GEMを用いた大アクセプタ ンス検出器に用いる読み出 し回路の開発 検討 東大・理 小沢 恭一郎 Example: E16 Detector Tracker ~100μm の分解能 ハイレートへの耐性(5kHz/mm2) 少ない物質量 (1チャンバーにつき~0.1% ) Electron identification Large acceptance High pion rejection @ 90% e-eff. 100 @ Gas Cherenkov 25 @ EMCal 2010/06/04 K. Ozawa 2 Items Develop 1 detector unit and make 26 units. GEM Tracker CsI + GEM photo-cathode 50cm gas(CF4) radiator ~ 32 p.e. expected CF4 also for multiplication in GEM Ionization (Drift gap) + Multiplication (GEM) High rate capability + 2D strip readout 2010/06/04 Hadron Blind detector3 K. Ozawa Gas Cherenkov for e-ID GEM Tracker Collaboration with KEK Gas: p10 or Ar/CO2 Currently, p10 gas is used due to a large diffusion. 700 mm pitch (350 mm x 2) for both side 2010/06/04 K. Ozawa 4 Easy signal handling Pulse shape Prof. S. Uno @ MPGD WS GEM Response function No magnetic Field/ No Drift region σ=359.7±0.4 μm Signal from GEM foil 150mV P10 σ=181.2±0.3 μm Ar-CO2 (70/3 0) Signal from Readout pad 80ns Response function Time constant is from the drift Width of signal spread is consistent with time in the last gap. (No ion tail) transverse diffusion in GEM (along It can be reduced to ~20ns. 3layers ). 2010/06/04 K. Ozawa 5 Read out configuration FPGA Board Depends on each experiment ASIC Detector out Initial Charge ~ 100e GEM gain ~ 104 Capacitance: Strip 2010/06/04 Front-end: Charge-sensitive preamplifier Ci ~ 1pF Shaper K. Ozawa Digitize: Charge Timing Time Spread 6 Front-End Electronics: Candidate 1 APV-S1 chip • Originally, it’s developed for CMS Si detector. • Also, it’s used for COMPASS GEM 2010/06/04 K. Ozawa 7 Prof. T. Fusayasu @ IEEE/NSS Candidate 2: Fusayasu chip Made by T. Fusayasu for GEM x-ray detector (strip readout) 2010/06/04 – – – – – – 8 chs./package Input range 50fC ~ 1pC 10MHz-10bit ADC and 100MHz-10bit TDC Operating voltage ±2.5V Power 50mW/ch K. Ozawa noise 15000e @Cd=50pF 8 Dr. T. Uchida@ MPGD WS Front End ASIC by KEK FE200X 2010/06/04 • Front end ASIC for gas detector – Developed by KEK Dr. Fujita • Specification – Amp. ,shaper, discriminator – 8 chs./package – Output 8 LVDS, 1 analog-sum – Operating voltage ±2.5V – Power 30mW/ch – Input range -1.5pC~ +1.5pC – noise 6000e @Cd=100pF 9 Ozawa Not including K. ADC, Just 1 bit information per channel ILC R&D • Pre-amp/Shaper chip: – 16 chan/chip*8chips/card=128chan/card – Gain & shaping time adjustable – 400 e’s noise in reasonably large system • Digitizer based upon ALTRO chip: – 10 bit 20 MHz ADC – 1k sample storage • In Japan, – A. Sugiyama (Saga University) – T. Fusayasu (Nagasaki Institute of Applied Science ) • In addition, they are developing a pixel readout chip. QPIX: 100mm pixel, 0.5p max inputs, 14 bits ADC, 10ns timing resolution 2009/9/12 K. Ozawa 10 QPIX Prof. A. Matsuzawa (TIT) Chip area can be reduced to 100um x 100um by further circuit optimization. 0.18um CMOS 100 mm 1 : 6b-SAR ADC 6 5 4 8 3 2 Further optimization 2 : OP Amp 3 : Comparator 140 mm 100 mm 7 4 : 14b-Register 5 : 8b-ToT Counter 6 : Control Logic 7 : 14b-ToF Register 1 8 : MIM Cap (2p) 200 mm 2010/06/04 K. Ozawa 11 Prof. A. Matsuzawa (TIT) Performance table End of ‘09 Now QPIX.v.1 QPIX v.0 Timepix Dimensions 100x 100μm2 140 x 200μm2 50 x 50μm2 Preamp Gain 0.5-5mV/fC 0.45mV/fC 100mV/fC 1-10fC 10 fC 0.1 fC 8fC/0.5pC 26fC/1.6pC - TOF: 14bits TOF: 14bits TOT: 8bits TOT: 8bits 14bits (TOF or TOT or counter) ADC: 6bit, 10Msps ADC: 6bit 10Msps None 30uW 350uW (80uW) 6.5uW Parallel Parallel Serial/Parallel Comparator threshold ADC LSB/MSB Readout information Power Read out 2010/06/04 K. Ozawa 12 Hadron Blind Detector CsI光電面によるCherenkov光検出器 CF4 Radiator • 紫外域に感度を持つCsI光電面 – Cherenkov光検出に最適 – GEM上面にCsI光電面を蒸着 – 100 mm GEMを用いる • Radiator ガス: CF4 – High transmission @ UV – p Threshold 4 GeV/c • GEM3層を電子増幅に使用 – Gain ~ 800 @ CsI GEM Important for e/p • Pad読み出しで位置情報も MESH Ionization (40) 5.25 mm CsI LCP (100um) 3.25 mm 32 x 800 50um GEM 1.5 mm 50um GEM 2 mm • 逆電圧による電離電子の抑 制!! 2010/06/04 Electron pad K. Ozawa By K. Aoki 13 Ref. NIM A523, 345, 2004 Read out configuration Preamp-Card Detector out Initial Charge ~ a few e GEM gain ~ 104 Capacitance: Large Pad 2010/06/04 Front-end: Charge-sensitive preamplifier Ci ~ 1pF Shaper K. Ozawa FPGA Board commercial FADC Digitize: Charge Timing Time Spread 14 PHENIX Pre Amplifier 15 mm Charge Preamp with On-Board Cable Driver Features: 19 mm 1) +/- 5V power supply. 2) 165 mW power dissipation. 3) Bipolar operation (Q_input = +/- ) 4) Differential outputs for driving 100 ohm twisted pair cable. 5) Large output voltage swing -- +/- 1.5V (cable terminated at both ends) Preamp (BNL IO-1195) 2304 channels total (+/- 3V at driver output) 6) Low noise: Q_noise = 345e (C_external = 5pF, shaping = .25us) (Cf = 1pF, Rf = 1meg) 7) Size = 1.04” x 0.775” 10pins 8) Preamp output (internal) will operate +/- 2.5V to handle large pile-up. 2010/06/04 K. Ozawa 15 IO1195-1-REVA 2010/06/04 K. Ozawa 16 Test with GEM Detector PA Pulse Trace on Scope •Input capacitance ~ 0.0 pF?? •20 pe x 5E3 (gain) ~ 100,000 electron input into pre-amp • Baseline Noise~ 1100e-’s after background is subtracted off. Pulser Input (1.2pF)~ 13mV100,000 e-’s s (Baseline Noise) ~1100 e-’s PA Output~48mV ADC Data: Fe 55 Pulse Height Spectrum in pure CF4 (IO1195 PreAmp) 70 60 Gain ~ 1700 FWHM % Res~38% PA Pulse Height Spectrum 40 30 20 B.Azmoun 10 ADC Ch. 989 946 903 860 817 774 731 688 645 602 559 516 473 430 387 344 301 2010/06/04 258 215 172 86 129 0 0 43 Counts 50 K. Ozawa 17 FEM Block Diagram FPGA Connector Receive/buffer ADC data Differential Receiver 8 Channels 65 MHz 12 bits ADC Format triggered Events Generate L1 Primitives Receive timing /clocks 2010/06/04 GTM/Ethernet FEM FEM FEM LL1 trigger FEM Crate Diagram Trigger data interface Data path FEM Optical K. Ozawa Detector signals DCM 18 The 8 channel 12 bits 65MHzADC TI ADS5272 The ADC receives differential signals The Vcommon is 1.5V The +/- input can swing from 1V to 2V + side 2V, - side 1V -> highest count - side 2V, + side 1V -> lowest count Our +/- input will swing from 1.5 to 2V/ 1 to 1.5V we will only get 11 bits out of 12 bits 16fc will be roughly sitting 200 count We will run the ADC at 6X beam crossing clock 6X9.4 MHz = 56.4 MHz or ~17.7ns per samples 2010/06/04 K. Ozawa Cost: $25 per channel 19 HBD FEM Clock input Trigger output Signal cable input 2010/06/04 K. Ozawa 20 まとめ • E16実験のための検出器開発が、理研、東大な どで活発に行われている。読み出し回路の開発 はこれから。 • High Beam intensityと大立体角測定に対応 するためGEM Trackerを使用する。 – 読み出しは、ストリップ – Front-end は集積度を上げる必要がある。 • 大立体角で電子識別を行うために、CsI + GEMを光電面に用いたチェレンコフ光検出器 (Hadron Blind Detector)を使用する。 – 平均20p.e.程度しか期待できないため、low noise は必須 – そのあとは出来るだけ安く上げたい。 2010/06/04 K. Ozawa 21 BACK UP 2010/06/04 K. Ozawa 22 Good @ high rate counting • MWPC limitation – Wire spacing: 1~2 mm – Gain dropping @ high rate • Micro strip gas chamber – Discharge problem • Micromegas MWPC – Another candidate • GEM – Flat gain over 105 Hz/mm2 – I like flexibility of configuration – Good characteristics of signal • Signal is generated by electron • Not by ion • No ion tail and pole cancellation electronics 104 105 GEM 104 105 I took these ideas and figures from F. Sauli’s presentation at XIV GIORNATE 2010/06/04DI STUDIO SUI RIVELATORI 23 K. OzawaVilla Gualino 10-13 Febbraio 2004 Frontend OP amp Standard Folded-Cascode OP amp 2010/06/04 K. Ozawa OP amp feature obtained by schematic simulation DC Open loop gain 64.2dB gain band width 63.1MHz phase margin 77.4° Common-mode gain -16.7dB Common-mode rejection ratio 80.4dB PSRR+ 70.1dB PSRR- 84.1dB output impedance 414kΩ slew rate 148V/us settling time (1%) 26.1ns 24 Test Charge Measurement ADC count vs. Input Charge 1200 1pF 1pF + 800 600 ~ VT=40mV 400 ~ ~ ADC count [LSB] 1000 ADC GEMFE2 ch0 200 0 0 200 400 600 800 1000 Qin [fC] Test Pulse Deviation from Linear Slope ADC count Deviation [LSB] 25 100ns 20 15 10 5 0 -5 -10 0 2010/06/04 200 400 600 Qin [fC] 800 K. Ozawa 1000 Good linearity was obtained at 1MHz ADC operation except for lower and upper edge of the 25 range. Noise Measurement Noise Properties of GEMFE2 30000 ENC [Electrons] 25000 20000 15000 M C LK =1M H z M C LK =2M H z 10000 5000 0 0 20 40 60 80 100 120 Detector Capacitance [pF] 10k electrons @ Cd=0pF (15k@50pF) Enough for our purpose. 2010/06/04 K. Ozawa 26 CSIを用いた光電面 • 3種類の光電子収集の方法 Transmissive By Weitzman • Transmissiveを選択 – 比較的高い量子効率 – 少ないphoton feedback 一番上のGEMにCSIを蒸着して実現 5 10 CSIの量子効率 2010/06/04 15 [eV] K. Ozawa 27 HBD FEE • 48 channels per FEM • Interface module • Data output module • Crate has • • • • HBD readout will fit into 3 6U crates HBD LL1 module potentially could fit into one 6U crate. Power – 5V digital, +4 analog, -3.3V analog – 1KW per crate (?) We will use a standard VME 6U crate mechanics with custom backplane. • Need space to route the signal cables to the FEM – – – – 3 signal cables to detector. 4 signal pairs to HBD LL1 crate – within the racks Clock cable from interface to the FEM – within the crates (back) 6UX160mm card size – GTM (clock, L1 trigger etc.), Ethernet interface for slow download. – Control test pulse – don’t know the cable size yet. – 1 optical module per card – 16 FEMs – 4 optical output modules – 1 interface module – We will bring the crates. – Need to know how long is the cable routing path- Signal cables are custom made 2010/06/04 K. Ozawa 28 Use 2MM Hard Metric cable to move signals between preamp/FEM 2mm HM connector has 5 pins per row and 2mm spacing between pins and rows There are two types of cable configuration: *100 ohms parallel shielded cable 50 ohms Signal coaxial arrangement cable S- S+ G S+ S- Our choice is This gives us signal density 2mm x 10mm for every 2 signals. Same type of cables will be used for L1 trigger data. 2010/06/04 K. Ozawa 29 The differential receiver Use Analog Device AD8138 receiver gain set up as unity Simulation result For 16fc input charge Total voltage On the cable Total voltage Seen by ADC 2010/06/04 ADC +/- inputs K. Ozawa ADC has 1V range Max ADC range is about ~10 time of 16 30
© Copyright 2024 ExpyDoc