フレーバーの離散対称性と ニュートリノフレーバー混合 22 February 2008 仙台市 作並温泉 谷本盛光 (新潟大学 ) 1 Introduction Neutrinos: Windows to New Physics Neutrino Oscillations provided information ● ● Tiny Neutrino Masses Large Neutrino Flavor Mixings Flavor Symmetry Global fit for 3 flavors Maltoni et al : hep-ph/0405172 ver.6 (Sep 2007) Two Large Mixings Tri-bi maximal 2 2 (Δmsol / |Δmatm| )1/2 = 0.16 - 0.20 ≒ λ Tri-Bi-Maximal Harrison, Perkins, Scott (2002) sin2θ12 =1/3 , sin2θ23 =1/2 Neutrino Mixing closes to Tri-bi maximal mixing ! Tri-bi maximal mixing provides good theoretical motivation to search flavor symmetry. A key to looking for “hidden” flavor symmetry. Mixing angles are independent of mass eigenvalues Different from quark mixing angles 2 Discrete Flavor Symmetry Non-Abelian Flavor Symmetry is appropriate for lepton flavor physics. Quark Sector Discrete Symmetry Non-Abelian discrete groups have non-singlet irreducible representations which can be assigned to interrelate families. order 6 SN : permutation groups S3 DN : dihedral groups D3 QN : quaternion groups 8 10 12 14 ... ... D4 D5 D6 Q4 T : tetrahedral groups D7 ... Q6 ... T(A4) ... Discrete symmetric models have long history . . . Pakvasa and Sugawara (’78) : S3 Chang, Keung and Senjanovic, (’90) Frampton and Kephart (’94), Frampton and Kong (’95) Frampton and Rasin (’99) : D4, Q4 Grimus and Lavoura (’03) : D4 Kubo et al. (’03,’04,’05) : S3 Frigerio, S.K., Ma and Tanimoto (’04) : Q4 Babu and Kubo (’04) : Q6 ........... Need some ideas to realize Tri-bi maximal mixing by S3 flavor symmetry 3 1 1’ A4 1” Model 3 by E. Ma by E. Ma 3 × 3 → (1, 1’,1”) 1’ × 1” → 1 Off Diagonal terms come from 3 × 3 ×3 → 1 Diagonal terms come from hi are yukawa couplings; vi are VEV Move to diagonal basis of the charged lepton mass matrix What is the origin of b=c and e=f=0 ? Can one predict the deviation from Tri-bi maximal mixing ? In order to answer this question, we should discuss the model: Altarelli, Feruglio, Nucl.Phys.B720:64-88,2005 Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions hd (1) , hu (1) : gauge doublets gauge singlets b=c and e=f=0 is required for Tri-bi maximal. 4 Deviations from Tri-bi maximal mixing M.Honda and M. Tanimoto, arXiv:0801.0181 Deviations in Charged Lepton Sector CP violating phases Deviations in Charged Lepton Sector b=c=0 e=f=0 5 Discussions Experiments indicate Tri-bi maximal mixing for Leptons, which is easily realized in A4 flavor symmetry. Desired vacuum Deviation from Tri-bi maximal mixing is important to test A4 flavor symmetry. does not deviate from 1 largely due to A4 phase. can deviate from 0.5 largely. can be as large as 0.2. Can we predict CKM Quark Mixing angles in A4 flavor symmetry ? Quark mass matrices are given as There is no Quark mixing while tri-bi maximal mixing for Leptons. Deviation is a clue to deeper understanding of flavor symmetry ! What is the origin of the Discrete Symmetry ? Stringy origin of non-Abelian discrete flavor symmetries: Tatsuo Kobayashi, Hans Peter Nilles, Felix Ploger , Stuart Raby , Michael Ratz Nucl.Phys.B768:135-156,2007. arXiv:0802.2310 Hajime Iashimori, Tatsuo Kobayashi, Ohki Hiroshi Yuji Omura, Ryo Takahashi, Morimitsu Tanimoto SUSY化が 容易にできる D4モデルが構成できる。 ・FCNCの抑制の大きさが予言できる。 ・Slepton の質量行列の構造が予言できる。 LHCでのテスト可能 再び クォークセクターは? Hirsch, Ma, Moral, Valle: Phys. Rev. D72(2005)091301(R) L lcΦi 3 ×3× (1,1’,1”) ← Diagonal matrix LLηi 3 ×3 × (1,1’,1”) LLξ 3 ×3 × 3 < Φi >=v1, v2, v3 Bi - Maximal θ12 = θ23 =π/4 , θ13 =0 Tri - Bi-maximal θ12 ≒35°, θ23 =π/4 , θ13 =0 A4 flavor symmetry can easily realize (approximate or exact) Tri-Bi-maximal Mixing A4 symmetry (Tetrahedral Symmetry) Landau and Lifschitz (理論物理学教程 量子力学12章対称性の理論 点群) 群T(正四面体群):正4面体の対称軸系 立方体の向かい合った面の中心を通る3っの2回対称軸と この立方体の空間対角線である4っの3回対称軸(二面的ではない) 二つの同じ角度の回転は、もしも群の元の中に、一方の回転軸を 他の回転軸に重ねるような変換があれば、同じ類に属する。 定義: ある物体がある軸のまわりを角度 2π/n回転するとき自分自身に 重なり合うとすれば、このような軸はn回対称軸と呼ばれる。 同じ軸の周りの、同じ角度の、反対方向の回転が共役ならば、 この軸を二面的と呼ぶ。 従って、 群Tの12の元(回転)は4っの類に分類される。 E(単位元) C2(4っの回転) C3(4っの回転) C4(3っの回転) Tri - Bi-maximal θ12 ≒35°, θ23 =π/4 , θ13 =0 A, B, C are independent complex parameters S-Kam Atmospheric Neutrino Data MINOS Experiment SK atmospheric neutrinos KamLand Numerical Results: Deviations from Tri-bi maximal mixing.
© Copyright 2025 ExpyDoc