PowerPoint プレゼンテーション

2004.12.4 @ 京都大学
μ-PICを用いた位置有感生体等価比例計数管(PS-TEPC)
の宇宙放射線線量等量計測器への応用
PS-TEPC : Position-Sensitive Tissue Equivalent Proportional Counter
早稲田大学・理工学総合研究センター &
宇宙航空研究開発機構・総合技術研究本部
寺沢和洋、道家忠義
京都大学大学院・理学研究科
身内賢太朗、永吉勉
高エネルギー加速器研究機構・放射線科学センター
佐々木慎一、俵裕子
宇宙航空研究開発機構・総合技術研究本部
松本晴久
Introduction
• Radiation hazard to the astronaut in space
→ Dose Equivalent : Dose on the ground ≪ Dose in space
(~ 1 mSv / year) (~ 1 mSv / day)
• Radiation exposure limit (dose equivalent)
on the ground : 50 mSv / year , 100 mSv / 5 years
[ICRP-60 recommendation, International Commission on Radiological Protection]
in space : lifetime excess risk < 3 %
ex. male, 25 years old: 400 mSv / year
male, 35 years old: 900 mSv / year
→ 750 mSv @ 95 %C.L. (σ= 10 %)
→ 560 mSv
(σ= 30 %)
[ref. T. Abe et al., Mut. Res. 430 (1999) 177.]
• Main contribution to dose in space : protons and heavy ions
cf. no protons and no heavy ions on the ground
Dose evaluation
D  k  f (L )LdL
H  k  Q(L ) f (L )LdL
H
Q
D
D : Absorbed dose
H : Dose equivalent
Q : Effective quality factor
L∞ : LET in water (Stopping power of water)
Q (L∞) : Quality factor as a function of LET
f (L∞) : Differential LET distribution
k :
Conversion coefficient (constant)
→ Measurement of LET distribution is essential
to evaluate dose equivalent.
LET = E / R [keV/μm-water] E : energy, R : range
LET [keV/μm]
QF (ICRP-60)
< 10
1
10 ~ 100
0.32 L – 2.2
100 <
300 / L1/2
Quality factor as a function of LET
TEPC (Cylindrical)
DOSTEL
TEPC (Spherical)
Kiel Univ., Germany
NASA, America
DOSimetric TELescope
Si1
1.27 mm
6.35 mm
1 mm
Si2
Thickness : 315μm
1)
Mean
σ(%)
0.67
51
0.67
35
Response functions and their standard deviations
1.2
17
1) “Path length = 1” means the
thickness of a silicon detector

(a)
(b)
DSSD1
DSSD2
t
DSSD3
(a) For penetrating particles
LET=Ed / (t/cos)
(b) For stopping particles
LET=Ed / R
Particle identification by E・ E
Range – Energy relation
→ determination of R
LETwater[keV/μm]
= LETSi ×1.193 / 2.33
R
• LET of each particle
can be evaluated.
・ Incident angle
・ Path length in the detector
Size : 2 mm× 2 cm
Thickness : 0.5 mm
Spacing : 5 mm
No. of strips : 16
Ed : Deposited Energy in the detector
t : Thickness of the detector
θ : Incident angle of each particle
R : Range of a stopping particle
in the detector
1.193 : Conversion factor
for relativistic particles
2.33 : Density of Si
RRMD: Real-time Radiation Monitoring Device
DSSD: Double-sided Silicon Strip Detector
Measurement of LET in real time by RRMD-III (waseda-jaxa)
Geographical map of count rate (STS-84)
• Peak around 0.2 keV/μm
: relativistic protons
• Clear shoulders and peaks
: major abundant elements
C (7.2 keV/ μm)
O (12.8)
Ne (20.0)
Mg (28.8)
Si (39.2)
Fe (135.2)
LET distribution for GCR particles (STS-84)
• Differential flux @ SAA region
: 10 – 100 times higher
in LET ( 1 – 10 keV /μm)
than that of GCR particles
• Broad peak
at around 0.5 keV/μm
: trapped protons
• LETmax of proton
: 90 keV/μm
→ Low energy protons
: dominant component
@ SAA region
LET distribution for trapped protons (STS-84)
Comparison of dose data between RRMD-III, TEPC and DOSTEL
onboard theSpace Shuttle (STS-84, -91)
• Difference between RRMD-III and DOSTEL is reasonable,
if surrounding materials of DOSTEL are taken into consideration.
• Dose equivalent (0.4 – 600keV/μm) of TEPC is 66 % higher than that of RRMD-III
• Quality factor of TEPC in SAA region is over 2.
(cf. 1.2 – 1.3 for DOSTEL & RRMD-III)
→ Inter-comparison experiment (ICCHIBAN Project)
→ Absorbed dose : TEPC
LET distirbution & Dose equivalent : RRMD-III
(for space dosimetry to charged particles)
Next step → Neutron dosimeter
or both (neutron & charged particle) → PS-TEPC
Requirements for active detectors for space dosimetry
Requirements \ Detectors
TEPC
DOSTEL
RRMD-III
Precise measurement
of LETs
(Standard deviation
of response function)
LET ≒ y (lineal energy)
×1)
○1)
○
(51%, 35%)
17 %
○
○
-
Real-time measurement
○1)
○1)
Event-by-event
evaluation
○1)
○1)
○
○
Tissue equivalent
○
×
×
Sensitivity to neutrons
○
×
×
Compact system
○
4π acceptance
○
○
×
○
×2)
Detection of m.i.p.
△
○
○
LET range [keV/μm]
0.4 ~ 1200
0.1 ~ 120
0.1 ~ 700
1) Deconvolution process is necessary to obtain the real LET distribution. 51 % for Cylindrical. 35 % for Spherical.
2) RRMD-IV, which is a cubic type detector, has acceptance for 4π.(△ → ○)
Requirements for active detectors for space dosimetry
Requirements \ Detectors
TEPC
DOSTEL
RRMD-III
PS-TEPC
Precise measurement
of LETs
(Standard deviation
of response function)
LET ≒ y (lineal energy)
×1)
○1)
○
○
(51%, 35%)
17 %
○
○
-
-
Real-time measurement
○1)
○1)
Event-by-event
evaluation
○1)
○1)
○
○
○
○
Tissue equivalent
○
×
×
○
Sensitivity to neutrons
○
×
×
○
Compact system
○
4π acceptance
○
○
×
○
×2)
○
○
Detection of m.i.p.
△
○
○
○
LET range [keV/μm]
0.4 ~ 1200
0.1 ~ 120
0.1 ~ 700
0.1 ~ 1000
1) Deconvolution process is necessary to obtain the real LET distribution. 51 % for Cylindrical. 35 % for Spherical.
2) RRMD-IV, which is a cubic type detector, has acceptance for 4π.(△ → ○)
Summary and Plan
• Small-size PS-TEPC
・ 3-dimensional tracks
・ Effective volume : 20×20×20 mm3
・ Position resolution : ~ 1 mm
・ LET range : 0.2 ~ 1000 keV/μm
• Performance test with tissue equivalent gas
(CH4 or C3H8) + CO2 and N2
• Irradiation test with
tissue equivalent gas or Ar + C2H6 (10 cm μ-TPC)
・ μ, electron(γ, X), proton and α
・ Heavy ions such as C, Si and Fe (~ 500 MeV/n)