Introduction to topological insulators and superconductors 古崎 昭 (理化学研究所) September 16, 2009 topological insulators (3d and 2d) Outline • イントロダクション バンド絶縁体, トポロジカル絶縁体・超伝導体 • トポロジカル絶縁体・超伝導体の例: 整数量子ホール系 p+ip 超伝導体 Z2 トポロジカル絶縁体: 2d & 3d • トポロジカル絶縁体・超伝導体の分類 絶縁体 Insulator • 電気を流さない物質 絶縁体 Band theory of electrons in solids ion (+ charge) electron Electrons moving in the lattice of ions • Schroedinger equation 2 2 V r r E r 2m Bloch’s theorem: r e un ,k r , ikr a k En k Energy band dispersion a Periodic electrostatic potential from ions and other electrons (mean-field) V r a V r , un ,k r a un ,k r n : band index 例:一次元格子 t 2 A B A n 1 B n uA n e uB ikn A B A B A B n 1 2t cos(k / 2) u A uA E 2t cos(k / 2) u B uB E E 4t 2 cos 2 (k / 2) 2 2 0 k Metal and insulator in the band theory E Interactions between electrons are ignored. (free fermion) Each state (n,k) can accommodate up to two electrons (up, down spins). a 0 k a Pauli principle Band Insulator E Band gap 2 a 0 k a All the states in the lower band are completely filled. (2 electrons per unit cell) 2 Electric current does not flow under (weak) electric field. Topological (band) insulators • バンド絶縁体 free fermions • トポロジカル数をもつ • 端にgapless励起(Dirac fermion)をもつ stable Condensed-matter realization of domain wall fermions Examples: integer quantum Hall effect, quantum spin Hall effect, Z2 topological insulator, …. Topological (band) insulators superconductors • BCS超伝導体 バンド絶縁体 超伝導gap • トポロジカル数をもつ • 端にgapless励起(Dirac (Dirac fermion)をもつ or Majorana) をもつ stable Condensed-matter realization of domain wall fermions Examples: p+ip superconductor, 3He Example 1: Integer QHE Prominent example: quantum Hall effect • Classical Hall effect B v E e n : electron density Electric current I nevW Electric field v E B c Hall voltage W Lorentz force F ev B VH EW B I ne B ne 1 RH Hall resistance RH Hall conductance xy Integer quantum Hall effect (von Klitzing 1980) xy H h 25812 .807 2 e xx Quantization of Hall conductance xy e2 i h exact, robust against disorder etc. Integer quantum Hall effect • Electrons are confined in a two-dimensional plane. (ex. AlGaAs/GaAs interface) • Strong magnetic field is applied (perpendicular to the plane) B AlGaAs GaAs E cyclotron motion Landau levels: En c n , 1 2 eB c , n 0,1,2,... mc k TKNN number xy (Thouless-Kohmoto-Nightingale-den Nijs) TKNN (1982); Kohmoto (1985) 2 e C h Chern number (topological invariant) ik r e u k (r ) * * 1 u u u u 2 2 C d k d r integer valued 2i filled band k y k x k x k y 1 2 d k k Ak x , k y Ak x , k y uk k uk 2i Edge states • There is a gapless edge mode along the sample boundary. B Number of edge modes xy 2 e /h C Robust against disorder (chiral fermions cannot be backscattered) Bulk: (2+1)d Chern-Simons theory Edge: (1+1)d CFT Effective field theory H iv x x y y m z parity anomaly xy sgn m 1 2 mx Domain wall fermion H iv x x y y mx z x x 1 1 x, y expiky y mx'dx' 0 v i E vk m0 m0 Example 2: chiral p-wave superconductor Integrating out Ginzburg-Landau BCS理論 (平均場理論) 2 2 H d r r ieA r , 2m 1 d d rd d r ' , r , r ' r r ' * , r , r ' r r ' 2 , , d , r , r ' V r r ' r r ' S-wave (singlet) 0 P-wave (triplet) + 超伝導秩序変数 1 , r , r ' r r ' r 2 高温超伝導体 d x2 y 2 (k ) k k k x2 k y2 , r , r ' r r ' r r ' (k ) k k 0 k x ik y Spinless px+ipy superconductor in 2 dim. • Order parameter (k ) k k 0 (k x ik y ) • Chiral (Majorana) edge state Lz 1 E k Hamiltonian density 2 2 ( k k 1 F ) 2m H k 2 (k x ik y ) k F k hk x k F k y kF k k (k x ik y ) k F 1 hk 2 2 (k k F ) 2m 2 (wrapping) hk Gapped fermion spectrum 2 2 winding k x2 k y2 k F2 : S S number=1 2m hk E hk Hamiltonian density 2 2 H i x i y x i y 2k F 2m Bogoliubov-de Gennes equation h0 i x i y u u E i i v h x y 0 v u v* E E , * v u i , H t r , t iEt / ur e r , t vr Particle-hole symmetry (charge conjugation) zeromode: Majorana fermion Majorana edge state E px+ipy superconductor: 1 2 x 2y k F2 2m i k x i y F y0 i x i y kF 1 2 x 2y k F2 2m u E u v v k E kF u 0 y v uk 1 m 2 2 exp ikx y cos k F k y kF 1 vk kF dk ik x t / k F x, t e k e ik x t / k F k 4 0 E 2 k kF H edge dk 0 k k k i dy y y y kF kF • Majorana bound state in a quantum vortex vortex hc e Bogoliubov-de Gennes equation h0 i e ei u u * h0 v v 2 1 h0 p eA EF 2m u v energy spectrum of vortex bound states n n0 , 0 20 / EF zero mode 0 0 0 0 Majorana (real) fermion! 2N vortices GS degeneracy = 2N interchanging vortices i i+1 braid groups, non-Abelian statistics i i 1 i 1 i D.A. Ivanov, PRL (2001) Fractional quantum Hall effect at 5 2 • 2nd Landau level • Even denominator (cf. Laughlin states: odd denominator) • Moore-Read (Pfaffian) state z j x j iy j MR 1 P f z z j i 2 zi z j 2 e zi / 4 i j Pf Aij det Aij Pf( ) is equal to the BCS wave function of px+ipy pairing state. Excitations above the Moore-Read state obey non-Abelian statistics. Effective field theory: level-2 SU(2) Chern-Simons theory G. Moore & N. Read (1991); C. Nayak & F. Wilczek (1996) Example 3: Z2 topological insulator Quantum spin Hall effect Quantum spin Hall effect (Z2 top. Insulator) Kane & Mele (2005, 2006); Bernevig & Zhang (2006) • Time-reversal invariant band insulator • Strong spin-orbit interaction L S p E S • Gapless helical edge mode (Kramers pair) B up-spin electrons B down-spin electrons If Sz is conserved, xycharge xy, xy, 0 xyspin xy, xy, 2 xy, If Sz is NOT conserved, Chern # (Z) Z2 Quantized spin Hall conductivity (trivial) Band insulator Quantum Hall state Quantum Spin Hall state Kane-Mele model (PRL, 2005) i 1 (A), 1 (B) H t c c j iSO c s c j iR c s d ij z c j v i ci ci i z ij i ij i ij ij i t K K’ K d ij iSO A j i B e ik r ky kx K’ K iSO E K’ A, s k B ,s k s , 3 K : H K iv x y 3 3SO s R y s x x s y v z 2 3 x y z z K ': H K ' iv x y 3 3SO s R y s x x s y v z 2 x is y H K* is y H K ' y z z time reversal symmetry • Quantum spin Hall insulator is characterized by Z2 topological index 1 0 an odd number of helical edge modes; Z2 topological insulator an even (0) number of helical edge modes 1 0 R 0 Kane-Mele model graphene + SOI [PRL 95, 146802 (2005)] Quantum spin Hall effect (if Sz is conserved) Edge states stable against disorder (and interactions) xys e 2 Z2 topological number Z2: stability of gapless edge states (1) A single Kramers doublet H ivsz x V0 Vx s x Vy s y Vz sz is y H *is y H Kramers’ theorem (2) Two Kramers doublets H iv I s z x V0 y Vx s x Vy sy Vz sz opens a gap Odd number of Kramers doublet (1) Even number of Kramers doublet (2) Experiment HgTe/(Hg,Cd)Te quantum wells CdTe HgCdTe CdTe Konig et al. [Science 318, 766 (2007)] Example 4: 3-dimensional Z2 topological insulator 3-dimensional Z2 topological insulator Moore & Balents; Roy; Fu, Kane & Mele (2006, 2007) Z2 topological insulator surface Dirac fermion bulk: band insulator surface: an odd number of surface Dirac modes characterized by Z2 topological numbers bulk insulator Ex: tight-binding model with SO int. on the diamond lattice [Fu, Kane, & Mele; PRL 98, 106803 (2007)] trivial insulator Z2 topological insulator trivial band insulator: 0 or an even number of surface Dirac modes Surface Dirac fermions topological insulator • A “half” of graphene K E K’ K’ K K K’ ky kx • An odd number of Dirac fermions in 2 dimensions cf. Nielsen-Ninomiya’s no-go theorem Experiments photon • Angle-resolved photoemission spectroscopy (ARPES) Bi1-xSbx Hsieh et al., Nature 452, 970 (2008) An odd (5) number of surface Dirac modes were observed. p, E Experiments II Bi2Se3 “hydrogen atom” of top. ins. a single Dirac cone Xia et al., Nature Physics 5, 398 (2009) ARPES experiment Band calculations (theory) トポロジカル絶縁体・超伝導体の分類 Schnyder, Ryu, AF, and Ludwig, PRB 78, 195125 (2008) arXiv:0905.2029 (Landau100) Classification of topological insulators/superconductors Schnyder, Ryu, AF, and Ludwig, PRB (2008) Kitaev, arXiv:0901.2686 Zoo of topological insulators/superconductors Classification of topological insulators/SCs Topological insulators are stable against (weak) perturbations. Random deformation of Hamiltonian Natural framework: random matrix theory (Wigner, Dyson, Altland & Zirnbauer) Assume only basic discrete symmetries: (1) time-reversal symmetry TH *T 1 H TRS = (2) particle-hole symmetry 1 CH C H (3) TRS PHS PHS = 0 no TRS +1 TRS with T T (integer spin) -1 TRS with T T (half-odd integer spin) T is y 0 no PHS +1 PHS with C C (odd parity: p-wave) -1 PHS with C C (even parity: s-wave) chiral symmetry [sublattice symmetry (SLS)] TCH TC H 1 3 3 1 10 (2) particle-hole symmetry px+ipy 1 H ck 2 ck ck hk ck x h*k x hk Bogoliubov-de Gennes hk k x x k y y k z C x CT dx2-y2+idxy 1 H ck 2 ck y h*k y hk ck hk ck hk k x2 k y2 x k y k y y k z C i y CT 10 random matrix ensembles IQHE Z2 TPI px+ipy dx2-y2+idxy Examples of topological insulators in 2 spatial dimensions Integer quantum Hall Effect Z2 topological insulator (quantum spin Hall effect) also in 3D Moore-Read Pfaffian state (spinless p+ip superconductor) Table of topological insulators in 1, 2, 3 dim. Schnyder, Ryu, Furusaki & Ludwig, PRB (2008) Examples: (a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator, (c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read), (e) Chiral d-wave superconductor, (f) superconductor, (g) 3He B phase. Classification of 3d topological insulators/SCs strategy (bulk boundary) • Bulk topological invariants integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII) BZ: Brillouin zone • Classification of 2d Dirac fermions 13 classes (13=10+3) AIII, CI, DIII Bernard & LeClair (‘02) AII, CII • Anderson delocalization in 2d nonlinear sigma models Z2 topological term (2) or WZW term (3) Topological distinction of ground states deformed “Hamiltonian” n empty bands m filled bands ky map from BZ to Grassmannian kx 2 U m n U mU n homotopy class IQHE (2 dim.) In classes AIII, BDI, CII, CI, DIII, Hamiltonian can be made off-diagonal. Projection operator is also off-diagonal. 3 U n topological insulators labeled by an integer d 3k 1 1 1 q tr q q q q q q 2 24 Discrete symmetries limit possible values of q Z2 insulators in CII (chiral symplectic) The integer number q # of surface Dirac (Majorana) fermions bulk insulator surface Dirac fermion (3+1)D 4-component Dirac Hamiltonian m H k k x m k AII: i y H * k i y H k chS q sgn m 1 2 mz TRS DIII: y y H * k y y H k AIII: y H k y H k k m PHS z (3+1)D 8-component Dirac Hamiltonian 0 H D CI: Dk i y k i 5 y y k im D k D k T q sgn m 2 CII: Dk k m D k mz z D 0 1 2 q 0 i y D* k i y D k Classification of 3d topological insulators strategy (bulk boundary) • Bulk topological invariants integer topological numbers: 3 random matrix ensembles (AIII, CI, DIII) • Classification of 2d Dirac fermions 13 classes (13=10+3) AIII, CI, DIII Bernard & LeClair (‘02) AII, CII • Anderson delocalization in 2d nonlinear sigma models Z2 topological term (2) or WZW term (3) Nonlinear sigma approach to Anderson localization • • • • (fermionic) replica Matrix field Q describing diffusion Localization massive Extended or critical massless Wegner, Efetov, Larkin, Hikami, …. topological Z2 term or WZW term 2 M Z 2 3 M Z Table of topological insulators in 1, 2, 3 dim. Schnyder, Ryu, Furusaki & Ludwig, PRB (2008) arXiv:0905.2029 Examples: (a) Integer Quantum Hall Insulator, (b) Quantum Spin Hall Insulator, (c) 3d Z2 Topological Insulator, (d) Spinless chiral p-wave (p+ip) superconductor (Moore-Read), (e) Chiral d-wave superconductor, (f) superconductor, (g) 3He B phase. Reordered Table Periodic table of topological insulators Classification in any dimension Kitaev, arXiv:0901.2686 Classification of topological insulators/superconductors Schnyder, Ryu, AF, and Ludwig, PRB (2008) Kitaev, arXiv:0901.2686 Summary • Many topological insulators of non-interacting fermions have been found. interacting fermions?? • Gapless boundary modes (Dirac or Majorana) stable against any (weak) perturbation disorder • Majorana fermions to be found experimentally in solid-state devices Andreev bound states in p-wave superfluids Z2 T.I. + s-wave SC Majorana bound state 3He-B (Fu & Kane)
© Copyright 2025 ExpyDoc