集中定数系とダイナミクス (等価回路の考え方) 集中定数系と等価回路 定常伝熱の問題 非定常伝熱の問題 熱通過 Overall heat transfer 固体壁の熱通過伝熱 (定常状態 steady state) TA T1 T2 固体壁 TB 強制対流熱伝達 forced convective heat transfer TA T1 T2 TB h: 平均熱伝達率 [Wm-2 K-1] . . Q = q A = h1 A (TA-T1) = h2 A (T2-TB) 熱伝導 heat conduction TA T1 x T2 TB : 熱伝導率 [W m-1 K-1] . . Q = q A = A(T1-T2) / x 集中定数による等価回路 equivalent circuit by lumped parameters TA T1 x T2 TA T1 TB T2 TB R1=h1-1A-1 R2= x -1A-1 R3=h2-1A-1 集中定数による等価回路 equivalent circuit by lumped parameters TA T1 T2 TB R1=h1-1A-1 R2= x -1A-1 R3=h2-1A-1 電流:熱流束, 温度:電位, 抵抗:伝熱抵抗 全熱抵抗 RT = R1+ R2 + R3 = h1-1A-1 + x -1A-1 + h2-1A-1 Q=(TA-TB)/RT 非定常熱伝達 unsteady heat transfer hA(T - T∞ ) = T0 - cV dT dt T∞ 非定常熱伝達 unsteady heat transfer - cV dT hA( T - T∞ ) T = T0 dt T∞ T0 @t=0 T-T∞ hA = exp(t) T0-T∞ cV 非定常熱伝達 unsteady heat transfer T-T∞ hA = exp(t) T0 -T∞ cV T0 T∞ t 非定常熱伝達 unsteady heat transfer 等価回路 RT = h-1A-1, C = c V T0 T∞ 時定数 time constant 等価回路 RT = h-1A-1, C= cV = RT C = cV hA 初期温度の1/e (36.8 %) になるまでの時間
© Copyright 2024 ExpyDoc