Shell model study of p-shell X hypernuclei (12XBe) 杉本聡 京都大学 元場俊雄 大阪電通大 山本安夫 都留文科大 Introduction Up to now, the experimental information are limited for X hyper nuclei as compared to L hyper nuclei. Theoretically, a pioneer work was done by Dover and Gal (Ann. Phys. 146 (1983)) using the existent data at that time. The experiments of (K-,K+) reaction were performed at KEK (Fukuda et al. PRC 58 (1998)) and AGS (Khaustov et al. PRC 61 (2000)) VX~-21~24MeV UX~-14MeV (Assuming a simple WS potential) At JPARC, the experiment of (K-,K+) reaction is planned to explore X hypernuclei. Purpose of our study To study the structure of X hypernuclei using the shell model with effective interactions deduced from realistic NY interaction model. To perform a reaction calculation with the wave function from the shell model to explore what can be obtained from the experimental data. DWIA for (K-,K+) This method has been quite successful in the study of L hypernuclei! Experiment Hotchi et al., PRC 64 (2001) 12C(p+,K+)12 C L Experiment Chrien et al., NPA 478 (1988) Shell model +DWIA Itonaga et al., PRC 49 (1994) Woods-Saxon (K-P)+DWIA From Hashimoto et al., PPNP 57 Motoba et al., PRC 38 (1988) Shell model calculation (11B+X-) (12C(K+,K-)12XBe) Active space for nucleons: p-shell X is fixed to the 0s1/2 orbit. Effective interaction for nucleons: Cohen-Kurath Effective interaction for N-X: YNG interaction by Yamamoto (G matrix, kF dependence) 12 XBe YN interaction model (VN-Xが引力的) ESC04d (Rijken and Yamamto PRC 73 044008 (2006)) NHC-D (Nagels et al. PRD 15 2547 (1977)) Non-central part is not included. H NY H N + tY + vNY CK YNG Single particle energy 12 Be X ESC04d (X) Jp T kF 1-1 1 1.08 tY UY tY+UY E BE (Y) 11.8 -16.1 -4.4 -57.4 4.5 NHC-D(X) NS97f(L) 1-1 1 1.05 1-1 1/2 1.24 11.8 -15.3 10.5 -22.5 -3.5 -57.4 -11.9 -65.1 4.5 12.2 kF in YNG is determined by the condition BE(X,1-1)~4.5 MeV. UX is comparable to the experimental data. UX ~ 14MeV (Fukuda et al., Khaustov et al) p-shell matrix element of YNG N-X ESC04d N-X NHC-D N-L NSC T 0 1 h Vb D(ss) (D/Vb) 4.98 -15.81 -3.18 0.30 -2.96 -9.88 0 1 1/2 2.14 1.55 1.05 4.75 0.79 0.04 VNY ~ -V + Ds s 2.23 0.51 0.04 D for N-X is larger than that for N-L. ESC04d gives quite large D. D for ESC04d and NHC-D have opposite signs. 12 Be(11B+X) X 3/25/21/23/2- E (MeV) -50 2-55 30-60 121-65 12 B X B 3/2- 12 Be X 12 23- 02- T=1/2 0- T=1 T=0 11 -45 31- 12- ESC04d -50 E (MeV) 11 -45 B X 10- 12- 12 5/2- X 1/2- Be 2- 3/201- T=1/2 -55 -60 B T=0 T=1 11B+X 21- -65 NHC-D The spectra for ESC04d and NHC-D show different behavior. The orders of the lowest two levels are different because of the sign changes of spin-spin part between ESC04d and NHC-D. ESC04d: intermediate (strong) coupling NHC-D: weak coupling (at least in the T=0 channel) DWIA計算 12C(K-,K+)12 Be X 殻模型計算で得られた波動関数を用いてDWIA 計算を行った。 ds ( ) ds ( ) SM Z eff (i f ; ) d L d L K - p X- K + (K-,K+)反応 運動量移行が大きい(~500MeV/c@pK-=1.6GeV/c) のでJ-stretchedの状態が強く励起される。 アイソスピン移行は1 -1 [0 p X0s]J p 1- ,T 1 T=1, 1- state in Cohen-Kurath 11B or 11C 12 Be X 2nd 3/2- 5.2MeV T=1/2 12 X Be 1.5MeV 11B+X (13%,34%,49%) 4.5MeV (59%,39%,1%) 12 Be X 1.5MeV 4.5MeV 1st 1/211B+X 1st 3/2- GS 11C+L (13%,86%,1%) (86%,12%,2%) NHC-D ESC04d (P(3/2-1Xs1/2),P(1/2-1Xs1/2), P(3/2-2Xs1/2)) 12C(K-,K+)12XBe反応で強く励起される 1.8MeV のはT=1,1-の状態。 ESC04dとNHC-Dでは波動関数の中身 が大きく違う。(相互作用の違いを反映) 4.4MeV 8.3MeV (0%,0%,98%) (5%,95%,0%) 10.7MeV (94%,5%,0%) 12 LC NS97f Exicitation Function NHC-D 12 Be X 1.5MeV 11B+X (13%,86%,1%) Smearing factor: 2MeV 4.5MeV (86%,12%,2%) NHC-D Excitation Function ESC04d 12 XBe 1.5MeV 11B+X (13%,34%,49%) 4.5MeV (59%,39%,1%) ESC04d Smearing factor: 2MeV Excitation Functionの比較 ESC04d X0p1/2 X0s1/2 NHC-D • 波動関数(NY Woods-Saxon potential 相互作用)の違 (Khaustov et al, PRC 61) いが励起関数 に反映される。 Summary ESC04dとNHC-Dに基 づいたものを用いて殻模型計算を行った。 12 ESC04dとNHC-Dとでは波動関数の中身が大きく違う。 殻模型波動関数を用いて12C(K-,K+)12XBe反応に対する 励起関数を求めた。 XBeに対してN-X相互作用として 励起関数は波動関数の違いを反映しESC04dとNHC-Dとで大きく 異なる。 →N-X相互作用の情報を得られる可能性? 今後の課題 Xp→LLに対する幅 連続状態の影響(p状態) 他のN-X相互作用を用いた計算 fss2 etc.
© Copyright 2025 ExpyDoc