um Z=8.74 » UDF12によりUV slopeの測定精度が向上 ˃ β~-2 ˃ Z~Zsun, no dust OR Z~0.1—0.2 Zsun with Av~1mag (Dunlop et al. 2013) Robertson et al. 2013 2013/1/26 » 十分に酸素はあるはず 23 ALMA時代の宇宙の構造形成理論研究会 » 赤方偏移z>8.3を狙うため、Y105-J125 > 1.6 を課し、Cycle1で観測条件の良い天体 » UDF092y-07580550 H160=27.1mag ˃ Y105-J125 > 2.4 » CANDY-2350049216 H160=27.0mag ˃ Y105-J125 > 2.3 » 残念ながら不採択 2013/1/26 ˃ Too risky! 24 ALMA時代の宇宙の構造形成理論研究会 Schenker et al. 2013 2013/1/26 » BoRGやCANDELSにも<28AB天体が20個ほ どある 25 ALMA時代の宇宙の構造形成理論研究会 2013/1/26 Ellis et al. 2013 26 ALMA時代の宇宙の構造形成理論研究会 High-z universe beyond redshift 8 To probe the period of Re-Ionization. Interstellar space should be already contaminated by heavy elements from Pop III. High UV field prevent formation of dust, hence low extinction. Massive stars are formed in clusters, nearby counter parts are R136 in 30Dor, LMC. SFG and GRB can trace massive star clusters. 宇宙背景放射観測の現状 宇宙赤外線背景放射(CIB) = 観測値 ー 前景放射 前景放射: 太陽系(黄道光)、銀河系(星、星間ダスト放射) 近赤外域には銀河の重ねあわせでは説明できない超過成分 黄道光(前景放射) 背景放射 CMB 系外銀河 第一世代の星 の重ねあわせ Ly-? From S. Matsuura (SUBARU, HST, Spitzer, BLAST) 28 Carinae Nebula at 2.3 kpc
© Copyright 2025 ExpyDoc