第回NSCセミナー

第22回
北大MMCセミナー
Date:2014年3月6日(木) 14:30~16:00
※通常と曜日・時間が異なります
Speaker:太田 隆夫(京都大学名誉教授)
Place:電子科学研究所 中央キャンパス総合研究棟2号館
5F講義室 北(北12条西7丁目)
Title:Collective dynamics of self-propelled soft
particles
Abstract:別紙をご参照ください
連絡先:
北海道大学 電子科学研究所
動的数理モデリング研究室
長山 雅晴 内線 3357
[email protected]
主催: 電子科学研究所 動的数理モデリング研究室
共催: 北海道大学数学連携研究センター
Abstract:
Dynamics of interacting self-propelled objects has attracted much
attention recently from the view point of nonlinear science and
nonequilibrium statistical physics [1]. One of the characteristic features
of collective dynamics is that homogeneous ordered state where all the
particles are traveling coherently to a certain direction at a constant
velocity becomes unstable near the order-disorder transition point and
traveling bands appear in the matrix of the disordered state [2].
In my talk, I will describe our recent study of interacting selfpropelled soft particles whose migration velocity increases with increasing
local density [3]. By the word “soft”, I mean that particles are
deformable. This is motivated by the fact that there is a coupling between
the velocity of the center of mass and shape deformation in the motion of
a living cell. Numerical simulations in two dimensions reveal that traveling
bands similar to those found previously in the Vicsek-type model are
easily formed by this local density dependence of the migration velocity.
We show that a pair of stripe bands which are traveling to the
opposite direction is not destructed by a head-on collision but survives
again after collision. This soliton-like behavior has also been observed
quite recently in density waves in non-chemotactic Dictyostelium
discoideum mutants [4]. Similarity to and difference from the
experimental results are discussed [5].
[1] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71 (2012).
[2] H. Chate, F. Ginelli, G. Gregoire, and F. Raynaud, Phys. Rev. E
77, 046113 (2008).
[3] S. Yamanaka and T. Ohta, Phys. Rev. E89 021918 (2014).
[4] H. Kuwayama and S. Ishida, Sci. Rep. 3, 2272;
DOI:10.1038/srep02272 (2013).
[5] T. Ohta and S. Yamanaka, Prog. Theor. Exp. Phys. 2014
011J01 (2014).